Minuscule Multiples & Reverse Plane Partitions

- Semistandard Young tableaux and irreducible components of Springer fibers model highest weight crystals in a compatible way.
- We present a generalization of these correspondences to *ADE minuscule Demazure crystals*.
- With Elek, Kamnitzer and Morton-Ferguson our generalization uses reverse plane partitions in place of tableaux and *quiver Grassmannians* of preprojective algebra modules in place of flags.
- Do reverse plane partitions play with good bases or clusters?

Heaps, crystals and preprojective algebra modules

- Goal: to extend (*partially* and in a type independent way) the crystal isomorphism ${\rm Irr}\; F(A) \to Y(\lambda)$
 - $\circ A: \mathbb{C}^N o \mathbb{C}^N$ order n nilpotent of Jordan type λ
 - $\circ F(A) = ig\{V_0 \subset V_1 \subset \cdots \subset V_m = \mathbb{C}^N : AV_i \subset V_{i-1}ig\}$
 - $_{\circ} Y(\lambda)$ is the set of SSYT of shape λ in $\{1,2,\ldots,m\}$
 - $\circ\,$ Partial: λ minuscule or minuscule witness for some $w\in W$
- Th.2: a crystal isomorphism $\mathrm{Irr}\;G(w,n) o R(w,n)$
- Th.1: a crystal isomorphism $R(w,n) o B(n\lambda)$

Minuscule

Let ${\mathfrak{g}}$ be semisimple, with Cartan ${\mathfrak{h}}$ and weight lattice Λ

- Def. $\lambda \in \Lambda^+$ is minuscule if W acts transitively on the weights of $V(\lambda)$
- Def. $\lambda \in \Lambda^+$ is a minuscule witness for $w \in W$ if

 \circ for some reduced word (i_1,\ldots,i_l) .

$$w_k\lambda=\lambda-lpha_{i_k}-\dots-lpha_{i_l}\qquad w_k:=s_{i_k}\dots s_{i_l}$$

- Def. w is (dominant) minuscule if it admits a (dominant) witness
 - \circ E.g. $w=s_1s_3s_4s_2$ is minuscule for $\lambda=\omega_2$ ($\Gamma=D_4$) \blacktriangle
- Stembridge: If w is minuscule then it's *fully commutative* and the condition above holds for *any* reduced word

Heaps and the abacus model

- Heaps encode reduced words for minuscule w
- Let $\underline{w} = (i_1, \ldots, i_l)$ be a reduced word for w
- $H(\underline{w})\subset\Gamma imes\mathbb{R}_{\geq 0}$ is the poset $\{1,2,\ldots,l\}$ got by taking the transitive closure of the relation

 $s \prec t \iff s > t ext{ and } a_{i_s,i_t} < 0$

• $\Gamma=D_5$ and $\underline{w}=(5,3,2,4,1,3,2,5,3,4)$

• If w is minuscule then H(w) is well-defined \circ Moreover $\{v \in W : v \leq_L w\} \cong J(H(w))$

Crystals

- Def. The set B is a ${\mathfrak g}$ -crystal if the following maps satisfy some axioms $\circ \operatorname{wt}: B o \Lambda$
 - $egin{array}{lll} \circ \ arepsilon_i, arphi_i:B
 ightarrow \mathbb{N} \ \circ \ ilde e_i, ilde f_i:B
 ightarrow B \end{array}$
- We write $B(\lambda)$ for the crystal of $V(\lambda)$
- Def. For any $w\in W$ and $\underline{w}=(i_1,\ldots,i_l)$ reduced the Demazure crystal $B_w(\lambda)\subset B(\lambda)$ is the set

$$igcup_{m_s\geq 0} f_{i_1}^{m_1}\cdots f_{i_l}^{m_l} b_\lambda$$

Crystal heaps

- Prop. If w be λ -minuscule then $J(H(w)) \cong B_w(\lambda)$ $\circ \operatorname{wt}(v) = v\lambda$ $\circ ilde f_i(v) = egin{cases} s_i v & v < s_i v \leq_L w \ 0 & ext{else} \end{cases}$
- $J \subset I; W_J = \langle s_j: j \in J
 angle;$ the set of minimal length representatives

