The classifying space of the G-cobordism category

Carlos Segovia

UNAM-Oaxaca

csegovia@matem.unam.mx

Accepted for publication in 2023 in HH&A

October 11, 2022

Carlos Segovia (Instituto de Matemáticas)

October 11, 2022 1 / 29

- Cobordism category and Tillmann's method
- Define the G-cobordism category \mathscr{S}^{G}
- Correspondence $\pi_0(\mathscr{S}^{\mathsf{G}}) \cong \mathsf{G}/[\mathsf{G},\mathsf{G}]$
- Show the splitting short exact sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \pi_1(\mathscr{S}^G) \longrightarrow \Omega_2^{SO}(G) \longrightarrow 0$$

- The classifying space $B\mathscr{S}^G \simeq G/[G,G] \times S^1 \times X^G$
- Applications

Cobordism Category \mathscr{S}

- Objects: Finite disjoint union of circles.
- Morphisms: Two dimensional cobordism,

• \mathscr{S}_0 is the full subcategory of \mathscr{S} with only one object given by the empty 1-dimensional manifold.

• $\mathscr{S}_{>0}$ is the subcategory of \mathscr{S} with the same objects of \mathscr{S} except for the empty manifold and where each connected component of every morphism has non empty incoming boundary and non empty outgoing boundary.

• \mathscr{S}_b is the subcategory of \mathscr{S} with the same objects of \mathscr{S} and where each connected component of every morphism has non empty outgoing boundary.

 $\bullet \ \mathscr{S}_1$ is the full subcategory of $\mathscr{S}_{>0}$ with only one object, the circle.

From this picture what did you see?

- There are isomorphisms 𝒴₀ ≅ ℕ[∞] and 𝒴₁ ≅ ℕ (𝔅𝒴₀ is the infinite dimensional torus 𝒯[∞] and 𝔅𝒴₁ ≃ 𝔅¹).
- It is defined the functor Φ : S_{>0} → S₁, which is constant map in objects and each morphism Σ with n incoming circles, c connected components, genus g and m outgoing circles (Σ : n → m), is mapped to

$$\Phi(\Sigma) = \frac{1}{2}(m - n - \chi(\Sigma)) = g + m - c$$

_

Example for $\Sigma : 4 \rightarrow 4$:

• We have the adjoint functors $\Phi: \mathscr{S}_{>0} \to \mathscr{S}_1 \quad \dashv \quad i: \mathscr{S}_1 \hookrightarrow \mathscr{S}_{>0}$ which is

• We can extend to Φ to the whole category \mathscr{S} by negative values, $\Phi': \mathscr{S} \to \mathbb{Z}$. The composition $\mathbb{N} \cong \mathscr{S}_1 \hookrightarrow \mathscr{S} \xrightarrow{\Phi'} \mathbb{Z}$ is a homotopy equivalence.

Theorem (Tillmann)

 $B\mathscr{S}_0 \simeq T^{\infty}$, $B\mathscr{S}_1, B\mathscr{S}_{>0}, B\mathscr{S}_b \simeq S^1$ and $B\mathscr{S} \simeq X \times S^1$ where X is a simply connected infinite loop space.

- Tillmann (1996), The classifying space of the 1+1 cobordism category \mathscr{S} (Crelle)
- Galatius-Madsen-Tillmann-Weiß(2009) The homotopy type of the cobordism category Cob_d (Act.Math.)

Theorem (T)	Theorem (GMTW)
• $\pi_0(B\mathscr{S})=0$ ($\Omega_1^{SO}=0$),	• $\pi_0(B \operatorname{Cob}_2) = 0$,
• $\pi_1(B\mathscr{S})=\mathbb{Z}$, and	• $\pi_1(B\operatorname{Cob}_2)=\mathbb{Z}$,
• $B\mathscr{S} \simeq S^1 \times X$, $\pi_1(X) = 0$.	• $B\operatorname{Cob}_2\simeq\Omega^{\infty-1}MTO(2)$,
• $B\mathscr{S} \simeq S^1 \times X, \ \pi_1(X) = 0.$	• $B \operatorname{Cob}_2 \simeq \Omega^{\infty-1} MTO(2)$

where MTO(d) certain Thom spectrum.

$$\Omega_{d-1} = \pi_0(\mathsf{Cob}_d) = \pi_0(\Omega^{\infty-1}MTO(d)) = \pi_{d-1}MO$$

