The classifying space of the G-cobordism category

Carlos Segovia
UNAM-Oaxaca
csegovia@matem.unam.mx

Accepted for publication in 2023 in HH\&A
October 11, 2022

Plan of the talk

- Cobordism category and Tillmann's method
- Define the G-cobordism category \mathscr{S}^{G}
- Correspondence $\pi_{0}\left(\mathscr{S}^{G}\right) \cong G /[G, G]$
- Show the splitting short exact sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \pi_{1}\left(\mathscr{S}^{G}\right) \longrightarrow \Omega_{2}^{S O}(G) \longrightarrow 0
$$

- The classifying space $B \mathscr{S}^{G} \simeq G /[G, G] \times S^{1} \times X^{G}$
- Applications

Cobordism Category \mathscr{I}

- Objects: Finite disjoint union of circles.
- Morphisms: Two dimensional cobordism,

Tillmann's method

- \mathscr{S}_{0} is the full subcategory of \mathscr{S} with only one object given by the empty 1-dimensional manifold.

- $\mathscr{S}_{>0}$ is the subcategory of \mathscr{S} with the same objects of \mathscr{S} except for the empty manifold and where each connected component of every morphism has non empty incoming boundary and non empty outgoing boundary.

\notin
- \mathscr{S}_{b} is the subcategory of \mathscr{S} with the same objects of \mathscr{S} and where each connected component of every morphism has non empty outgoing boundary.

\notin
- \mathscr{S}_{1} is the full subcategory of $\mathscr{S}_{>0}$ with only one object, the circle.

From this picture what did you see?

- There are isomorphisms $\mathscr{S}_{0} \cong \mathbb{N}^{\infty}$ and $\mathscr{S}_{1} \cong \mathbb{N}\left(B \mathscr{S}_{0}\right.$ is the infinite dimensional torus T^{∞} and $B \mathscr{S}_{1} \simeq S^{1}$).
- It is defined the functor $\Phi: \mathscr{S}_{>0} \longrightarrow \mathscr{S}_{1}$, which is constant map in objects and each morphism Σ with n incoming circles, c connected components, genus g and m outgoing circles $(\Sigma: n \rightarrow m$), is mapped to

$$
\Phi(\Sigma)=\frac{1}{2}(m-n-\chi(\Sigma))=g+m-c
$$

Example for $\Sigma: 4 \rightarrow 4$:

- We have the adjoint functors $\Phi: \mathscr{S}_{>0} \rightarrow \mathscr{S}_{1} \dashv i: \mathscr{S}_{1} \hookrightarrow \mathscr{S}_{>0}$ which is

$\Phi \circ i=\mathrm{id}_{\mathscr{S}_{1}}$ and $i \circ \Phi \simeq \mathrm{id}_{\mathscr{S}_{>0}}$

- We can extend to Φ to the whole category \mathscr{S} by negative values, $\Phi^{\prime}: \mathscr{S} \rightarrow \mathbb{Z}$. The composition $\mathbb{N} \cong \mathscr{S}_{1} \hookrightarrow \mathscr{S} \xrightarrow{\Phi^{\prime}} \mathbb{Z}$ is a homotopy equivalence.

Theorem (Tillmann)

$B \mathscr{S}_{0} \simeq T^{\infty}, B \mathscr{S}_{1}, B \mathscr{S}_{>0}, B \mathscr{S}_{b} \simeq S^{1}$ and $B \mathscr{S} \simeq X \times S^{1}$ where X is a simply connected infinite loop space.

- Tillmann (1996), The classifying space of the $1+1$ cobordism category \mathscr{S} (Crelle)
- Galatius-Madsen-Tillmann-Weiß(2009) The homotopy type of the cobordism category Cob_{d} (Act.Math.)

Theorem (T)

- $\pi_{0}(B \mathscr{S})=0\left(\Omega_{1}^{S O}=0\right)$,
- $\pi_{1}(B \mathscr{S})=\mathbb{Z}$, and
- $B \mathscr{S} \simeq S^{1} \times X, \pi_{1}(X)=0$.

