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Shorter Clauses

Satisfaction-Driven Clause Learning (SDCL)
One More Thing...

Challenges and Conclusions
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Introduction on Proofs
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Certifying Satisfiability and Unsatisfiability

m Certifying satisfiability of a formula is easy:

(xVy)A(xVy)A (T VZ)
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Certifying Satisfiability and Unsatisfiability

m Certifying satisfiability of a formula is easy:

e Just consider a satisfying assignment: xyz

(xVy) A (xVy)A (T VE)

e We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

m Certifying unsatisfiability is not so easy:
o If a formula has n variables, there are 2" possible assignments.
=> Checking whether every assignment falsifies the formula is costly.
e More compact certificates of unsatisfiability are desirable.
= Proofs

5/ 46



What Is a Proof in SAT?

m In general, a proof is a string that certifies the unsatisfiability of
a formula.

e Proofs are efficiently (usually polynomial-time) checkable...
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What Is a Proof in SAT?

m In general, a proof is a string that certifies the unsatisfiability of
a formula.

e Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.

m Example: Resolution (RES) proofs
e A resolution proof is a sequence Cy,..., C, of clauses.
e Every clause is either contained in the formula or derived from

two earlier clauses via the resolution rule:

CVx xV D
cvD

o Cp, is the empty clause (containing no literals), denoted by L.

e There exists a resolution proof for every unsatisfiable formula.
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Resolution Proofs

m Example: F=(XxVyVz)A(Z)AN(xVy)A(TVy)A(u)

m Resolution proof:
(xVyVz),(2),(xVy),(xVy), (), (@Vy)(a),(u),L
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Resolution Proofs

m Example: F=(XxVyVz)A(Z)AN(xVy)A(TVy)A(u)

m Resolution proof:
(xVyVz),(2),(xVy),(xVy), (), (@Vy)(a),(u),L

XVyVz z

xXVy xVy
uvVvy y

4
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Resolution Proofs

m Example: F=(XxVyVz)A(Z)AN(xVy)A(TVy)A(u)

m Resolution proof:
(xVyVz),(2),(xVy),(xVy), (), (@Vy)(a),(u),L

XVyVz z

xXVy xVy

m Drawbacks of resolution:

e For many seemingly simple formulas, there are only resolution
proofs of exponential size.

e State-of-the-art solving techniques are not succinctly expressible.

To cope with these drawbacks, we need advanced techniques...
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Interference-Based
Proof Systems
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Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

Cvx xV D A A— B
cvD (res) 5 (mp)
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Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

Cvx xV D A A— B
o (e L5 (mp)

= |nference rules reason about the presence of facts.

o If certain premises are present, infer the conclusion.

m Different approach: Allow not only implied conclusions.
e Require only that the addition of facts preserves satisfiability.
e Reason also about the absence of facts.

= This leads to interference-based proof systems.
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Reasoning about Absence is as old as SAT Solving

The early SAT decision procedures used the Pure Literal rule
[Davis and Putnam 1960; Davis, Logemann and Loveland 1962]:

xX¢F
(pure)
(x)
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Reasoning about Absence is as old as SAT Solving

The early SAT decision procedures used the Pure Literal rule
[Davis and Putnam 1960; Davis, Logemann and Loveland 1962]:

xgF
pure)
(%)

Extended Resolution (ER) [Tseitin 1966]
m Combines resolution with the Extension rule:
x¢F X¢F (en
(xVavb)A(xVa)A(xVb)
m Equivalently, adds the definition x := AND(a, b)
m Can be considered the first interference-based proof system

m Is very powerful: No known lower bounds
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Classical Proof Systems for Propositional Logic
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Classical Proof Systems for Propositional Logic

Why Stronger
Proof Systems?

ER'66 || RES'60 |
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Without New Variables

Easier to Compute
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Without New Variables



Short Proofs of Pigeon Hole Formulas [Cook 1967]

Can n+1 pigeons be placed in n holes (at-most-one pigeon per hole)?

PHP, = /\ (x1p V- - VXnp) A /\ /\ (Xhp VXhq)

1<p<n+l 1<h<n1<p<qg<n+l

Resolution proofs of PHP, formulas are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHP,, formulas
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Short Proofs of Pigeon Hole Formulas [Cook 1967]
Can n+1 pigeons be placed in n holes (at-most-one pigeon per hole)?

