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A Basic Model in Stochastic Optimization

Information pattern: here single-stage at first
decision x ∈ IRn followed by observing ξ ∈ Ξ (prob. space)
multistage extension: repeated interplay — coming later

Problem (in simplified initial formulation)

minimize Eξ
[
f0(x , ξ)

]
subject to F (x , ξ) ∈ K ⊂ IRm

K = closed convex cone, F (x , ξ) = (f1(x , ξ), . . . , fm(x , ξ))
functions fi (x , ξ) continuous with respect to x

Alternative objectives: (to just minimizing an “expected cost”)

• minimizing a CVaR-type measure of risk, or

• minimizing buffered probability of failure at some threshold

these extensions can be subsumed into the expectation model!



Scenario Framework

there are finitely many scenarios ξ ∈ Ξ, probabilities p(ξ) > 0

Problem restatement: in reduced form with ∞ penalization

minimize Φ(x) = Eξ[ϕ(x , ξ)] =
∑

ξ
p(ξ)ϕ(x , ξ) over x ∈ IRn

where ϕ(x , ξ) =

{
f0(x , ξ) if F (x , ξ) ∈ K
∞ if F (x , ξ) 6∈ K

The convex case: Φ is lsc convex function on IRn when, for all ξ,

• the set C (ξ) =
{
x
∣∣F (x , ξ) ∈ K

}
is convex

• f0(x , ξ) is convex with respect to x ∈ C (ξ)

but here the nonconvex case will be targeted as well



Relaxation in Terms of Subgradients

Fermat’s rule: for minimizing Φ the condition 0 ∈ ∂Φ(x̄) is
• necessary for local optimality at x̄ in general,
• sufficient for global optimality at x̄ in the convex case

Subgradient calculus: under a minor constraint qualification,

Φ(x) =
∑

ξ p(ξ)ϕ(x , ξ) =⇒ ∂Φ(x) =
∑

ξ p(ξ)∂ϕ(x , ξ)

Associated first-order optimality condition

∀ξ, ∃ w̄(ξ) ∈ ∂ϕ(x̄ , ξ) such that 0 =
∑

ξ
p(ξ)w̄(ξ) =: Eξ[w̄(ξ)]

Status: necessary for local optimality under a constraint qual.,
sufficient for global optimality always in the convex case

Computational focus in progressive hedging

find vectors x̄ ∈ IRn and w̄(ξ) ∈ IRn satisfying this condition



Progressive Hedging Background

Aim: reduce computations to iteratively solving subproblems
which depend only on the individual scenarios ξ ∈ Ξ

Original algorithm (convex case) — with proximal parameter r > 0

In iteration k , having xk and wk(ξ) with Eξ[w
k(ξ)] = 0, get

x̂k(ξ) = argmin
x∈IRn

{
ϕ(x , ξ)− wk(ξ)·x + r

2 ||x − xk ||2
}

= argmin
F (x ,ξ)∈K

{
f0(x , ξ)− wk(ξ)·x + r

2 ||x − xk ||2
}

(taking advantage of strong convexity in x), and then update by

xk+1 = Eξ[x̂
k(ξ)], wk+1(ξ) = wk(ξ)− r

[
x̂k(ξ)− xk+1

]
Convergence: in convex case, global from any initial x0, w0(ξ)

Challenge: how to adapt this now to a nonconvex setting?
f0(·, ξ) not convex? C (ξ) =

{
x
∣∣F (x , ξ) ∈ K

}
not convex?



A Special Motivation for Admitting Nonconvexity

Decision-influenced probabilities: p(ξ) −→ p(x , ξ)

min
x

∑
ξ p(ξ)ϕ(x , ξ) replaced by min

x

∑
ξ p(x , ξ)ϕ(x , ξ)

Example: promotion can affect the demand for a product

Transformation back to the influence-free format:

• let p̃(ξ) = 1
S , where S = the total number of scenarios ξ ∈ Ξ

• introduce ϕ̃(x , ξ) = Sp(x , ξ)ϕ(x , ξ), so that

p̃(ξ)ϕ̃(x , ξ) = p(x , ξ)ϕ(x , ξ)

• the given problem becomes min
x

∑
ξ p̃(ξ)ϕ̃(x , ξ)

but this transformation won’t preserve convexity!