Theorem (GMTW)

- $\pi_{0}\left(B \mathrm{Cob}_{2}\right)=0$,
- $\pi_{1}\left(B \mathrm{Cob}_{2}\right)=\mathbb{Z}$,
- $B \mathrm{Cob}_{2} \simeq \Omega^{\infty-1} M T O(2)$,
where $M T O(d)$ certain Thom spectrum.

$$
\Omega_{d-1}=\pi_{0}\left(\operatorname{Cob}_{d}\right)=\pi_{0}\left(\Omega^{\infty-1} M T O(d)\right)=\pi_{d-1} M O
$$

Thom-Pontriaguin

The G-cobordism category \mathscr{S}^{G}

- Objects: Finite sequence $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, with $x_{i} \in G \sqcup\{0\}$ representing the disjoint union of principal G-bundles over the circle for $x_{i} \in G$ and the empty G-bundle for $x_{i}=0$.
- Morphisms: Free cobordism classes of principal G-bundles. Recall a cobordism from X to X^{\prime} manifolds of the same dimension, is a manifold M with $\partial M=X \sqcup-X^{\prime}$. Two cobordisms (X, M, X^{\prime}) and $\left(X, M^{\prime}, X^{\prime}\right)$ represent the same class if there is a diffeomorphism $\phi: M \rightarrow M^{\prime}$ with the commutative diagram

Principal G-bundles

$$
x^{2}
$$

$$
x^{2}
$$

$$
x, x^{2} \in \mathbb{Z} / \mathbb{Z}_{4}=\left\{1, x, x^{2}, x^{3}\right\}
$$

$$
a, a b \in S_{3}=\left\langle a, b: a^{2}=b^{2}=(a b)^{3}=1\right\rangle .
$$

G-cobordisms

G-cobordism over a handlebody with exit $[y, x]$.

The connected components $\pi_{0}\left(\mathscr{S}^{G}\right)$

- The G-cobordism over disc implies that we can reduce to the subcategory with sequences $\left(x_{1}, \cdots, x_{n}\right)$ with $x_{i} \neq 0$.
- We use the G-cobordism over a pair of pants with multiple legs

- Then we restrict to the subcategory with objects of the form $x \in G$.
- Disregarding any components of G-cobordisms over closed surfaces and due to the G-cobordisms over handlebodies

- Thus two elements $x, y \in G$ are connected in \mathscr{S}^{G} if and only if they differ by an element in $[G, G]$.
- Consequently,

$$
\pi_{0}\left(B \mathscr{S}^{G}\right)=G /[G, G]
$$

- Since \mathscr{S}^{G} is a symmetric monoidal category, the space $B \mathscr{S}^{G}$ is a grouplike with abelian fundamental group and hence any two connected components have the same homotopy type.

The fundamental group $\pi_{1}\left(\mathscr{S}^{G}\right)$

- Let \mathcal{C} be a category (connected) and a subset of morphism Σ closed, we associate the localization $\mathcal{C}\left[\Sigma^{-1}\right]$ and functor $P_{\Sigma}: \mathcal{C} \longrightarrow \mathcal{C}\left[\Sigma^{-1}\right]$:
- $P_{\Sigma}(f)$ is invertible for $f \in \Sigma$,
- if $F: \mathcal{C} \longrightarrow \mathcal{D}$ inverts $F(f)$, for $f \in \Sigma$,

- $\operatorname{Fun}\left(\pi_{1}(\mathrm{C}), \operatorname{Set}\right) \approx \operatorname{Cov}(\mathcal{C}) \xrightarrow[\rightarrow]{\sim} \operatorname{Fun}_{\text {inv }}(\mathrm{C}, \operatorname{Set}) \cong \operatorname{Fun}\left(\mathrm{C}\left[\mathrm{C}^{-1}\right], \operatorname{Set}\right) \xrightarrow{\sim} \operatorname{Fun}\left(\mathrm{C}\left[\mathrm{C}^{-1}\right]_{x}, \operatorname{Set}\right)$

Theorem (Quillen)

There is an isomorphism $\pi_{1}(\mathcal{C}, x) \cong \operatorname{Hom}_{\mathbb{C}\left[\mathrm{C}^{-1}\right]}(x, x)$.

