Minuscule Multiples \& Reverse Plane Partitions

- Semistandard Young tableaux and irreducible components of Springer fibers model highest weight crystals in a compatible way.
- We present a generalization of these correspondences to $A D E$ minuscule Demazure crystals.
- With Elek, Kamnitzer and Morton-Ferguson our generalization uses reverse plane partitions in place of tableaux and quiver Grassmannians of preprojective algebra modules in place of flags.
- Do reverse plane partitions play with good bases or clusters?

Heaps, crystals and preprojective algebra modules

- Goal: to extend (partially and in a type independent way) the crystal isomorphism $\operatorname{Irr} F(A) \rightarrow Y(\lambda)$
- $A: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ order n nilpotent of Jordan type λ
- $F(A)=\left\{V_{0} \subset V_{1} \subset \cdots \subset V_{m}=\mathbb{C}^{N}: A V_{i} \subset V_{i-1}\right\}$
- $Y(\lambda)$ is the set of SSYT of shape λ in $\{1,2, \ldots, m\}$
- Partial: λ minuscule or minuscule witness for some $w \in W$
- Th.2: a crystal isomorphism $\operatorname{Irr} G(w, n) \rightarrow R(w, n)$
- Th.1: a crystal isomorphism $R(w, n) \rightarrow B(n \lambda)$

Minuscule

Let \mathfrak{g} be semisimple, with Cartan \mathfrak{h} and weight lattice Λ

- Def. $\lambda \in \Lambda^{+}$is minuscule if W acts transitively on the weights of $V(\lambda)$
- Def. $\lambda \in \Lambda^{+}$is a minuscule witness for $w \in W$ if
- for some reduced word $\left(i_{1}, \ldots, i_{l}\right)$

$$
w_{k} \lambda=\lambda-\alpha_{i_{k}}-\cdots-\alpha_{i_{l}} \quad w_{k}:=s_{i_{k}} \cdots s_{i_{l}}
$$

- Def. w is (dominant) minuscule if it admits a (dominant) witness
- E.g. $w=s_{1} s_{3} s_{4} s_{2}$ is minuscule for $\lambda=\omega_{2}\left(\Gamma=D_{4}\right)!$
- Stembridge: If w is minuscule then it's fully commutative and the condition above holds for any reduced word

Heaps and the abacus model

- Heaps encode reduced words for minuscule w
- Let $\underline{w}=\left(i_{1}, \ldots, i_{l}\right)$ be a reduced word for w
- $H(\underline{w}) \subset \Gamma \times \mathbb{R}_{\geq 0}$ is the posed $\{1,2, \ldots, l\}$ got by taking the transitive closure of the relation

$$
s \prec t \Longleftrightarrow s>t \text { and } a_{i_{s}, i_{t}}<0
$$

- $\Gamma=D_{5}$ and $\underline{w}=(5,3,2,4,1,3,2,5,3,4)$
- If w is minuscule then $H(w)$ is well-defined
- Moreover $\left\{v \in W: v \leq_{L} w\right\} \cong J(H(w))$

Crystals

- Def. The set B is a \mathfrak{g}-crystal if the following maps satisfy some axioms
- wt : $B \rightarrow \Lambda$
- $\varepsilon_{i}, \varphi_{i}: B \rightarrow \mathbb{N}$
- $\tilde{e}_{i}, \tilde{f}_{i}: B \rightarrow B$
- We write $B(\lambda)$ for the crystal of $V(\lambda)$
- Def. For any $w \in W$ and $w=\left(i_{1}, \ldots, i_{l}\right)$ reduced the Demazure crystal $B_{w}(\lambda) \subset B(\lambda)$ is the set

$$
\bigcup_{m_{s} \geq 0} f_{i_{1}}^{m_{1}} \cdots f_{i_{l}}^{m_{l}} b_{\lambda}
$$

Crystal heaps

- Prop. If w be λ-minuscule then $J(H(w)) \cong B_{w}(\lambda)$
- $\mathrm{wt}(v)=v \lambda$
- $\tilde{f}_{i}(v)= \begin{cases}s_{i} v & v<s_{i} v \leq_{L} w \\ 0 & \text { else }\end{cases}$
- $J \subset I ; W_{J}=\left\langle s_{j}: j \in J\right\rangle$; the set of minimal length representatives

$$
W^{J}=J\left(H\left(w_{0}^{J}\right)\right) \cong B(\lambda) \quad \lambda=\sum_{j \notin J} \omega_{j}
$$