PHP, = /\ (x1p V- - VXnp) A /\ /\ (Xhp VXhq)

1<p<n+l 1<h<n1<p<qg<n+l

Resolution proofs of PHP, formulas are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHP,, formulas

However, these proofs require introducing new variables:
m Hard to find such proofs automatically
m Existing ER approaches produce exponentially large proofs

m How to get rid of this hurdle? First approach: blocked clauses...
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Blocked Clauses [Kullmann 1999]

Definition (Blocking literal)

A literal x blocks clause (C V x) w.r.t. a CNF formula F if
for every clause (D V X) € F, the resolvent C VV D is a tautology.

Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.
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Blocked Clauses [Kullmann 1999]

Definition (Blocking literal)

A literal x blocks clause (C V x) w.r.t. a CNF formula F if
for every clause (D V X) € F, the resolvent C VV D is a tautology.

Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.

Example
Consider the formula (aV b) A (aV bV E) A (3V ¢).
First clause is not blocked.
Second clause is blocked by both a and c.
Third clause is blocked by c.

Theorem
Adding or removing a blocked clause preserves satisfiability.
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Blocked Clause Addition and Blocked Clause Elimination

The Blocked Clause proof system (BC) combines the
resolution rule with the addition of blocked clauses.

m BC generalizes ER [Kullmann 1999
m Recall x¢F  Xd&F
(xVaVvhb)A(xVa)A(xVb)

(er)

m The ER clauses are blocked on the literals x and x w.r.t. F
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Blocked Clause Addition and Blocked Clause Elimination

The Blocked Clause proof system (BC) combines the
resolution rule with the addition of blocked clauses.

m BC generalizes ER [Kullmann 1999
m Recall x¢F  Xd&F
(xVaVvhb)A(xVa)A(xVb)

(er)
m The ER clauses are blocked on the literals x and x w.r.t. F

Blocked clause elimination used in preprocessing and inprocessing
= Simulates many circuit optimization techniques [JAR 2012]
m Removes redundant Pythagorean Triples [SAT 2016]

However, blocked clauses do not offer enough expressivity

m Increase expressivity with autarky-based reasoning...
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Autarkies [Monien and Speckenmeyer 1985]
An autarky is an assignment that satisfies every clause it touches.
A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula F := (x Vy)A(xVy)A (Y V 2).
Assignment «; = Z is an autarky: (x Vy)A(xVy)A (Y V Z2).
Assignment a, = x ¥ z is an autarky: (xVy)A(xVy)A(VV2).
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Autarkies [Monien and Speckenmeyer 1985]
An autarky is an assignment that satisfies every clause it touches.
A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula F := (x Vy)A(xVy) A (¥ V 2).
Assignment «; = Z is an autarky: (x Vy)A(xVy)A (Y V Z2).
Assignment a, = x ¥ z is an autarky: (xVy)A(xVy)A(VV2).

Given an assignment «, F|q denotes a formula F without the
clauses satisfied by a and without the literals falsified by «.

Theorem
Let o« be an autarky for formula F.
Then, F and F |« are satisfiability equivalent.
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Conditional Autarkies [Heule, Kiesl, Seidl, Biere 2017]

An assignment o = Qeon U Qayg IS @ conditional autarky for
formula F if iy is an autarky for F|ag,,-

Example

Consider the formula F := (x Vy)A(xVy)A (¥ V 2).
Let atcon = X and auuy =, then o = Qeop U Qqyy = Xy is a
conditional autarky for F:

Qaut = y is an autarky for F|a,,, = (V V 2).
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Conditional Autarkies [Heule, Kiesl, Seidl, Biere 2017]

An assignment o = Qeon U Qayg IS @ conditional autarky for
formula F if iy is an autarky for F|ag,,-

Example

Consider the formula F := (x Vy)A(xVy)A (¥ V 2).

Let atcon = X and auuy =, then o = Qeop U Qqyy = Xy is a
conditional autarky for F:

Qaut = y is an autarky for F|a,,, = (V V 2).

Theorem
Let o = Queon U aiany be a conditional autarky for formula F.
Then F and F A (Qcon — Qiaut) are satisfiability-equivalent.

