Snake graphs associated to punctured orbifolds

Esther Banaian j. with Elizabeth Kelley and Wonwoo Kang

26/09/22

Banaian

- Background on cluster algebras from surfaces and snake graphs
- Generalized cluster algebras from orbifolds
- Q Results for unpunctured orbifolds
- Progress for punctured orbifolds

Recall: We get a quiver Q_T from a triangulation T by including

- a vertex *i* for each $\tau_i \in T$ and
- an arrow $i \rightarrow j$ if τ_i immediately follows τ_i in counterclockwise order

By Fomin-Shapiro-Thurston and Fomin-Thurston, we have bijections

Surface with marked points (S, M)	Cluster Algebra $A(S, M)$
Triangulation of (S, M)	Cluster in $A(S, M)$
(Tagged) Arc on (S, M)	Cluster variable in $A(S, M)$
Flipping arcs	Mutation

We can recover exchange relations for flipping of arcs by iterated use of the Ptolemy Relation:

 $xx' = Y_1ac + Y_2bd$

- We keep track of *y*-variables by placing a *(multi)-lamination* on the surface.
- A lamination is a set of curves whose end points lie on $S \setminus M$.

- We keep track of *y*-variables by placing a *(multi)-lamination* on the surface.
- A lamination is a set of curves whose end points lie on $S \setminus M$.
- The shear coordinate b_τ(L, T) is calculated by looking at intersections of L and T near τ

- Musiker, Schiffler, and Williams developed snake graphs as a way to directly compute the cluster variable from an arc on a surface.
- This construction proves positivity for cluster algebras from surfaces.

- Musiker, Schiffler, and Williams developed snake graphs as a way to directly compute the cluster variable from an arc on a surface.
- This construction proves positivity for cluster algebras from surfaces.

- Musiker, Schiffler, and Williams developed snake graphs as a way to directly compute the cluster variable from an arc on a surface.
- This construction proves positivity for cluster algebras from surfaces.

- Musiker, Schiffler, and Williams developed snake graphs as a way to directly compute the cluster variable from an arc on a surface.
- This construction proves positivity for cluster algebras from surfaces.

$$z = \frac{1}{x_2 x_3} (e x_1 x_2$$

- Musiker, Schiffler, and Williams developed snake graphs as a way to directly compute the cluster variable from an arc on a surface.
- This construction proves positivity for cluster algebras from surfaces.

$$z = \frac{1}{x_2 x_3} (ex_1 x_2 + y_3 df x_1)$$

- Musiker, Schiffler, and Williams developed snake graphs as a way to directly compute the cluster variable from an arc on a surface.
- This construction proves positivity for cluster algebras from surfaces.

$$z = \frac{1}{x_2 x_3} (ex_1 x_2 + y_3 df x_1 + y_2 y_3 cf x_3)$$

Cluster Algebra Expansion Formula [MSW 2009]

Let A be the cluster algebra from the surface (S, M) with triangulation T. Let γ be an arc on S, and let x_{γ} be the cluster variable from γ . Then,

$$[x_{\gamma}]^{A}_{\Sigma_{T}} = \frac{1}{\operatorname{cross}(T,\gamma)} \sum_{P} x(P) y(P)$$

where the summation is indexed by perfect matchings of $G_{T,\gamma}$.

- $\mathrm{cross}(\mathcal{T},\gamma)$ is the monomial corresponding to the arcs of $\mathcal T$ which γ crosses
- We determine x(P) by the weights of edges in the perfect matching P
- We can determine y(P) by establishing a *minimal matching*, M and taking the symmetric difference of P and M.

- Generalized cluster algebras were introduced by Chekhov and Shapiro in 2011.
- Generalized cluster algebras have the same combinatorial set up as cluster algebras, but have generalized exchange relations.

- Generalized cluster algebras were introduced by Chekhov and Shapiro in 2011.
- Generalized cluster algebras have the same combinatorial set up as cluster algebras, but have generalized exchange relations.
- In order to record these exchange relations, our seeds contains exchange polynomials, $Z_i(u) = z_{i,0} + z_{i,1}u + \cdots + z_{i,d_i}u^{d_i}$ where $z_{i,0} = z_{i,d_i} = 1$ and $d_i \ge 1$.

