PROGRESSIVE HEDGING IN NONCONVEX STOCHASTIC OPTIMIZATION

Terry Rockafellar University of Washington, Seattle

Smart Energy and Stochastic Optimization CMO-BIRS — Oaxaca, Mexico 25 September 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Basic Model in Stochastic Optimization

Information pattern: here single-stage at first decision $x \in \mathbb{R}^n$ followed by observing $\xi \in \Xi$ (prob. space) **multistage extension:** repeated interplay — coming later

Problem (in simplified initial formulation)

minimize $E_{\xi}[f_0(x,\xi)]$ subject to $F(x,\xi) \in K \subset \mathbb{R}^m$ $K = \text{closed convex cone}, \quad F(x,\xi) = (f_1(x,\xi), \dots, f_m(x,\xi))$ functions $f_i(x,\xi)$ continuous with respect to x

Alternative objectives: (to just minimizing an "expected cost")

- minimizing a CVaR-type measure of risk, or
- minimizing buffered probability of failure at some threshold

these extensions can be subsumed into the expectation model!

there are finitely many scenarios $\xi \in \Xi$, probabilities $p(\xi) > 0$

Problem restatement: in reduced form with ∞ penalization minimize $\Phi(x) = E_{\xi}[\varphi(x,\xi)] = \sum_{\xi} p(\xi)\varphi(x,\xi)$ over $x \in \mathbb{R}^n$ where $\varphi(x,\xi) = \begin{cases} f_0(x,\xi) & \text{if } F(x,\xi) \in K \\ \infty & \text{if } F(x,\xi) \notin K \end{cases}$

The <u>convex</u> case: Φ is lsc convex function on \mathbb{R}^n when, for all ξ ,

- the set $C(\xi) = \{x \mid F(x,\xi) \in K\}$ is convex
- $f_0(x,\xi)$ is convex with respect to $x \in C(\xi)$

but here the <u>nonconvex</u> case will be targeted as well

Relaxation in Terms of Subgradients

Fermat's rule: for minimizing Φ the condition $0 \in \partial \Phi(\bar{x})$ is

- necessary for local optimality at \bar{x} in general,
- sufficient for global optimality at \bar{x} in the convex case

Subgradient calculus: under a minor constraint qualification,

 $\Phi(x) = \sum_{\xi} p(\xi)\varphi(x,\xi) \implies \partial \Phi(x) = \sum_{\xi} p(\xi)\partial\varphi(x,\xi)$

Associated first-order optimality condition

 $orall \xi, \ \exists \ ar w(\xi) \in \partial arphi(ar x,\xi) \$ such that $0 = \sum_{\xi} p(\xi) ar w(\xi) =: E_{\xi}[ar w(\xi)]$

Status: necessary for local optimality under a constraint qual., <u>sufficient</u> for global optimality always in the <u>convex</u> case

Computational focus in progressive hedging

find vectors $\bar{x} \in \mathbf{R}^n$ and $\bar{w}(\xi) \in \mathbf{R}^n$ satisfying this condition

Progressive Hedging Background

Aim: reduce computations to iteratively solving subproblems which depend only on the individual scenarios $\xi \in \Xi$

Original algorithm (convex case) — with proximal parameter r > 0In iteration k, having x^k and $w^k(\xi)$ with $E_{\xi}[w^k(\xi)] = 0$, get
$$\begin{split} \widehat{x}^{k}(\xi) &= \operatorname*{argmin}_{x \in \mathbb{R}^{n}} \Big\{ \varphi(x,\xi) - w^{k}(\xi) \cdot x + \frac{r}{2} ||x - x^{k}||^{2} \Big\} \\ &= \operatorname*{argmin}_{F(x,\xi) \in \mathcal{K}} \Big\{ f_{0}(x,\xi) - w^{k}(\xi) \cdot x + \frac{r}{2} ||x - x^{k}||^{2} \Big\} \end{split}$$
(taking advantage of strong convexity in x), and then update by $x^{k+1} = E_{\varepsilon}[\widehat{x}^{k}(\xi)], \qquad w^{k+1}(\xi) = w^{k}(\xi) - r[\widehat{x}^{k}(\xi) - x^{k+1}]$ **Convergence:** in <u>convex</u> case, global from any initial x^0 , $w^0(\xi)$ **Challenge:** how to adapt this now to a **nonconvex** setting?