Conclusion: the capability of solving nonconvex stochastic
programming problems will open up treatment of this case



Reformulation Toward Accommodating Nonconvexity

Linkage problem format: Rock. 2018
minimize a function ϕ over some “linkage” subspace S

−→ “progressive decoupling algorithm” that can “elicit” convexity

New context: the space L = all (x(·), u(·)) = (x(ξ), u(ξ))ξ∈Ξ

Extended problem statement — with perturbation vectors

minimize Ψ(x(·), u(·)) = Eξ

[
f0(x(ξ), ξ) + δK

(
F (x(ξ), ξ) + u(ξ)

)]
over the subspace S of the space L defined by

for all ξ ∈ Ξ, x(ξ) = the same x ∈ IRn, while u(ξ) = 0

Complementary subspace: orthogonal to S in L
S⊥ =

{
(w(·), y(·)) = (w(ξ), y(ξ))ξ∈Ξ

∣∣∣Eξ[w(ξ)] = 0
}

expectational inner product:〈
(x(·), u(·)), (w(·), y(·))

〉
= Eξ

[
(x(ξ), u(ξ))·(w(ξ), y(ξ))

]



Progressive Decoupling in this Stochastic Setting

specializing a new, very general procedure of Rock. 2018

Algorithm in “raw” form — with parameters r > e ≥ 0

Having (xk(ξ), uk(ξ))ξ∈Ξ ∈ S and (wk(ξ), yk(ξ))ξ∈Ξ ∈ S⊥ find

(x̂k(ξ), ûk(ξ)) ∈ argmin
x ,u

ψk(x , u, ξ) for each ξ ∈ Ξ

where ψk(x , u, ξ) = f0(x , ξ) + δK
(
F (x , ξ) + u

)
−wk(ξ)·x − yk(ξ)·u + r

2 ||x − xk(ξ)||2 + r
2 ||u − uk(ξ)||2

and then update by

(xk+1(ξ), uk+1(ξ))ξ∈Ξ = projection of
(
x̂k(ξ), ûk(ξ)

)
ξ∈Ξ

onto S,

(wk+1(ξ), yk+1(ξ)) = (wk(ξ), yk(ξ))−
(r − e)

[
(x̂k(ξ), ûk(ξ))− (xk+1(ξ), uk+1(ξ))

]
e = elicitation parameter which needs to be “high enough”



Consolidation With the Specifics of S and S⊥

here xk(ξ) = same xk ∈ IRn for all ξ, while uk(ξ) = 0 for all ξ

Having xk , yk(ξ), and wk(ξ) with Eξ[w
k(ξ)] = 0, calculate

(x̂k(ξ), ûk(ξ)) ∈ argmin
x ,u

ψk(x , u, ξ) for each ξ ∈ Ξ

where ψk(x , u, ξ) = f0(x , ξ) + δK (F (x , ξ) + u)
−wk(ξ)·x − yk(ξ)·u + r

2 ||x − xk ||2 + r
2 ||u||

2

and then update by

xk+1 = Eξ[x̂
k(ξ)], yk+1(ξ) = yk(ξ)− (r − e)ûk(ξ)

wk+1(ξ) = wk(ξ)− (r − e)
[
x̂k(ξ)− xk+1

]
Further consolidation: carry out the min in u in “closed form”

this will bring augmented Lagrangians into the picture



Toward Refinement Using Augmented Lagrangians

Consider pure scenario problems as auxiliaries:
min f0(x , ξ) subject to (f1(x , ξ), . . . , fm(x , ξ)) = F (x , ξ) ∈ K

let Y = polar cone K ∗ and let dY (y) = dist(y ,Y )

Associated Lagrangian:
L(x , y , ξ) = f0(x , ξ) + y ·F (x , ξ)− δY (y)

= minu

{
f0(x , ξ) + δK

(
F (x , ξ) + u

)
− y ·u

}
Augmented Lagrangian: with parameter r > 0
Lr (x , y , ξ) = f0(x , ξ)+y ·F (x , ξ)+ r

2 ||F (x , ξ)||2− 1
2r d

2
Y

(
y+rF (x , ξ)