Left calculus of fractions

Definition (Localizing set)

For \mathcal{C} a subset of morphisms Σ is localizing if we have:
(1) Σ contains the identities and Σ is closed under composition.
(2) $f \in \mathcal{C}, s \in \Sigma$ there exist $g \in \mathcal{C}$ and $t \in \Sigma$ with

(3) $f, g: x \rightarrow y$ two morphisms, if $s \circ f=s \circ g$ for $s \in \Sigma$, if and only if, $f \circ t=g \circ t$ for $t \in \Sigma$.

Theorem (Grabiel-Zisman)

Let Σ be a localizing subset of morphisms in \mathcal{C}. The category $\mathfrak{C}\left[\Sigma^{-1}\right]$ can be described:
The objects of $\mathfrak{C}\left[\Sigma^{-1}\right]$ are the same of \mathfrak{C}. One morphism $x \longrightarrow y$ in $\mathcal{C}\left[\Sigma^{-1}\right]$ is a class of "roofs", i.e., of diagrams (s, f) in \mathcal{C} of the form

where $s \in \Sigma$ and $f \in \mathcal{C}$.

Two roofs $(s, f) \sim(t, g)$ are equivalent, if and only if, there is a third roof (r, h) with

The identities are $\left(1_{x}, 1_{x}\right)$ and the composition of (s, f) and (t, g) is

Steps to find $\pi_{1}\left(\mathscr{S}^{G}\right)$

(1) We consider the subset of morphisms $\tilde{\mathscr{S}}_{0}^{G}$ which are the disjoint union of identity G-cobordisms over cylinders and G-cobordisms over closed surfaces.
(2) $\tilde{\mathscr{S}}_{0}^{G}$ is a localizing set. Therefore, the category of fractions $\mathscr{S}^{G}\left[\left(\tilde{\mathscr{S}}_{0}^{G}\right)^{-1}\right]$ can be described by roofs

$$
\left(\mathrm{id}_{\hat{x}} \sqcup \gamma, \Sigma\right)=\mathrm{id}_{\hat{x}} \sqcup \gamma /{ }_{\hat{x}}^{\Sigma}
$$

where $\Sigma: \hat{x} \rightarrow \hat{y}$ is a morphism in \mathscr{S}^{G} and γ is a G-cobordism over closed surfaces.
(3) We restrict to objects of \mathscr{S}^{G} which are in the connected component of the empty G-bundle.
(9) For a morphism $\Sigma: \hat{x} \rightarrow \hat{y}$ we consider $\delta_{\hat{y}}$ a connected morphism from \hat{y} to 0 . Set $\Sigma^{\prime}=\Sigma \sqcup_{\hat{y}} \delta_{\hat{y}}$. The proposal for the inverse of $\left(\mathrm{id}_{\hat{x}}, \Sigma\right)$ is

$$
\Theta:=\left(\mathrm{id}_{\hat{y}} \sqcup\left(\Sigma^{\prime} \circ \overline{\Sigma^{\prime}}\right), \overline{\Sigma^{\prime}} \circ \delta_{\hat{y}}\right)
$$

where $\overline{\Sigma^{\prime}}$ is Σ^{\prime} with the reverse orientation.
(6) The composition of $\left(\mathrm{id}_{\hat{x}}, \Sigma\right)$ followed by Θ is

$$
\left(\mathrm{id}_{\hat{x}} \sqcup\left(\Sigma^{\prime} \circ \overline{\Sigma^{\prime}}\right), \overline{\Sigma^{\prime}} \circ \Sigma^{\prime}\right)
$$

(6) Consider the equivalence relation "generated" by the identification

$$
\mathrm{id}_{\hat{x}} \sqcup\left(\Sigma^{\prime} \circ \overline{\Sigma^{\prime}}\right) \sim \overline{\Sigma^{\prime}} \circ \Sigma^{\prime}
$$

(1) Denote by \mathscr{S}_{\sim}^{G} the quotient category given by the equivalence relation (recall we are in the connected component of the empty G-bundle).
(8) There is an isomorphism $\mathscr{S}^{G}\left[\mathscr{S}^{G}{ }^{-1}\right] \cong \mathscr{S}_{\sim}^{G}\left[\left(\tilde{\mathscr{S}}_{0}^{G}\right)^{-1}\right]$.
(0. The relation $\mathrm{id}_{\hat{\chi}} \sqcup(\Sigma \circ \bar{\Sigma}) \sim \bar{\Sigma} \circ \Sigma$ is implied from the relation $\mathrm{id}_{1} \sqcup(D \circ \bar{D}) \sim \bar{D} \circ D$ for D the disc $D: 1 \rightarrow 0$.