 $f_0(\cdot,\xi)$ not convex? $C(\xi) = \{x \mid F(x,\xi) \in K\}$ not convex?

A Special Motivation for Admitting Nonconvexity

Decision-influenced probabilities: $p(\xi) \longrightarrow p(x,\xi)$ $\min_{x} \sum_{\xi} p(\xi)\varphi(x,\xi)$ replaced by $\min_{x} \sum_{\xi} p(x,\xi)\varphi(x,\xi)$

Example: promotion can affect the demand for a product

Transformation back to the influence-free format:

- let $\widetilde{\rho}(\xi) = \frac{1}{S}$, where S = the total number of scenarios $\xi \in \Xi$
- introduce $\widetilde{\varphi}(x,\xi) = Sp(x,\xi)\varphi(x,\xi)$, so that $\widetilde{p}(\xi)\widetilde{\varphi}(x,\xi) = p(x,\xi)\varphi(x,\xi)$
- the given problem becomes $\min \sum_{\xi} \widetilde{\rho}(\xi) \widetilde{\varphi}(x,\xi)$

but this transformation won't preserve convexity!

Conclusion: the capability of solving <u>nonconvex</u> stochastic programming problems will open up treatment of this case

Reformulation Toward Accommodating Nonconvexity

Linkage problem format: Rock. 2018 minimize a function φ over some "linkage" subspace S \rightarrow "progressive decoupling algorithm" that can "elicit" convexity New context: the space $\mathcal{L} = \text{all } (x(\cdot), u(\cdot)) = (x(\xi), u(\xi))_{\xi \in \Xi}$ Extended problem statement — with perturbation vectors minimize $\Psi(x(\cdot), u(\cdot)) = E_{\xi} \Big[f_0(x(\xi), \xi) + \delta_{\mathcal{K}} \Big(F(x(\xi), \xi) + u(\xi) \Big) \Big]$ over the subspace S of the space \mathcal{L} defined by for all $\xi \in \Xi$, $x(\xi) =$ the same $x \in \mathbb{R}^n$, while $u(\xi) = 0$

Complementary subspace: orthogonal to S in \mathcal{L}

$$S^{\perp} = \left\{ (w(\cdot), y(\cdot)) = (w(\xi), y(\xi))_{\xi \in \Xi} \middle| E_{\xi}[w(\xi)] = 0 \right\}$$

expectational inner product:
$$\left\langle (x(\cdot), u(\cdot)), (w(\cdot), y(\cdot)) \right\rangle = E_{\xi} \Big[(x(\xi), u(\xi)) \cdot (w(\xi), y(\xi)) \Big]$$

Progressive Decoupling in this Stochastic Setting

specializing a new, very general procedure of Rock. 2018

Algorithm in "raw" form — with parameters r > e > 0Having $(x^k(\xi), u^k(\xi))_{\xi \in \Xi} \in S$ and $(w^k(\xi), y^k(\xi))_{\xi \in \Xi} \in S^{\perp}$ find $(\widehat{x}^{k}(\xi), \widehat{u}^{k}(\xi)) \in \operatorname{argmin} \psi^{k}(x, u, \xi)$ for each $\xi \in \Xi$ where $\psi^{k}(x, u, \xi) = f_{0}(x, \xi) + \delta_{K}(F(x, \xi) + u)$ $-w^{k}(\xi)\cdot x - y^{k}(\xi)\cdot u + \frac{r}{2}||x - x^{k}(\xi)||^{2} + \frac{r}{2}||u - u^{k}(\xi)||^{2}$ and then update by $(x^{k+1}(\xi), u^{k+1}(\xi))_{\xi \in \Xi} =$ projection of $(\widehat{x}^k(\xi), \widehat{u}^k(\xi))_{\xi \in \Xi}$ onto \mathcal{S} , $(w^{k+1}(\xi), v^{k+1}(\xi)) = (w^k(\xi), y^k(\xi)) (r-e)[(\widehat{x}^{k}(\xi),\widehat{u}^{k}(\xi)) - (x^{k+1}(\xi),u^{k+1}(\xi))]$

e = elicitation parameter which needs to be "high enough"

Consolidation With the Specifics of $\mathcal S$ and $\mathcal S^{\perp}$

here $x^k(\xi) = \text{same } x^k \in \mathbb{R}^n$ for all ξ , while $u^k(\xi) = 0$ for all ξ