In the above example, we could therefore learn (X V ).
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Conditional Autarkies and Blocked Clauses
Blocked clauses and conditional autarkies are strongly related:

Theorem
A clause (c; V -V ¢ V x) is blocked on x w.r.t. formula F

if and only if €y A --- ANC; A\ x is a conditional autarky for F.
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Conditional Autarkies and Blocked Clauses

Blocked clauses and conditional autarkies are strongly related:

Theorem
A clause (c; V -V ¢ V x) is blocked on x w.r.t. formula F
if and only if €y A --- ANC; A\ x is a conditional autarky for F.

The blocking literal set generalizes the blocking literal concept
resulting in set-blockedness [Kiesl, Seidl, Tompits, Biere 2016]

Theorem ([Heule, Kiesl, Seidl, Biere 2017])

A clause (c; V-~V ¢ Vxg V-V x) is set-blocked (SBC) on
literal set {x1,...,xx} w.r.t. formula F if and only if
CiNAN---ANCiANXxy N+ AXg is a conditional autarky for F.
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Conditional Autarkies and Pigeon Hole Formulas

(x1,1 VX1 V- Vxp1) AN (x13 Vx23 VX33 V---Vxp3 )A
(x12Vx22 V- VXp2)A. o A(Xnt1 VX241 V X3 041 VooV Xnng1) A
(X1,1 VX12) A (X210 VX22) A(X31VX32) A ... A (Xn1V Xn2) A
(X121 VX13) A (X201 VX23) A(X31VX33) A ... A (Xn1VXn3)A
(X12VX13) A (X22VX23) A(X32VX33) A ... A (Xn2VXn3)A
A

(Yl,n\/yl,n—kl)/\(YQ,n\/YZ,n—Fl)/\(}3,n \ }3,n+1) ANVAN (Yn,n \ ?n,n—l-l)
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(x1,1 VX1 V- Vxp1) AN (x13 Vx23 Vx3z V---Vxp3 )A
(x12Vx22 V- VXp2)A o A(X1nt1 VX241 VX3 041 VooV Xnpg1) A
(X1,1 VX12) A (X2,1 VX22) A(X31VX32) A ... A (Xp1VXn2)A
(X121 VXx13) A (X201 VX23) A(X31VX33) A ..o A (Xn1VXn3) A
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Conditional Autarkies and Pigeon Hole Formulas
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Conditional Autarkies and Pigeon Hole Formulas

(x11Vx21 V- Vxp1) AN (x13 Vx23 Vx3z V---Vxp3 )A
(x12Vx00 V- VXp2)A o A(Xnt1 VX241 V X3 041 VooV Xnpg1) A
(X1,1 VX12) A (X1 VX22) A(X31VX32) A ... A (Xn1VXn2) A
(X110 VXx13) A (X201 VX23) A(X31VX33) A ..o A (Xn1VXn3) A
(X12VX13) A (X22VX23) A(X32VX33) A ... A (Xn2VXn3)A
A

(Yl,n\/Yl,n+l)/\(y2,n\/Y2,n+l)/\(}3,n \ Y3,n—&—1) ANVAN (Yn,n \ ?n,n—l-l)

m Consider oeon = X13AX1,4 N AX1nt1 ANX23ANX24 N+ AX2pt1
m Notice that ayut = Xx1,1 AX12 AX2,1 A X202 is an autarky of F|a.g,
= Resolution can reduce the constraint acon — Qaut to (X12 V X2.1)

m Allows constructing poly-sized proofs in SBC w/o new variables
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Proof Systems based on Conditional Autarkies

| sBC'16 |—{ BC'99 |

| ER'66 |—| RES 60 |

satisfiability
equivalence

logical
equivalence



Proof Systems based on Conditional Autarkies

| sBC'16 |—{ BC'99 |

| ER'66 |—| RES 60 |

) ) satisfiability
Polynomial-sized proofs of PHP, equivalence

in SBC without new variables

logical
equivalence

However, many clauses are long (making proof search hard)
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Shorter Clauses
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Reverse Unit Propagation [Goldberg and Novikov 2003]

Unit propagation (UP) satisfies unit clauses by assigning their
literal to true (until fixpoint or a conflict).

Let F be a formula, C a clause, and « the smallest assignment
that falsifies C. C is implied by F via UP (denoted by F i C) if
UP on F|q results in a conflict.

m FE Cis also known as Reverse Unit Propagation (RUP).

m |Learned clauses in CDCL solvers are RUP clauses.