- We can generalize this to minuscule multiples $B_{w}(n \lambda)$

Reverse plane partitions

- Def. Reverse plane partitions of shape $H(w)$ and height n are elements of the set

$$
R(w, n):=\{H(w) \xrightarrow{\Phi}\{0,1, \ldots, n\}: \Phi(x) \geq \Phi(y) \text { if } x \leq y\}
$$

- $\Phi \mapsto\left(\phi_{1}, \ldots, \phi_{n}\right)$ defines $R(w, n) \hookrightarrow J(H(w))^{n}$
- the layers $\phi_{k}:=\Phi^{-1}(\{n-k+1, \ldots, n\})$ form an increasing chain
- the tensor product rule preserves $\left\{\phi: \phi_{k} \subset \phi_{k+1}\right\}$
- commutes with $B_{w}(n \lambda) \hookrightarrow B_{w}(\lambda)^{\otimes n}$
- E.g. if $\underline{w}=(2,1,3,2)$ then ${\underset{4}{1}}_{4}^{1} \mapsto 0{ }_{1}^{0} 0 \otimes 0{ }_{1}^{0} 1 \otimes 1{ }_{1}^{0} 1 \otimes 1{ }_{1}^{1} 1$ and the RHS can be viewed as an element of $B_{w}\left(\omega_{2}\right)^{\otimes 4}$

RPP's and tableaux via GT patterns

- In type A_{m-1} we can go from tableaux to RPP's via GT patterns
- The GT pattern of a tableau τ is the shape array $\left(\lambda^{(1)}, \ldots, \lambda^{(m)}\right)$ made up of shapes $\lambda^{(i)}$ of tableaux $\tau^{(i)}$ got by deleting from τ any box with label exceeding i
- When τ is a rectangular tableau having shape $\lambda=\left(n^{p}\right)$ its GT pattern can be identified with a $p \times(m-p)$ rectangular array
- This array can be viewed as an RPP
- This is a crystal isomorphism up to Schutzenberger involution and then the crystal structure is $B\left(n \omega_{p}\right)$!

Reflecting in a vertical axis and rotating 90 degrees counter-clockwise we arrive at $\Phi(\tau) \in R\left(w_{0}^{J}, n\right)$

$\Phi(\tau)$ has shape $H\left(w_{0}^{J}\right)$ for $J=I \backslash\{p\}$, the heap of the Grassmannian permutation w_{0}^{J} that takes $12 \ldots m$ to $m-p+1 \ldots m 1 \ldots m-p$

Modules (for the preprojective algebra) from heaps

- Let $\lambda=\sum n_{i} \omega_{i} \in \Lambda^{+}$and consider $Q(\lambda)=\bigoplus_{i} Q(i)^{\oplus n_{i}}$ where $Q(i)$ denotes the injective hull of $S(i)$
- Th. (Nakajima, Savage-Tingley) $\operatorname{Gr}(Q(\lambda)):=\{M \subset Q(\lambda)\} \cong B(\lambda)$
- If λ is minuscule and $J=\left\{j: s_{j} \lambda=\lambda\right\}$ then $Q(\lambda) \cong \mathbb{C} H\left(w_{0}^{J}\right)$
- Moreover $\phi \mapsto \mathbb{C} \phi$ is a bijection $J\left(H\left(w_{0}^{J}\right)\right) \rightarrow \operatorname{IrrGr}(Q(\lambda))$
- Th. With the help of certain ad hoc nilpotent endomorphisms of modules we upgrade this to a map $\operatorname{Irr} \operatorname{Gr}\left(Q(\lambda)^{\oplus n}\right) \rightarrow R\left(w_{0}^{J}, n\right)$
- The case $\lambda=\omega_{p}$ or $J=I \backslash\{p\}$ recovers $F(A) \rightarrow Y(\lambda)$