$$W^J = J(H(w_0^J)) \cong B(\lambda) \qquad \lambda = \sum_{j
ot \in J} \omega_j \, .$$

ullet We can generalize this to *minuscule multiples* $B_w(n\lambda)$

Reverse plane partitions

- Def. Reverse plane partitions of shape H(w) and height n are elements of the set

$$R(w,n):=\{H(w) \stackrel{\Phi}{\longrightarrow} \{0,1,\ldots,n\}: \Phi(x) \geq \Phi(y) ext{ if } x \leq y\}$$

- $\Phi\mapsto (\phi_1,\ldots,\phi_n)$ defines $R(w,n)\hookrightarrow J(H(w))^n$
 - \circ the layers $\phi_k:=\Phi^{-1}(\{\overline{n-k+1,\ldots,n}\})$ form an increasing chain
 - $\circ\,$ the tensor product rule preserves $\{\phi: \phi_k \subset \phi_{k+1}\}$
 - $\circ \,\, {\sf commutes} \,\, {\sf with} \, B_w(n\lambda) \hookrightarrow B_w(\lambda)^{\overline{\otimes n}}$
- E.g. if $\underline{w} = (2, 1, 3, 2)$ then $2 \stackrel{1}{_4} \stackrel{3}{_4} \mapsto 0 \stackrel{0}{_1} \stackrel{0}{_0} \otimes 0 \stackrel{0}{_1} \stackrel{1}{_1} \otimes 1 \stackrel{0}{_1} \stackrel{1}{_1} \otimes 1 \stackrel{1}{_1} \stackrel{1}{_1}$ and the RHS can be viewed as an element of $B_w(\omega_2)^{\otimes 4}$

RPP's and tableaux via GT patterns

- In type A_{m-1} we can go from tableaux to RPP's via GT patterns
- The GT pattern of a tableau au is the shape array $(\lambda^{(1)}, \ldots, \lambda^{(m)})$ made up of shapes $\lambda^{(i)}$ of tableaux $\tau^{(i)}$ got by deleting from au any box with label exceeding i
 - $\circ\,$ When au is a rectangular tableau having shape $\lambda=(n^p)$ its GT pattern can be identified with a p imes(m-p) rectangular array
 - This array can be viewed as an RPP
 - $\circ\,$ This is a crystal isomorphism up to Schutzenberger involution and then the crystal structure is $B(n\omega_p)$.

Reflecting in a vertical axis and rotating 90 degrees counter-clockwise we arrive at $\Phi(au) \in R(w_0^J,n)$

 $\Phi(au)$ has shape $H(w_0^J)$ for $J=I\setminus\{p\}$, the heap of the *Grassmannian* permutation w_0^J that takes $12\dots m$ to $m-p+1\dots m\,1\dots m-p$

Modules (for the preprojective algebra) from heaps

- Let $\lambda=\sum n_i\omega_i\in\Lambda^+$ and consider $Q(\lambda)=igoplus_iQ(i)^{\oplus n_i}$ where Q(i) denotes the injective hull of S(i)
 - \circ Th. (Nakajima, Savage-Tingley) $\mathrm{Gr}(Q(\lambda)):=\{M\subset Q(\lambda)\}\cong B(\lambda)$
- If λ is minuscule and $J=\{j:s_j\lambda=\lambda\}$ then $Q(\lambda)\cong \mathbb{C}H(w_0^J)$
 - \circ Moreover $\phi\mapsto \mathbb{C}\phi$ is a bijection $J(H(w_0^J)) o \operatorname{IrrGr}(Q(\lambda))$
- Th. With the help of certain ad hoc nilpotent endomorphisms of modules we upgrade this to a map $\mathrm{IrrGr}(Q(\lambda)^{\oplus n}) o R(w_0^J,n)$

$$\circ\,$$
 The case $\lambda=\omega_p$ or $J=I\setminus\{p\}$ recovers $F(A) o Y(\lambda)$