Having x^k , $y^k(\xi)$, and $w^k(\xi)$ with $E_{\xi}[w^k(\xi)] = 0$, calculate $(\widehat{x}^k(\xi), \widehat{u}^k(\xi)) \in \underset{x,u}{\operatorname{argmin}} \psi^k(x, u, \xi)$ for each $\xi \in \Xi$ where $\psi^k(x, u, \xi) = f_0(x, \xi) + \delta_K(F(x, \xi) + u)$ $-w^k(\xi) \cdot x - y^k(\xi) \cdot u + \frac{r}{2}||x - x^k||^2 + \frac{r}{2}||u||^2$ and then update by $x^{k+1} = E_{\xi}[\widehat{x}^k(\xi)], \qquad y^{k+1}(\xi) = y^k(\xi) - (r - e)\widehat{u}^k(\xi)$ $w^{k+1}(\xi) = w^k(\xi) - (r - e)[\widehat{x}^k(\xi) - x^{k+1}]$

Further consolidation: carry out the min in *u* in "closed form" this will bring augmented Lagrangians into the picture

Toward Refinement Using Augmented Lagrangians

Consider pure scenario problems as auxiliaries: min $f_0(x,\xi)$ subject to $(f_1(x,\xi),\ldots,f_m(x,\xi)) = F(x,\xi) \in K$ let Y = polar cone K^* and let $d_Y(y) = dist(y,Y)$

Associated Lagrangian:

$$L(x, y, \xi) = f_0(x, \xi) + y \cdot F(x, \xi) - \delta_Y(y)$$

= min_u { f_0(x, \xi) + \delta_K (F(x, \xi) + u) - y \cdot u)

Augmented Lagrangian: with parameter r > 0 $L_r(x, y, \xi) = f_0(x, \xi) + y \cdot F(x, \xi) + \frac{r}{2} ||F(x, \xi)||^2 - \frac{1}{2r} d_Y^2 (y + rF(x, \xi))$ $= \min_u \{f_0(x, \xi) + \delta_K(F(x, \xi) + u) - y \cdot u + \frac{r}{2} ||u||^2\}$

where moreover $-\nabla_y L_r(x, y, \xi)$ = the unique *u* giving this min

often there's a direct formula for this gradient

Example: the case of $K = \mathbb{R}^m_-$ and its polar $Y = \mathbb{R}^m_+$ has $-u_i = \frac{\partial L_r}{\partial y_i}(x, y, \xi) = \begin{cases} f_i(x, \xi) & \text{if } y_i + rf_i(x, \xi) \leq 0 \\ -r^{-1}y_i & \text{if } y_i + rf_i(x, \xi) \geq 0 \end{cases}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Application to the Algorithm's Subproblems

Augmented Lagrangian formula to utilize:

 $L_r(x, y, \xi) = \min_u \{ f_0(x, \xi) + \delta_K(F(x, \xi) + u) - y \cdot u + \frac{r}{2} ||u||^2 \}$

Subminimization in the subproblems: with respect to usince $\psi^k(x, u, \xi) = f_0(x, \xi) + \delta_K(F(x, \xi) + u) - y^k(\xi) \cdot u + \frac{r}{2} ||u||^2 - w^k(\xi) \cdot x + \frac{r}{2} ||x - x^k||^2$ it follows that

$$\min_{u} \psi^{k}(x, u, \xi) = L_{r}(x, y^{k}(\xi), \xi) - w^{k}(\xi) \cdot x + \frac{r}{2} ||x - x^{k}||^{2}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Residual computation: in executing the (x, u) minimization

- minimize this Lagrangian expression in x to get $\hat{x}^k(\xi)$
- then get $-\widehat{u}^k(\xi)$ as the gradient $\nabla_y L_r(\widehat{x}^k(\xi), \widehat{y}^k(\xi), \xi)$

Resulting Procedure and its Characteristics

Augmented progressive hedging — with parameters $r > e \ge 0$

Having x^k , $y^k(\xi)$, and $w^k(\xi)$ with $E_{\xi}[w^k(\xi)] = 0$, calculate $\widehat{x}^k(\xi) \in \operatorname{argmin}_x \left\{ L_r(x, y^k(\xi), \xi) - w^k(\xi) \cdot x + \frac{r}{2} ||x - x^k||^2 \right\},$ $\widehat{u}^k(\xi) = -\nabla_y L_r(\widehat{x}^k(\xi), \widehat{y}^k(\xi), \xi)$

and then update by

 $\begin{aligned} x^{k+1} &= E_{\xi}[\widehat{x}^{k}(\xi)], \qquad y^{k+1}(\xi) = y^{k}(\xi) - (r-e)\widehat{u}^{k}(\xi) \\ w^{k+1}(\xi) &= w^{k}(\xi) - (r-e)[\widehat{x}^{k}(\xi) - x^{k+1}] \end{aligned}$