RUP typically summarizes dozens of resolution steps.
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DRAT: An Interference-Based Proof System [SAT 2014]

m Popular example of an interference-based proof system: DRAT
m DRAT allows the addition of RATs (defined below) to a formula.
e It can be efficiently checked if a clause is a RAT.
e RATSs are not necessarily implied by the formula.

e But RATs are redundant: their addition preserves satisfiability.

m DRAT also allows clause deletion

o Initially introduced to check proofs more efficiently

o Clause deletion may introduce clause addition options (interference)
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DRAT: An Interference-Based Proof System [SAT 2014]

m Popular example of an interference-based proof system: DRAT
m DRAT allows the addition of RATs (defined below) to a formula.
e It can be efficiently checked if a clause is a RAT.
e RATSs are not necessarily implied by the formula.
e But RATs are redundant: their addition preserves satisfiability.

m DRAT also allows clause deletion

o Initially introduced to check proofs more efficiently

o Clause deletion may introduce clause addition options (interference)

A clause (C V x) is a resolution asymmetric tautology (RAT) on x
w.r.t. a CNF formula F if for every clause (D VX) € F, the
resolvent C VV D is implied by F via unit-propagation, i.e., F 5 CV D.
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Redundancy as an Implication [CADE 2017]

A formula G is at least as satisfiable as a formula F if F E G.

Theorem ([Heule, Kiesl, Biere 2017])

Let F be a formula, C a clause, and « the smallest assignment
that falsifies C. Then, C is redundant w.r.t. F iff there exists an
assignment w such that 1) w satisfies C; and 2) F|a F F|w.

This is the strongest notion of redundancy. However, it cannot be
checked in polynomial time (assuming P # NP), unless bounded.
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Propagation Redundancy [CADE 2017]

m Implied by F via UP is used in SAT solvers to determine
redundancy of learned clauses and therefore |7 is a natural
restriction of .

m We bound F|aF Flwby Flah Flw.
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Propagation Redundancy [CADE 2017]

m Implied by F via UP is used in SAT solvers to determine
redundancy of learned clauses and therefore |7 is a natural
restriction of .

m We bound F|aF Flwby Flah Flw.

Definition (Propagation Redundant Clause)

Let F be a formula, C a clause, and « the smallest assignment
that falsifies C. Then, C is propagation redundant (PR) w.r.t. F if
there exists an assignment w satisfying C with F|a i F|w.

25 / 46



PR and Pigeon Hole Formulas [CADE 2017]

Can n+1 pigeons be placed in n holes (at-most-one pigeon per hole)?

PHP, = /\ (x1p VoV X p) A /\ /\ (Xhp V Xhq)
1<p<n+l 1<h<nl1<p<qg<n+tl
Any (Xpp V Xk,q) with h # k and p # q is a PR clause w.r.t. PHP,

m with witness w = Xp p A Xk p A Xpg A\ Xk g
= learning n binary clauses (X1,1 V Xnq) with g € {2,..,n+ 1}
allows learning the unit clause (X11)
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New Proof Systems for Propositional Logic
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| sBC'16 F—| BC'99 |

l

| ER'66 |—| RES'60

How to compute short proofs? satisfiability
equivalence

logical
equivalence

RAT simulates PR [Heule and Biere 2018]
ER simulates RAT [Kiesl, Rebola-Pardo, Heule 2018]
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Satisfaction-Driven
Clause Learning
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Finding PR Clauses: The Positive Reduct [HVC 2017]

Determining whether a clause C is SBC or PR w.r.t. a formula
F is an NP-complete problem.

How to find SBC and PR clauses? Encode it in SAT!
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Finding PR Clauses: The Positive Reduct [HVC 2017]

Determining whether a clause C is SBC or PR w.r.t. a formula
F is an NP-complete problem.

How to find SBC and PR clauses? Encode it in SAT!

Given a formula F and a clause C. Let « denote the smallest
assignment that falsifies C. The positive reduct of F and « is
a formula which is satisfiable if and only if C is SBC w.r.t. F.

Positive reducts are typically very easy to solve!

Key |dea: While solving a formula F, check whether the
positive reduct of F and the current assignment « is satisfiable.
In that case, prune the branch «.
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The Positive Reduct: An Example [HVC 2017]

Given a formula F and a clause C. Let v denote the smallest
assignment that falsifies C. The positive reduct of F and «,
denoted by p(F, ), is the formula that contains C and all
assigned(D, o) with D € F and D is satisfied by .