Connections to cluster algebras

Consider

- $B_{I \backslash J}^{ \pm} \subset G$ generated by $B^{ \pm}$and the 1-parameter root subgroups $\left\{x_{i}^{ \pm}(t): i \notin J\right\}$ respectively
- the unipotent radical $N_{I \backslash J}$ of $B_{I \backslash J}$
- the injective preprojective algebra module $Q_{I \backslash J}=\oplus_{i \notin J} Q(i)$
- Geiss, Leclerc, and Schroer constructed a cluster algebra $\mathcal{A}_{J} \subset \mathbb{C}\left[N_{I \backslash J}\right]$ and lifted it to a cluster algebra

$$
\widetilde{\mathcal{A}}_{J} \subset \mathbb{C}\left[G / B_{I \backslash J}^{-}\right]=\bigoplus_{\lambda \in \Pi_{I \backslash J}} L(\lambda)
$$

The fundamental example

- When $\Gamma=A_{N}$ and $I \backslash J=\{p\}$ this is the familiar Grassmannian cluster algebra

$$
\widetilde{A}_{J}=\mathbb{C}\left[G / B_{p}^{-}\right]=\mathbb{C}[\operatorname{Gr}(p, N)]=\bigoplus_{n \geq 0} L\left(n \varpi_{p}\right)
$$

- GLS: recipe for initial seeds from basic complete rigid modules parametrized by certain reduced words for w_{0} in Sub $Q_{I \backslash J}$
- mutation (in the direction of an indecomposable nonprojective direct summand X of such a module) using short exact sequences
- Qu. no. 1: How do the RPP crystals for $L\left(n \varpi_{p}\right)$ interact with the cluster structure on this coordinate ring?

The open question

- Qu. no. 1': In particular, what does mutation look like for RPP's?
- GLS: $\mathbb{C}\left[N_{I \backslash J}\right] \subset \mathbb{C}[N]$ as $\operatorname{Span}\left(\left\{\phi_{M}: M \in \operatorname{Sub} Q_{J}\right\}\right)$
- Wild conjecture: the various perfect bases of $\mathbb{C}[N]$ intersect in the set of cluster monomials
- With Bai and Kamnitzer, we checked that the MV basis in the $\mathfrak{s l}_{4}$ case contains the cluster monomials
- We relied on the geometry of the affine Grassmannian and an MV isomorphism
- Conceptually easy but computationally difficult

Fusion by toggling?

- In this type A check we could label our geometrically constructed basis elements by tableaux
- In terms of tableau the exchange relations we witnessed were of the form

$$
\tau \cdot \sigma=\tau \leftarrow \sigma+\tau \rightarrow \sigma
$$

- Observation: Translating our equations to RPP's we notice that the mutation $\sigma=\mu_{i}(\tau)$ can be obtained by toggling $\Phi(\tau)$ at i

GPT toggling RPP's

- Garver, Patrias and Thomas extended the notion of toggle for a poset to the toggle of $\rho \in R(w, n)$ at $x \in H(w)$ by fixing $\rho(y)$ for any $y \neq x$ and replacing $\rho(x)$ by

$$
\max _{x \lessdot y_{1}} \rho\left(y_{1}\right)+\min _{y_{2} \lessdot x} \rho\left(y_{2}\right)-\rho(x)
$$

- The resulting RPP is denoted $t_{x}(\rho)$
- If $x, y \in \pi^{-1}(i)$ then $\left[t_{x}, t_{y}\right]=0$ so the composition $\prod_{x \in \pi^{-1}(i)} t_{x}$ can be unambiguously referred to as t_{i} the (composite) toggle at i
$\mathfrak{S l}_{4}$ evidence

4

$(1 \leftarrow 2 \rightarrow 3) *(1 \rightarrow 2)=P_{2} \oplus S_{1}+P_{1} \oplus(1 \leftarrow 2)$

$$
\begin{aligned}
& \begin{array}{llll}
0 & & t_{2} & \\
1_{2} & & 1 \\
& & 1
\end{array} \\
& \\
&
\end{aligned}
$$

$(1 \rightarrow 2 \leftarrow 3) *(1 \leftarrow 2)=P_{3} \oplus(1 \rightarrow 2)+P_{2} \oplus S_{1}$

\section*{| 2 |
| :--- |
| 4 |$=4 \cdot \frac{2}{3}+\frac{3}{4} \cdot 2$}

0	1		
1		0	0
1			
1	3		

Thank You !