)
= minu

{
f0(x , ξ) + δK (F (x , ξ) + u)− y ·u + r

2 ||u||
2
}

where moreover −∇yLr (x , y , ξ) = the unique u giving this min

often there’s a direct formula for this gradient

Example: the case of K = IRm
− and its polar Y = IRm

+ has

−ui = ∂Lr
∂yi

(x , y , ξ) =

{
fi (x , ξ) if yi + rfi (x , ξ) ≤ 0
−r−1yi if yi + rfi (x , ξ) ≥ 0



Application to the Algorithm’s Subproblems

Augmented Lagrangian formula to utilize:

Lr (x , y , ξ) = minu
{
f0(x , ξ) + δK (F (x , ξ) + u)− y ·u + r

2 ||u||
2
}

Subminimization in the subproblems: with respect to u

since ψk(x , u, ξ) = f0(x , ξ) + δK (F (x , ξ) + u)− yk(ξ)·u + r
2 ||u||

2

−wk(ξ)·x + r
2 ||x − xk ||2 it follows that

minu ψ
k(x , u, ξ) = Lr (x , yk(ξ), ξ)− wk(ξ)·x + r

2 ||x − xk ||2

Residual computation: in executing the (x , u) minimization

• minimize this Lagrangian expression in x to get x̂k(ξ)

• then get −ûk(ξ) as the gradient ∇yLr (x̂k(ξ), ŷk(ξ), ξ)



Resulting Procedure and its Characteristics

Augmented progressive hedging — with parameters r > e ≥ 0

Having xk , yk(ξ), and wk(ξ) with Eξ[w
k(ξ)] = 0, calculate

x̂k(ξ) ∈ argminx

{
Lr (x , yk(ξ), ξ)− wk(ξ)·x + r

2 ||x − xk ||2
}

,

ûk(ξ) = −∇yLr (x̂k(ξ), ŷk(ξ), ξ)
and then update by

xk+1 = Eξ[x̂
k(ξ)], yk+1(ξ) = yk(ξ)− (r − e)ûk(ξ)

wk+1(ξ) = wk(ξ)− (r − e)
[
x̂k(ξ)− xk+1

]
Key observation: around solution elements x̄ , ȳ(ξ), w̄(ξ)

second-order optimality conditions guarantee ∃e such
that, when r > e, the augmented Lagrangian Lr (x , y , ξ)
will be convex-concave on a neighborhood of (x̄ , ȳ(ξ))

then the algorithm will converge locally as if in the convex case



Extension to a Multistage Model

“Decisions” and “observations” in stages s = 1, . . . ,N:
x1, ξ1, x2, ξ2, . . . , xN , ξN with xs ∈ IRns , ξs ∈ Ξs

x = (x1, . . . , xN) ∈ IRn = IRn1 × · · · × IRnN

ξ = (ξ1, . . . , ξN) ∈ Ξ ⊂ Ξ1 × · · · × ΞN

Nonanticipativity of decisions

xs can respond to ξ1, . . . , ξs−1 but not to ξs , . . . , ξN :

x(ξ) = (x1, x2(ξ1), x3(ξ1, ξ2), . . . , xN(ξ1, ξ2, . . . , ξN−1))

Embedding: L = all functions x(·) from ξ ∈ Ξ to x(ξ) ∈ IRn

Nonanticipativity subspace: and its complement in L
N =

{
x(·) ∈ L

∣∣ xs(ξ) depends only on ξ1, . . . , ξs−1

}
N⊥ =

{
w(·) ∈ L

∣∣ Eξs ,...,ξN [ws(ξ1, . . . , ξs−1, ξs . . . , ξN) ] = 0
}

x(·) is nonanticipative ⇐⇒ x(·) ∈ N



Multistage Objective Structure

Relaxation elements: serving as “perturbations”
u(ξ) = (u1(ξ), . . . , uN(ξ)) ∈ IRm1 × · · · × IRmN

Constraint cones: Ks ⊂ IRms in stage s, closed and convex

Objective function: Ψ(x(·), u(·)) = Eξ

[∑N
s=1 ψs(x(ξ), u(ξ), ξ)

]
where ψs(x(ξ), u(ξ), ξ) = fs0(x1(ξ), . . . , xs(ξ), ξ)+

δKs

(
Fs(x1(ξ), . . . , xs(ξ), ξ) + us(ξ)

)
Problem

minimize Ψ(x(·), u(·)) subject to x(·) ∈ N , u(·) = 0

Treatment: everything in the single-stage case of progressive
hedging can be extended to this multistage pattern, including
execution with stage-dependent augmented Lagrangians
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