Example
Consider the formula F := (x Vy) A (x Vy) A (Y V 2).

Let G, = (X), so a1 = x.
The positive reduct p(F,a1) = (X) A (x) A (x) is unsatisfiable.

Let G = (X V y), so ap = xy. The positive reduct
p(F,a2) = (X Vy)A(xVy)A(xVy)is satisfiable.
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The Positive Reduct: An Example [HVC 2017]

Given a formula F and a clause C. Let v denote the smallest
assignment that falsifies C. The positive reduct of F and «,
denoted by p(F, ), is the formula that contains C and all
assigned(D, o) with D € F and D is satisfied by .

Example
Consider the formula F:= (x Vy) A (xVy) A (Y V 2).

Let C; = (%), so ag = x.

The positive reduct p(F,a1) = (X) A (x) A (x) is unsatisfiable.
Let G, = (X V ¥), so ap = xy. The positive reduct

p(F,a2) = (X Vy)A(xVy)A(xVy)is satisfiable.

Theorem
Given a formula F and an assignment «. Every satisfying
assignment w of p(F,«) is a conditional autarky of F.
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Pseudo-Code of CDCL (formula F)

13

14

15

16

a:=10
forever do
a := Simplify (F, a)
if F|q contains a falsified clause then
C := AnalyzeConflict ()
if C is the empty clause then return unsatisfiable

F:=FU{C}

a := BackJump (C, «)
else

I := Decide ()

if / is undefined then return satisfiable
a:=aU{l}
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Pseudo-Code of SDCL (formula F) [HVC 2017]

1 a:=10

2 forever do

3 a = Simplify (F, a)

a if F|q contains a falsified clause then

5 C := AnalyzeConflict ()

6 if C is the empty clause then return unsatisfiable
7 F:=FuU {C}

8 a := BackJump (C, )

9 else if p(F,«) is satisfiable then

10 C := AnalyzeWitness ()

1 F:=FuU{C}

12 a = BackJump (C, «)

13 else

14 | :== Decide ()

15 if / is undefined then return satisfiable
16 a:=aU{l}
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Benchmark Suite: Pigeon Hole Formulas [HVC 2017]

Can n+1 pigeons be placed in n holes (at-most-one pigeon per hole)?

PHP, := /\ (x1p V- VXnp) A /\ /\ (Xhp VXhq)

1<p<n+l 1<h<n1<p<qg<n+l

The binary clauses encode the constraint <y (Xp1;...;Xhn+1).

There exists more compact encodings, such as the sequential
counter and minimal encoding, for at-most-one constraints.

We include these encodings to evaluate the robustness of the solver.
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Tool Comparison

We used three tools in our evaluation:

m EBDDRES: A tool based on binary decision diagrams that
can convert a refutation into an extended resolution proof.

m GLUCOSER: A SAT solver with extended learning, i.e., a
technique that introduces new variables and could
potentially solve pigeon hole formulas in polynomial time.

® LINGELING (PR): Our SDCL solver.
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Results on Small Pigeon Hole Formulas [HVC 2017]

input EBDDRES GLucosER LINGELING (PR)
formula |#var Fcls| time #node | time #lemma |time  #lemma
PHPjp-std | 110 561 1.00 3M 22.711 329,470 | 0.07 329
PHP;1-std | 132 738 3.47 OM |146.61 1,514,845 | 0.11 439
PHPip-std | 156 949 | 10.64 27M |307.29 2,660,358 | 0.16 571
PHP3-std | 182 1,197 | 30.81 76M |982.84 6,969,736 | 0.22 727
PHPip-seq | 220 311 OF — l.62 25,712 | 0.07 327
PHP;1-seq | 264 375 OF — 6.94 77,747 | 0.10 437
PHPip-seq | 312 445 OF —— | 19.40 174,084 | 0.14 569
PHPy3-seq | 364 521| OF —— |172.76 1,061,318 | 0.18 725
PHPio-min | 180 281| 28.60 81M 0.64 15,777 | 0.06 329
PHPi1-min | 220 342 143.92 399M 1.82 34,561 | 0.10 439
PHP15-min | 264 409 OF — 9.87 121,321 | 0.13 571
PHP;3-min | 312 482 OF — 57.66 483,789 | 0.18 727