Key observation: around solution elements \bar{x} , $\bar{y}(\xi)$, $\bar{w}(\xi)$ <u>second-order</u> optimality conditions guarantee $\exists e$ such that, when r > e, the augmented Lagrangian $L_r(x, y, \xi)$ will be <u>convex-concave</u> on a neighborhood of $(\bar{x}, \bar{y}(\xi))$

then the algorithm will converge locally as if in the convex case

Extension to a Multistage Model

"Decisions" and "observations" in stages s = 1, ..., N: $x_1, \xi_1, x_2, \xi_2, ..., x_N, \xi_N$ with $x_s \in \mathbb{R}^{n_s}, \xi_s \in \Xi_s$ $x = (x_1, ..., x_N) \in \mathbb{R}^n = \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_N}$ $\xi = (\xi_1, ..., \xi_N) \in \Xi \subset \Xi_1 \times \cdots \times \Xi_N$

Nonanticipativity of decisions

 x_s can respond to ξ_1, \dots, ξ_{s-1} but not to ξ_s, \dots, ξ_N : $x(\xi) = (x_1, x_2(\xi_1), x_3(\xi_1, \xi_2), \dots, x_N(\xi_1, \xi_2, \dots, \xi_{N-1}))$

Embedding: $\mathcal{L} =$ **all** functions $x(\cdot)$ from $\xi \in \Xi$ to $x(\xi) \in \mathbb{R}^n$ **Nonanticipativity subspace:** and its complement in \mathcal{L}

 $\mathcal{N} = \left\{ x(\cdot) \in \mathcal{L} \mid x_s(\xi) \text{ depends only on } \xi_1, \dots, \xi_{s-1} \right\}$ $\mathcal{N}^{\perp} = \left\{ w(\cdot) \in \mathcal{L} \mid E_{\xi_s, \dots, \xi_N}[w_s(\xi_1, \dots, \xi_{s-1}, \xi_s \dots, \xi_N)] = 0 \right\}$

 $x(\cdot)$ is nonanticipative $\iff x(\cdot) \in \mathcal{N}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Multistage Objective Structure

Relaxation elements: serving as "perturbations" $u(\xi) = (u_1(\xi), \dots, u_N(\xi)) \in \mathbb{R}^{m_1} \times \dots \times \mathbb{R}^{m_N}$ Constraint cones: $K_s \subset \mathbb{R}^{m_s}$ in stage *s*, closed and convex Objective function: $\Psi(x(\cdot), u(\cdot)) = E_{\xi} \left[\sum_{s=1}^{N} \psi_s(x(\xi), u(\xi), \xi) \right]$ where $\psi_s(x(\xi), u(\xi), \xi) = f_{s0}(x_1(\xi), \dots, x_s(\xi), \xi) + \delta_{K_s} \left(F_s(x_1(\xi), \dots, x_s(\xi), \xi) + u_s(\xi) \right)$

Problem

minimize $\Psi(x(\cdot), u(\cdot))$ subject to $x(\cdot) \in \mathcal{N}$, $u(\cdot) = 0$

Treatment: everything in the single-stage case of progressive hedging can be extended to this multistage pattern, including execution with stage-dependent augmented Lagrangians **[1]** R.T. Rockafellar (2018) "Progressive decoupling of linkages in optimization and variational inequalities with elicitable convexity or monotonicity," *Set-valued and Variational Analysis*.

[2] R.T. Rockafellar and Jie Sun (2018) "Solving Lagrangian variational inequalities with applications to stochastic programming," *Mathematical Programming B*.

[3] R.T. Rockafellar and S. Uryasev (2018) "Minimizing buffered probability of exceedance by progressive hedging," *Mathematical Programming B.*

[4] R.T. Rockafellar (2017) "Solving stochastic programming problems with risk measures by progressive hedging," *Set-valued and Variational Analysis*.

website: sites.washington.edu/~rtr/mypage.html