Thom-Pontriaguin

The G-cobordism category \mathscr{S}^{G}

- Objects: Finite sequence (x₁, x₂, · · · , x_n), with x_i ∈ G ⊔ {0} representing the disjoint union of principal G-bundles over the circle for x_i ∈ G and the empty G-bundle for x_i = 0.
- Morphisms: Free cobordism classes of principal G-bundles. Recall a cobordism from X to X' manifolds of the same dimension, is a manifold M with ∂M = X ⊔ -X'. Two cobordisms (X, M, X') and (X, M', X') represent the same class if there is a diffeomorphism φ : M → M' with the commutative diagram

Principal G-bundles

G-cobordisms

G-cobordisms over the cylinder, the pair of pants and the disc.

G-cobordism over a handlebody with exit [y, x].

- The G-cobordism over disc implies that we can reduce to the subcategory with sequences (x₁, · · · , x_n) with x_i ≠ 0.
- We use the G-cobordism over a pair of pants with multiple legs

• Then we restrict to the subcategory with objects of the form $x \in G$.

• Disregarding any components of *G*-cobordisms over closed surfaces and due to the *G*-cobordisms over handlebodies

- Thus two elements $x, y \in G$ are connected in \mathscr{S}^G if and only if they differ by an element in [G, G].
- Consequently,

$$\pi_0(B\mathscr{S}^G) = G/[G,G]$$

• Since \mathscr{S}^{G} is a symmetric monoidal category, the space $B\mathscr{S}^{G}$ is a grouplike with abelian fundamental group and hence any two connected components have the same homotopy type.

The fundamental group $\pi_1(\mathscr{S}^G)$

- Let C be a category (connected) and a subset of morphism Σ closed, we associate the localization C[Σ⁻¹] and functor P_Σ : C → C[Σ⁻¹]:
 - $P_{\Sigma}(f)$ is invertible for $f \in \Sigma$,
 - if $F : \mathfrak{C} \longrightarrow \mathfrak{D}$ inverts F(f), for $f \in \Sigma$,

• $\operatorname{Fun}(\pi_1(\mathcal{C}),\operatorname{Set}) \xrightarrow{\sim} \operatorname{Cov}(\mathcal{C}) \xrightarrow{\sim} \operatorname{Fun}_{inv}(\mathcal{C},\operatorname{Set}) \cong \operatorname{Fun}(\mathcal{C}[\mathcal{C}^{-1}],\operatorname{Set}) \xrightarrow{\sim} \operatorname{Fun}(\mathcal{C}[\mathcal{C}^{-1}]_x,\operatorname{Set})$

Theorem (Quillen)

There is an isomorphism $\pi_1(\mathcal{C}, x) \cong \operatorname{Hom}_{\mathcal{C}[\mathcal{C}^{-1}]}(x, x)$.

Definition (Localizing set)

For \mathcal{C} a subset of morphisms Σ is localizing if we have:

- **(**) Σ contains the identities and Σ is closed under composition.
- **2** $f \in \mathbb{C}$, $s \in \Sigma$ there exist $g \in \mathbb{C}$ and $t \in \Sigma$ with

If, g: x → y two morphisms, if s ∘ f = s ∘ g for s ∈ Σ, if and only if, f ∘ t = g ∘ t for t ∈ Σ.

Theorem (Grabiel-Zisman)

Let Σ be a localizing subset of morphisms in C. The category $\mathbb{C}[\Sigma^{-1}]$ can be described:

The objects of $\mathbb{C}[\Sigma^{-1}]$ are the same of \mathbb{C} . One morphism $x \longrightarrow y$ in $\mathbb{C}[\Sigma^{-1}]$ is a class of "roofs", i.e., of diagrams (s, f) in \mathbb{C} of the form

where $s \in \Sigma$ and $f \in \mathbb{C}$.

- We consider the subset of morphisms $\tilde{\mathscr{S}}_0^G$ which are the disjoint union of identity *G*-cobordisms over cylinders and *G*-cobordisms over closed surfaces.
- **2** $\tilde{\mathscr{I}}_0^G$ is a localizing set. Therefore, the category of fractions $\mathscr{I}^G[(\tilde{\mathscr{I}}_0^G)^{-1}]$ can be described by roofs

where $\Sigma : \hat{x} \to \hat{y}$ is a morphism in \mathscr{S}^{G} and γ is a *G*-cobordism over closed surfaces.