Connections to cluster algebras

Consider

- $B^\pm_{I\setminus J}\subset G$ generated by B^\pm and the 1-parameter root subgroups $\{x^\pm_i(t): i
 ot\in J\}$ respectively
- the unipotent radical $N_{I\setminus J}$ of $B_{I\setminus J}$
- the injective preprojective algebra module $Q_{I\setminus J}=\oplus_{i
 ot\in J}Q(i)$
- Geiss, Leclerc, and Schroer constructed a cluster algebra $\mathcal{A}_J \subset \mathbb{C}[N_{I\setminus J}]$ and lifted it to a cluster algebra

$$\widetilde{\mathcal{A}}_J \subset \mathbb{C}[G/B^-_{I\setminus J}] = igoplus_{\lambda \in \Pi_{I\setminus J}} L(\lambda)$$

The fundamental example

- When $\overline{\Gamma}=A_N$ and $\overline{I}\setminus \overline{J}=\{p\}$ this is the familiar Grassmannian cluster algebra

$$\widetilde{A}_J = \mathbb{C}[G/B_p^-] = \mathbb{C}[\operatorname{Gr}(p,N)] = igoplus_{n\geq 0} L(narpi_p)$$

- GLS: recipe for initial seeds from basic complete rigid modules parametrized by certain reduced words for w_0 in ${
 m Sub}\;Q_{I\setminus J}$
 - $\circ\,$ mutation (in the direction of an indecomposable nonprojective direct summand X of such a module) using short exact sequences
- Qu. no. 1: How do the RPP crystals for $L(n\varpi_p)$ interact with the cluster structure on this coordinate ring?

The open question

- Qu. no. 1': In particular, what does mutation look like for RPP's?
- GLS: $\mathbb{C}[N_{I\setminus J}] \subset \mathbb{C}[N]$ as $\mathrm{Span}(\{\phi_M: M\in \mathrm{Sub}Q_J\})$
- Wild conjecture: the various perfect bases of $\mathbb{C}[N]$ intersect in the set of cluster monomials
- With Bai and Kamnitzer, we checked that the MV basis in the \mathfrak{sl}_4 case contains the cluster monomials
 - We relied on the geometry of the affine Grassmannian and an MV isomorphism
 - Conceptually easy but computationally difficult

Fusion by toggling?

- In this type A check we could label our geometrically constructed basis elements by tableaux
 - In terms of tableau the exchange relations we witnessed were of the form

$$au \cdot \sigma = au \leftarrow \sigma + au
ightarrow \sigma$$

- Observation: Translating our equations to RPP's we notice that the mutation $\sigma=\mu_i(au)$ can be obtained by toggling $\Phi(au)$ at i

GPT toggling RPP's

- Garver, Patrias and Thomas extended the notion of toggle for a poset to the toggle of $ho\in R(w,n)$ at $x\in H(w)$ by fixing ho(y) for any y
eq x and replacing ho(x) by

$$\max_{x \lessdot y_1}
ho(y_1) + \min_{y_2 \lessdot x}
ho(y_2) -
ho(x)$$

- The resulting RPP is denoted $t_x(
 ho)$
- If $x,y\in\pi^{-1}(i)$ then $[t_x,t_y]=0$ so the composition $\prod_{x\in\pi^{-1}(i)}t_x$ can be unambiguously referred to as t_i the (composite) toggle at i

$(1\leftarrow2 ightarrow3)*(1 ightarrow2)=P_2\oplus S_1+P_1\oplus(1\leftarrow2)$

$(1 ightarrow 2 ightarrow 3) st (1 ightarrow 2) = P_3 \oplus (1 ightarrow 2) + P_2 \oplus S_1$