Generalized Cluster Algebras - Mutation

Mutation μ_k of a generalized seed is given by

$$\mu_k(\{x_1,\ldots,x_n\},\{y_1,\ldots,y_n\},B,\mathbf{d})=(\{x_1',\ldots,x_n'\},\{y_1',\ldots,y_n'\},B',\mathbf{d})$$

where

$$x'_{j} = \begin{cases} x_{j} & j \neq k \\ \frac{u_{k}^{d_{k}} + z_{k,1}u_{k}^{d_{k}-1}v_{k} + \dots + z_{k,d_{k}-1}u_{k}v_{k}^{d_{k}-1} + v_{k}^{d_{k}}}{x_{k}} & j = k, \end{cases}$$

where $u_k = y_k \prod x_i^{[b_{i,k}]_+}$ and $v_k = \prod x_i^{[-b_{i,k}]_+}$

$$y'_j = \begin{cases} y_k^{-1} & j = k \\ y_j (y_k^{d_k})^{[b_{k,j}]_+} & j \neq k \end{cases}$$

and $B' = (b'_{i,j})$ $b'_{i,i} = \begin{cases} -b_{i,j} \\ b'_{i,j} \end{cases}$

$$= \begin{cases} -b_{i,j} & i = k \text{ or } j = k \\ b_{i,j} + \operatorname{sgn}(b_{i,k})d_k[b_{i,k}b_{k,j}]_+ & \text{otherwise} \end{cases}$$

Generalized Cluster Algebras - Example

Let $Z_1(u) = Z_2(u) = u + 1$ and $Z_3(u) = u^2 + \sqrt{2}u + 1$. So $d_1 = d_2 = 1$ and $d_3 = 2$.

Example

$$\{x_1, x_2, x_3\} \stackrel{\mu_2}{\leftrightarrow} \{x_1, \frac{x_1 + y_2 x_3}{x_2}, x_3\} \stackrel{\mu_3}{\leftrightarrow} \{x_1, \frac{x_1 + y_2 x_3}{x_2}, \\ \frac{x_1^2 x_2^2 + \sqrt{2} y_3 x_1 x_2 (x_1 + y_2 x_3) + y_3^2 (x_1^2 + 2y_2 x_1 x_3 + y_2^2 x_3^2)}{x_2^2 x_3} \}$$

$$\{y_1, y_2, y_3\} \stackrel{\mu_2}{\leftrightarrow} \{y_1 y_2, \frac{1}{y_2}, y_3\} \stackrel{\mu_3}{\leftrightarrow} \{y_1 y_2 y_3^2, \frac{1}{y_2}, \frac{1}{y_3}\}$$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \stackrel{\mu_2}{\leftrightarrow} \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \stackrel{\mu_3}{\leftrightarrow} \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

Geometry behind generalized cluster algebras - Orbifolds

- Chekhov and Shapiro's original definition of generalized cluster algebras was motivated by orbifolds.
- We will think of an orbifold $\mathcal{O} = (S, M, Q)$ as a surface with a set of special points, Q, called orbifold points.

Geometry behind generalized cluster algebras - Orbifolds

- Chekhov and Shapiro's original definition of generalized cluster algebras was motivated by orbifolds.
- We will think of an orbifold $\mathcal{O} = (S, M, Q)$ as a surface with a set of special points, Q, called orbifold points.
- Each orbifold point will come with an *order*, p, where $p \in \mathbb{Z}$ and $p \ge 2$.
- The order of an orbifold point tells us how many times an arc can wind around it.

Triangulations of Orbifolds

When triangulating an orbifold, we include exactly one *pending arc* to each orbifold point.

Triangulations of Orbifolds

When triangulating an orbifold, we include exactly one *pending arc* to each orbifold point.

Each pending arc will be enclosed in a bigon. The other sides of the bigon can be standard or pending.