- We restrict to objects of S^G which are in the connected component of the empty G-bundle.
- For a morphism Σ : x̂ → ŷ we consider δ_ŷ a connected morphism from ŷ to 0. Set Σ' = Σ ⊔_ŷ δ_ŷ. The proposal for the inverse of (id_{x̂}, Σ) is

$$\Theta := \left(\mathsf{id}_{\hat{y}} \sqcup (\Sigma' \circ \overline{\Sigma'}), \overline{\Sigma'} \circ \delta_{\hat{y}}
ight)$$

where $\overline{\Sigma'}$ is Σ' with the reverse orientation.

• The composition of $(id_{\hat{x}}, \Sigma)$ followed by Θ is

$$\left(\mathsf{id}_{\hat{X}} \sqcup (\Sigma' \circ \overline{\Sigma'}), \overline{\Sigma'} \circ \Sigma'\right)$$

o Consider the equivalence relation "generated" by the identification

$$\mathsf{id}_{\hat{x}} \sqcup (\Sigma' \circ \overline{\Sigma'}) \sim \overline{\Sigma'} \circ \Sigma'$$

- Obenote by S^G_~ the quotient category given by the equivalence relation (recall we are in the connected component of the empty G-bundle).
- **③** There is an isomorphism $\mathscr{S}^{\mathsf{G}}[\mathscr{S}^{\mathsf{G}^{-1}}] \cong \mathscr{S}^{\mathsf{G}}_{\sim}[(\tilde{\mathscr{S}}^{\mathsf{G}}_{0})^{-1}].$
- The relation id_{x̂} ⊔(Σ Σ̄) ∼ Σ̄ Σ is implied from the relation id₁ ⊔(D D̄) ∼ D̄ D for D the disc D : 1 → 0.

October 11, 2022

20 / 29

The splitting $\pi_1(\mathscr{S}^{\mathsf{G}}) = \mathbb{Z} \oplus \Omega_2^{\mathsf{SO}}(\mathsf{G})$

• The fundamental group $\pi_1(\mathscr{S}^G)$ can be identified with the automorphism group $\operatorname{Hom}_{\mathscr{S}^G[\mathscr{S}^{G^{-1}}]}(0,0)$. This monoid consists of roofs (Γ, Σ) and the composition is

$$(\Gamma_2, \Sigma_2) \circ (\Gamma_2, \Sigma_2) = (\Gamma_1 + \Gamma_2, \Sigma_1 + \Sigma_2)$$

- We define the homomorphism $\pi_1(\mathscr{S}^G) \to \Omega_2^{SO}(G)$ by $(\Gamma, \Sigma) \longmapsto [\Sigma] [\Gamma]$, which is well defined.
- The splitting $\Omega_2^{SO}(G) \to \pi_1(\mathscr{S}^G)$ starts with a *G*-cobordism and we separate along every simple closed curve with trivial monodromy and we cap with two discs, where every time we separate we add the negative of the *G*-cobordism over the sphere.

Theorem

We have the splitting short exact sequence

$$0 o \mathbb{Z} o \pi_1(\mathscr{S}^{\mathsf{G}}) o \Omega_2^{\mathsf{SO}}(\mathsf{G}) o 0$$

The classifying space $B\mathscr{S}^G$

• Similarly, we define the subcategories

• We have the adjoint functors $\Phi^G: \mathscr{S}_{>0}^G \to \mathscr{S}_1^G \dashv i: \mathscr{S}_1^G \hookrightarrow \mathscr{S}_{>0}^G$

 $\begin{aligned} & (x_1, \cdots, x_n)^{P_{\substack{(x_1, \cdots, x_n)}}} x = \prod_{i=1}^n x_i \\ & \Sigma \middle| & \downarrow \Phi^G(\Sigma) \\ & (y_1, \cdots, y_m)^{P_{\substack{(y_1, \cdots, y_m)}}} y = \prod_{j=1}^m y_j \end{aligned} \\ \Phi^G \circ i = \operatorname{id}_{\mathscr{S}_1^G} \text{ and } i \circ \Phi^G \simeq \operatorname{id}_{\mathscr{S}_{>0}^G} \end{aligned}$

Assumption! Every G-cobordism with connected base space and non-empty incoming boundary x̂ = (x₁, · · · , x_n), with x_i ≠ 0 for 1 ≤ i ≤ n, factorises through the precomposition of the G-cobordism P_{x̂} (the pair of pants with multiple legs).