OF = 32-bit overflow
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Results on Large Pigeon Hole Formulas [HVC 2017]

input EBDDRES GLucosER LINGELING (PR)

formula | #var #cls | time #node | time F#lemma time #lemma
PHPyy-std 420 4221 OF —— | TO — 1.61 2,659
PHPs-std 930 13,981| OF —— | TO —— | 1345 8,989
PHPyo-std | 1,640 32,841| OF —— | TO — | 6741 21,319
PHPso-std | 2,550 63,801| OF —— | TO — |241.14 41,649
PHPyy-seq | 840 1,221| OF —— | TO — 1.05 2,657
PHPsy-seq | 1,860 2,731| OF —— | TO — 6.55 8,987
PHPyo-seq | 3,280 4,841| OF —— | TO — | 27.10 21,317
PHPsg-seq | 5,100 7,551 OF —— | TO — | 86.30 41,647
PHPyy-min| 760 1,161 OF —— | TO — 1.03 2,659
PHP3p-min | 1,740 2,641| OF —— | TO — 6.30 8,989
PHPyy-min | 3,120 4,721| OF —— TO —_— 26.65 21,319
PHPsop-min | 4,900 7,401| OF —— | TO —— | 85.00 41,649

OF = 32-bit overflow

TO = timeout of 9000 seconds
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One More Thing...



Chromatic Number of the Plane

The Hadwiger-Nelson problem:
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can
be mutually 1 apart—and thus must be colored differently.
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Bounds since the 1950s

m The Moser Spindle graph shows the lower bound of 4
m A coloring of the plane showing the upper bound of 7
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First Progress in Decades [De Grey 2018]

The first meaningful progress on
this problem was by Aubrey de
Grey, who found a unit-distance
graph with chromatic number 5.

He published a graph with 1581
vertices on April 8, 2018.

Aubrey de Grey is known for his
research to extend life.
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The New Result Started a Media Hype
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Propositional Proofs for Graph Validation and Shrinking

Checking that a unit-distance graph has chromatic number 5:
m Show that there exists a 5-coloring

= While there is no 4-coloring (formula is UNSAT)

m Unsatisfiable core represents a subgraph

SAT solvers find short proofs of unsatisfiability for these formulas
Proof minimization techniques allow further reduction

Combining the techniques allows finding much smaller graphs
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Record by Proof Minimization: 553 Vertices [Heule 2018]
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Challenges and Conclusions
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Theoretical Challenges

Lower bounds for interference-based proof systems with new
variables will be hard, but what about without new variables?

m Lower bound for BC w/o new variables? Pigeon-hole formulas?
m Lower bound for SBC w/o new variables? Tseitin formulas?

= Lower bound for PR w/o new variables?!
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Lower bounds for interference-based proof systems with new
variables will be hard, but what about without new variables?

m Lower bound for BC w/o new variables? Pigeon-hole formulas?
m Lower bound for SBC w/o new variables? Tseitin formulas?
= Lower bound for PR w/o new variables?!

What is the power of conditional autarky reasoning?

Can the new proof systems without new variables simulate old
ones, in particular Frege systems (or the other way around)?
What about cutting planes?

Can we design stronger proof systems that make it even easier
to compute short proofs?

44 | 46



Practical Challenges

The current version of SDCL is just the beginning:
m Which heuristics allow learning short PR clauses?
m How to construct an AnalyzeWitness procedure?

m Can the positive reduct be improved?

Can local search be used to find short proofs of unsatisfiability?

Constructing positive reducts (or similar formulas) efficiently:
m Generating a positive reduct is more costly than solving them
m Can we design data-structures to cheaply compute them?
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Conclusions

We introduced new redundancy notions for SAT.

Proof systems based on these redundancy notions are strong.
m They allow for short proofs without new variables; and

m They are more suitable for mechanized proof search.
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Conclusions

We introduced new redundancy notions for SAT.

Proof systems based on these redundancy notions are strong.
m They allow for short proofs without new variables; and
m They are more suitable for mechanized proof search.

SDCL generalizes the well-known CDCL paradigm by allowing
to prune branches that are potentially satisfiable:

m Such branches can be found using the positive reduct;
m Pruning can be expressed in the PR proof system;
m Runtime and proofs can be exponentially smaller.
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