Here is an example of a disk with four marked points on boundary and one orbifold point of order 4 as well as a cover.

Generalized Cluster Algebras from Orbifolds

Pending arcs have a 3-term Ptolemy-like relation. Let $\lambda_p := 2\cos(\pi/p)$.

Laminations from Orbifold

Proposition

[B.-Kelley, 2020] The shear-coordinate rules for an orbifold agree with generalized cluster mutation of *y*-variables.

Snake graphs from orbifolds

Ordinary Arc puzzle pieces

We must think harder about generalized arcs as below.

Define a normalized family of Chebyshev polynomials of the second kind by

$$U_0(x) = 1$$
 $U_1(x) = x$ $U_k(x) = xU_{k-1}(x) - U_{k-2}(x)$ for $k > 1$

Define a normalized family of Chebyshev polynomials of the second kind by

$$U_0(x) = 1$$
 $U_1(x) = x$ $U_k(x) = xU_{k-1}(x) - U_{k-2}(x)$ for $k > 1$

Let a k-diagonal in a polygon be one that skips k vertices.

Lemma (Lang)

If P is a regular polygon with p sides, each of length s, a k-diagonal in P has length $U_k(\lambda_p)s$.

An extra edge!

 $U_k x_\rho$ stands for $U_k(\lambda_p) x_\rho$

Banaian

Hexagonal Tile

Hexagonal Tile

$$\frac{1}{\chi_{\rho}^{2}}\left(\bigcup_{g}(\lambda_{p})\chi_{g}^{2}\chi_{\rho}+Y_{\rho}\left(\bigcup_{g+1}(\lambda_{p})+U_{g-1}(\lambda_{p})\right)\chi_{g}\chi_{g}^{2}+Y_{\rho}^{2}\bigcup_{g}(\lambda_{p})\chi_{g}\chi_{\rho}^{2}\right)$$

If $\ell = 0$ or $\ell = p - 2$ we recover the expansion of a standard two tile snake graph.

Banaian

Leftmost tile:

$$\frac{U_{\ell-1}(\lambda_p)x_\rho x_\alpha + U_\ell(\lambda_p)y_\rho x_\rho x_\beta}{x_\rho} = U_{\ell-1}(\lambda_p)x_\alpha + U_\ell(\lambda_p)y_\rho x_\beta$$

Theorem (B.-Kelley, 2020)

Let A be the generalized cluster algebra from the unpunctured orbifold $\mathcal{O} = (S, M, Q)$ with triangulation T. Let γ be an arc on \mathcal{O} . Then,

$$[x_{\gamma}]_{\Sigma_{T}}^{A} = \frac{1}{cross(\gamma, T)} \sum_{P} x(P)y(P)$$

where the summation is indexed by perfect matchings of $G_{\gamma,T}$.

Corollary

The coefficients of $[x_{\gamma}]^{A}_{\Sigma_{T}}$ are positive.

Banaian

Theorem (B.-Kelley, 2020)

Let A be the generalized cluster algebra from the unpunctured orbifold $\mathcal{O} = (S, M, Q)$ with triangulation T. Let γ be an arc on \mathcal{O} . Then,

$$[x_{\gamma}]_{\Sigma_{T}}^{A} = \frac{1}{cross(\gamma, T)} \sum_{P} x(P)y(P)$$

where the summation is indexed by perfect matchings of $G_{\gamma,T}$.

Corollary

The coefficients of
$$[x_{\gamma}]_{\Sigma_{\tau}}^{A}$$
 are positive.

We also show that the snake graph map respects skein relations.

Banaian

When there are *punctures* in the surface, i.e. marked points on the interior, we must consider tagged arcs.

When there are *punctures* in the surface, i.e. marked points on the interior, we must consider tagged arcs.

Two tagged arcs γ_1 , γ_2 are *compatible* if

- $\bullet\,$ The untagged versions γ_1^0 and γ_2^0 do not cross,
- if $\gamma_1^0=\gamma_2^0,$ at least one endpoint of γ_1 is tagged the same way as $\gamma_2,$ and

When there are *punctures* in the surface, i.e. marked points on the interior, we must consider tagged arcs.