Theorem (Tillmann)

$$B\mathscr{S}_0^{\mathsf{G}}\simeq T^\infty\text{, }B\mathscr{S}_1^{\mathsf{G}},B\mathscr{S}_{>0}^{\mathsf{G}},B\mathscr{S}_b^{\mathsf{G}}\simeq B\mathscr{S}_1^{\mathsf{G}}\text{ and }$$

$$B\mathscr{S}^{G} \simeq \frac{G}{[G,G]} \times X^{G} \times S^{1}$$

where X^{G} is an infinite loop space with $\pi_{1}(X^{G}) = \Omega_{2}^{SO}(G)$.

Bökstedt-Svane: π₁(C₂^G) is generated by diffeomorphism classes [W] closed up to the "Chimera relations"

We ignore if $\pi_2(\mathcal{C}_2^{\mathcal{G}}) \to \pi_2(\mathscr{S}^{\mathcal{G}})$ is an epimorphism.

Schneiden-Kleben bordism:

 $\pi_1(\mathscr{S}_{\mathsf{SK}}^{\mathsf{G}}) = \mathsf{SK}_2(\mathsf{G}) = \widetilde{\mathsf{SK}}_2(\mathsf{G}) \oplus \mathsf{SK}_2 = \mathsf{B}_0(\mathsf{G}) \oplus \mathbb{Z}$

▲冊▶ ▲目▶ ▲目▶ 目目 - のへで

G-TQFT

• For a functor $F : \mathscr{S}^{G} \to \mathfrak{D}$ with \mathfrak{D} a groupoid

For \mathcal{D} and abelian group and $\Sigma: m \to n$, we obtain

$$F(\Sigma) = c_n - c_m + a_0 \Phi(\Sigma)$$

where $c_n = F(P_n)$ and $a_0 = F(S^2)$.

F : *S^G* → Vect_C an **invertible** symmetric monoidal functor. We obtain the discrete torsion determined by Turaev

$$\mathbb{C}_b(G) := \bigoplus_{x \in G} \mathbb{C} \times \{x\}$$

where for a basis e_x , we have a 2-cocycle $b \in H^2(G, \mathbb{C}^*)$ with $e_x \cdot e_y = b(x, y) \cdot e_{xy}$. We have a diagram

Thus *F* is completely determined by the restriction to the automorphism group of the empty bundle in $\mathscr{S}^{G}[\mathscr{S}^{G^{-1}}]$, plus the images of a generating set of the monoid \mathcal{M}_{G} of "handles". This induces a representation of the fundamental group $\mathbb{Z} \oplus \Omega_{2}^{SO}(G) \to \mathbb{C}^{*}$.

For any symmetric monoidal functor F : S^G → Vect_C, we consider again the subset of morphisms S^G_{>0} of those endomorphisms in S^G which are the disjoint union of identity G-cobordisms over cylinder and G-cobordisms over closed surfaces. Any G-cobordisms over a closed surfaces can be written as a double construction M ⊔_X M. Non-degeneracy implies that we assign a non-zero complex number to each closed G-cobordisms. Thus we have the diagram

References

Ulrike Tillmann (1996)

The classifying space of the $1\!\!+\!\!1$ dimensional cobordism category

J. für die reine und angewandte Mathematik 479, 67-75.

Carlos Segovia (2023)

The classifying space of the 1+1 dimensional *G*-cobordism category Accepted for publication in homology, homotopy & Applications (2023).

S. Galatius, U. Tillmann, Ib Madsen and M. Weiss (2009) The homotopy type of the cobordism category *Acta Math.* 202, no. 2, 195-239.

M. Bökstedt and A. M. Svane (2014)

A geometric interpretation of the homotopy groups of the cobordism category AGT 14, no. 3, 1649-1676.

U.Karras, M.Kreck, W.D. Neumann, E. Ossa.

Cutting and Pasting of Manifolds; SK-Groups. Bonn University, Germany and Princeton, N. J. (1973).

W. D. Neumann.

Manifold Cutting and Pasting Groups. Topology Vol. 14 pp. 237-244 (1975).