The splitting $\pi_{1}\left(\mathscr{S}^{G}\right)=\mathbb{Z} \oplus \Omega_{2}^{\text {SO }}(G)$

- The fundamental group $\pi_{1}\left(\mathscr{S}^{G}\right)$ can be identified with the automorphism group $\left.\operatorname{Hom}_{\mathscr{S}^{G}\left[\mathscr{S}^{G}\right.}{ }^{-1}\right](0,0)$. This monoid consists of roofs (Γ, Σ) and the composition is

$$
\left(\Gamma_{2}, \Sigma_{2}\right) \circ\left(\Gamma_{2}, \Sigma_{2}\right)=\left(\Gamma_{1}+\Gamma_{2}, \Sigma_{1}+\Sigma_{2}\right)
$$

- We define the homomorphism $\pi_{1}\left(\mathscr{S}^{G}\right) \rightarrow \Omega_{2}^{S O}(G)$ by $(\Gamma, \Sigma) \longmapsto[\Sigma]-[\Gamma]$, which is well defined.
- The splitting $\Omega_{2}^{S O}(G) \rightarrow \pi_{1}\left(\mathscr{S}^{G}\right)$ starts with a G-cobordism and we separate along every simple closed curve with trivial monodromy and we cap with two discs, where every time we separate we add the negative of the G-cobordism over the sphere.

Theorem

We have the splitting short exact sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow \pi_{1}\left(\mathscr{S}^{G}\right) \rightarrow \Omega_{2}^{S O}(G) \rightarrow 0
$$

The classifying space $B \mathscr{S}^{G}$

- Similarly, we define the subcategories

- We have the adjoint functors $\Phi^{G}: \mathscr{S}_{>0}^{G} \rightarrow \mathscr{S}_{1}^{G} \dashv i: \mathscr{S}_{1}^{G} \hookrightarrow \mathscr{S}_{>0}^{G}$

$$
\begin{aligned}
& \Phi^{G} \circ i=\mathrm{id}_{\mathscr{S}_{1}^{G}} \text { and } i \circ \Phi^{G} \simeq \mathrm{id}_{\mathscr{S}_{>0}^{G}}
\end{aligned}
$$

- Assumption! Every G-cobordism with connected base space and non-empty incoming boundary $\hat{x}=\left(x_{1}, \cdots, x_{n}\right)$, with $x_{i} \neq 0$ for $1 \leq i \leq n$, factorises through the precomposition of the G-cobordism $P_{\hat{\chi}}$ (the pair of pants with multiple legs).

Theorem (Tillmann)

$B \mathscr{S}_{0}^{G} \simeq T^{\infty}, B \mathscr{S}_{1}^{G}, B \mathscr{S}_{>0}^{G}, B \mathscr{S}_{b}^{G} \simeq B \mathscr{S}_{1}^{G}$ and

$$
B \mathscr{S}^{G} \simeq \frac{G}{[G, G]} \times X^{G} \times S^{1}
$$

where X^{G} is an infinite loop space with $\pi_{1}\left(X^{G}\right)=\Omega_{2}^{S O}(G)$.

Applications

- Bökstedt-Svane: $\pi_{1}\left(\mathcal{C}_{2}^{G}\right)$ is generated by diffeomorphism classes $[W]$ closed up to the "Chimera relations"