Two tagged arcs γ_1 , γ_2 are *compatible* if

- \bullet The untagged versions γ_1^0 and γ_2^0 do not cross,
- if $\gamma_1^0 = \gamma_2^0$, at least one endpoint of γ_1 is tagged the same way as γ_2 , and
- If $\gamma_1^0 \neq \gamma_2^0$, and these share an endpoint p, then they are tagged in the same way at p.

When there are *punctures* in the surface, i.e. marked points on the interior, we must consider tagged arcs.

Two tagged arcs γ_1 , γ_2 are *compatible* if

- \bullet The untagged versions γ_1^0 and γ_2^0 do not cross,
- if $\gamma_1^0 = \gamma_2^0$, at least one endpoint of γ_1 is tagged the same way as γ_2 , and
- If $\gamma_1^0 \neq \gamma_2^0$, and these share an endpoint p, then they are tagged in the same way at p.

Slogan: $x_{\ell} = x_r x_{r^{(p)}}$

Combinatorial Expansions of Tagged Arcs

- Musiker, Schiffler, and Williams gave expansions for $x_{\gamma^{(p)}}$ and $x_{\gamma^{(pq)}}$ via " γ -symmetric" and " γ -compatible" matchings.
- Wilson introduced a different formulation via loop graphs.

Combinatorial Expansions of Tagged Arcs

- Musiker, Schiffler, and Williams gave expansions for $x_{\gamma^{(p)}}$ and $x_{\gamma^{(pq)}}$ via " γ -symmetric" and " γ -compatible" matchings.
- Wilson introduced a different formulation via loop graphs.

Combinatorial Expansions of Tagged Arcs

- Musiker, Schiffler, and Williams gave expansions for $x_{\gamma^{(p)}}$ and $x_{\gamma^{(pq)}}$ via " γ -symmetric" and " γ -compatible" matchings.
- Wilson introduced a different formulation via loop graphs.

Good matchings of loop graphs

Progress in punctured case

We have all the pieces to extend our expansion formula to ordinary tagged arcs on a punctured orbifold.

Progress in punctured case

To prove that our choices of expansion for generalized arcs are consistent, we want to show that these satisfy skein relations.

Skein Relations Example

Given an arc γ , let x_{γ} be the element of A(S, M) associated to γ and let $\chi(\gamma) = \frac{1}{\operatorname{cross}(\gamma, T)} \sum_{P} x(P) y(P).$

Proposition (B.-Kang-K., 2022+)

Given orbifold \mathcal{O} with initial trinagulation T, let $\sigma_i, \gamma^{(p)}$ be as below. Let x_{γ} be the corresponding element of $\mathcal{A}(T)$ and let $\chi(\gamma_i)$ be output of snake graph map. Then,

$$x_{\gamma}x_{\sigma_i} = Y_{\alpha}x_{\alpha_i} + x_{\beta_i}$$
 and $\chi(\gamma)\chi(\sigma_i) = Y_{\alpha}\chi(\alpha_i) + \chi(\beta_i)$

where Y_{α} is determined by spokes to p not crossed by α

- E. Banaian and E. Kelley. "Snake graphs from triangulated orbifolds." *Sigma. Symmetry, Integrability, and Geometry: Methods and Applications*, 16:138 (2021).
- L. Chekhov and M. Shapiro. "Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables." *International Mathematics Research Notices*, 10:2746-2772 (2014).
- S. Fomin, M. Shapiro, and D. Thurston. "Cluster algebras and triangulated surfaces. Part I: Cluster complexes." *Acta Mathematica*, 201.1: 83-146 (2008).
- G. Musiker, R. Schiffler, and L. Williams. "Positivity for cluster algebras from surfaces. *Advances in Mathematics*, 227(6):2241-2308 (2011).
- J. Wilson. "Surface cluster algebra expansion formulae via loop graphs." arXiv:2006.13218 (2020).

Thank you for listening!