$$
\begin{aligned}
& \left(\operatorname{id}_{0}, W_{3} \circ \overline{W_{1}} \sqcup W_{4} \circ \overline{W_{2}}\right)= \\
& =\left(W_{1} \circ \overline{W_{1}} \sqcup W_{2} \circ \overline{W_{2}},\left(W_{3} \circ \overline{W_{2}} \circ W_{2} \circ \overline{W_{1}}\right) \sqcup\left(W_{4} \circ \overline{W_{1}} \circ W_{1} \circ \overline{W_{2}}\right)\right) \\
& =\left(W_{1} \circ \overline{W_{1}} \sqcup W_{2} \circ \overline{W_{2}},\left(W_{3} \circ \overline{W_{2}} \sqcup W_{2} \circ \overline{W_{1}}\right) \sqcup\left(W_{4} \circ \overline{W_{1}} \sqcup W_{1} \circ \overline{W_{2}}\right)\right) \\
& =\left(W_{1} \circ \overline{W_{1}} \sqcup W_{2} \circ \overline{W_{2}},\left(W_{3} \circ \overline{W_{2}} \sqcup W_{4} \circ \overline{W_{1}}\right) \sqcup\left(W_{2} \circ \overline{W_{1}} \circ W_{1} \circ \overline{W_{2}}\right)\right) \\
& =\left(\mathrm{id}_{0}, W_{3} \circ \overline{W_{2}} \sqcup W_{4} \circ \overline{W_{1}}\right)
\end{aligned}
$$

We ignore if $\pi_{2}\left(\mathcal{C}_{2}^{G}\right) \rightarrow \pi_{2}\left(\mathscr{S}^{G}\right)$ is an epimorphism.

- Schneiden-Kleben bordism:

G-TQFT

- For a functor $F: \mathscr{S}^{G} \rightarrow \mathcal{D}$ with \mathcal{D} a groupoid

For \mathcal{D} and abelian group and $\Sigma: m \rightarrow n$, we obtain

$$
F(\Sigma)=c_{n}-c_{m}+a_{0} \Phi(\Sigma),
$$

where $c_{n}=F\left(P_{n}\right)$ and $a_{0}=F\left(S^{2}\right)$.

- $F: \mathscr{S}^{G} \rightarrow$ Vect $_{\mathbb{C}}$ an invertible symmetric monoidal functor. We obtain the discrete torsion determined by Turaev

$$
\mathbb{C}_{b}(G):=\bigoplus_{x \in G} \mathbb{C} \times\{x\}
$$

where for a basis e_{x}, we have a 2-cocycle $b \in H^{2}\left(G, \mathbb{C}^{*}\right)$ with $e_{x} \cdot e_{y}=b(x, y) \cdot e_{x y}$. We have a diagram

Thus F is completely determined by the restriction to the automorphism group of the empty bundle in $\mathscr{S}^{G}\left[\mathscr{S}^{G}{ }^{-1}\right]$, plus the images of a generating set of the monoid \mathcal{M}_{G} of "handles". This induces a representation of the fundamental group $\mathbb{Z} \oplus \Omega_{2}^{S O}(G) \rightarrow \mathbb{C}^{*}$.

- For any symmetric monoidal functor $F: \mathscr{S}^{G} \longrightarrow$ Vect $_{\mathbb{C}}$, we consider again the subset of morphisms $\tilde{\mathscr{S}}_{>0}^{G}$ of those endomorphisms in \mathscr{S}^{G} which are the disjoint union of identity G-cobordisms over cylinder and G-cobordisms over closed surfaces. Any G-cobordisms over a closed surfaces can be written as a double construction $M \sqcup_{X} \underline{M}$. Non-degeneracy implies that we assign a non-zero complex number to each closed G-cobordisms. Thus we have the diagram

References

圊 Ulrike Tillmann (1996)
The classifying space of the $1+1$ dimensional cobordism category
J. für die reine und angewandte Mathematik 479, 67-75.

- Carlos Segovia (2023)

The classifying space of the $1+1$ dimensional G-cobordism category
Accepted for publication in homology, homotopy \& Applications (2023).

S. Galatius, U. Tillmann, Ib Madsen and M. Weiss (2009)

The homotopy type of the cobordism category Acta Math. 202, no. 2, 195-239.
M. Bökstedt and A. M. Svane (2014)

A geometric interpretation of the homotopy groups of the cobordism category $A G T$ 14, no. 3, 1649-1676.
U.Karras, M.Kreck, W.D. Neumann, E. Ossa.

Cutting and Pasting of Manifolds; SK-Groups. Bonn University, Germany and Princeton, N. J. (1973).
W. D. Neumann.

Manifold Cutting and Pasting Groups. Topology Vol. 14 pp. 237-244 (1975)

