September 28th, 2022

Reciprocity for Valuations of Theta Functions

Disclaimer

These are preliminary results, and have not yet appeared!

by Greg Muller

on work with Man-wai Cheung, Tim Magee, and Travis Mandel.

Theta functions: the rough idea

Theta functions: Why you should care

- An extended exchange matrix B (or a more general seed \mathfrak{s}) determines a family of Laurent series called theta functions.
- The theta functions of B with finitely many terms span an algebra with positive structure constants.
- Every cluster monomial of B is a theta function of B.
- If the cluster algebra of B equals the upper cluster algebra, the finite theta functions form a basis for the cluster algebra.

For 90% of this talk, all that matters is that the theta functions are a particularly nice basis for any cluster algebra*.

But what actually are theta functions?

Given a seed \mathfrak{s} in a lattice M, each $m \in M$ determines

$$
\vartheta_{\mathfrak{s}}[m]:=\sum_{m^{\prime} \in M} c_{m, m^{\prime}} x^{m^{\prime}}
$$

where $c_{m, m^{\prime}}$ is the (weighted) count of broken lines in a scattering diagram $\mathcal{D}(\mathfrak{s})$ with initial and final derivatives $-m$ and $-m^{\prime}$.

- I won't define a general seed, but any extended exchange matrix B determines an \mathcal{A}-type seed in $\mathbb{Z}^{\text {height(} \mathrm{B})}$.
- The basepoint will be assumed in the positive chamber.

A scattering diagram is a collection of walls in $\mathbb{R} \otimes M \simeq \mathbb{R}^{r}$.

Example: Everyone's first scattering diagram
The scattering diagram of the \mathcal{A}-type seed of $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is

A broken line is a piecewise linear ray which can only bend at the walls, and only in certain ways.

Example: A simple theta function

For $m=(0,-1), \vartheta_{\mathrm{B}}[m]$ counts the three broken lines below.

$$
\vartheta_{\mathrm{B}}[0,-1]=x^{(0,-1)}+x^{(-1,-1)}+x^{(-1,0)}=\frac{x_{1}+1+x_{2}}{x_{1} x_{2}}
$$

Example: A more complicated theta function

For $m=(-1,-2), \vartheta_{\mathrm{B}}[m]$ counts the nine broken lines below.

$$
\begin{aligned}
\vartheta[-1,-2]= & x^{(-1,-2)}+x^{(-1,-1)}+2 x^{(-2,-2)}+4 x^{(-2,-1)}+2 x^{(-2,0)} \\
& \quad+x^{(-3,-2)}+3 x^{(-3,-1)}+3 x^{(-3,0)}+x^{(-3,1)} \\
= & \left(\frac{x_{1}+1+x_{2}}{x_{1} x_{2}}\right)^{2}\left(\frac{1+x_{2}}{x_{1}}\right)
\end{aligned}
$$

Monomial Valuations

Let $N:=\operatorname{Hom}(M, \mathbb{Z})$ be the dual lattice to M.

Definition: Monomial valuations

Given $n \in N$, the monomial valuation val ${ }_{n}$ on $\mathbb{Z}\left[x^{M}\right]$ is

$$
\operatorname{val}_{n}\left(\sum_{m \in M} c_{m} x^{m}\right):=\min _{m \mid c_{m} \neq 0}(n \cdot m)
$$

Here, $n \cdot m$ denotes image of m under $n \in N:=\operatorname{Hom}(M, \mathbb{Z})$.

If $M \simeq \mathbb{Z}^{d}$, then $N \simeq \mathbb{Z}^{d}$ with pairing given by the dot product, and val_{n} is the minimum dot product of n with the exponents.

Equivalent to boundary valuations and integral tropical points.

Example: Monomial valuations of $\vartheta[0,-1]$

With B as before, we identify M and N with \mathbb{Z}^{2}. Then

$$
\begin{aligned}
\operatorname{val}_{\left(n_{1}, n_{2}\right)}\left(\vartheta_{\mathrm{B}}[0,-1]\right) & =\operatorname{val}_{\left(n_{1}, n_{2}\right)}\left(x^{(0,-1)}+x^{(-1,-1)}+x^{(-1,0)}\right) \\
& =\min \left(-n_{2},-n_{1}-n_{2},-n_{1}\right)
\end{aligned}
$$

Example: Monomial valuations of $\vartheta[-1,-2]$

In $\operatorname{val}_{\left(n_{1}, n_{2}\right)}\left(\vartheta_{\mathrm{B}}[-1,-2]\right)$, only 4 of the 9 monomials matter:

$$
\min \left(-n_{1}-2 n_{2},-n_{1}-n_{2},-3 n_{1}+n_{2}, 3 n_{1}-2 n_{2}\right)
$$

Only the Newton polytope matters

The monomial valuation $\operatorname{val}_{n}(\vartheta[m])$ only depends on the Newton polytope of $\vartheta[m]$: the convex hull of the exponents in $\vartheta[\mathrm{m}]$.

Example: The Newton polytope of $\vartheta_{\mathrm{B}}[-1,-2]$

Exponent vectors

Newton polytope

Valuation as tropicalization

$\operatorname{val}_{n}(\vartheta[m])$ is given by plugging n into the tropicalization of $\vartheta[m]$:

$$
\begin{aligned}
& +\mapsto \oplus:=\min \\
& \times \mapsto \otimes:=+ \\
& x^{p} \mapsto p \cdot n
\end{aligned}
$$

Example

$$
\begin{aligned}
\left.\vartheta_{\mathfrak{s}}[0,-1]\right) & =x^{(0,-1)}+x^{(-1,-1)}+x^{(-1,0)} \\
\operatorname{val}_{n}\left(\vartheta_{\mathfrak{s}}[0,-1]\right) & =((0,-1) \cdot n) \oplus((-1,-1) \cdot n) \oplus((-1,0) \cdot n) \\
& =\min \left(-n_{2},-n_{1}-n_{2},-n_{1}\right)
\end{aligned}
$$

To recap

For a fixed seed \mathfrak{s} in M, we have...

- a family of theta functions $\vartheta[m]$ indexed by $m \in M$, and
- a family of monomial valuations val $_{n}$ indexed by $n \in N$.

Let's refer to $\operatorname{val}_{n}\left(\vartheta_{\mathfrak{s}}[m]\right)$ as the theta pairing between n and m.

Question

How does this pairing behave as a function of each argument?

Example: Visualizing val? $(\vartheta[m])$

$$
\operatorname{val}_{\left(n_{1}, n_{2}\right)}\left(\vartheta_{\mathrm{B}}[0,-1]\right)
$$

$$
=\min \left(-n_{1},-n_{1}-n_{2},-n_{2}\right)
$$

$\operatorname{val}_{\left(n_{1}, n_{2}\right)}\left(\vartheta_{\mathrm{B}}[-1,-2]\right)$

$$
=\min \left(-n_{1}-2 n_{2},-n_{1}-n_{2},-3 n_{1}+n_{2}, 3 n_{1}-2 n_{2}\right)
$$

The function $\operatorname{val}_{?}\left(\vartheta_{\mathfrak{s}}[m]\right)$ is always a piecewise linear function, since it is the minimum of a collection of linear functions.

What about $\operatorname{val}_{n}(\vartheta[?])$

This is much harder to compute directly! One needs a construction of $\vartheta[m]$ for all $m \in M$, which we only know for very nice seeds.

Example: Visualizing val $_{n}(\vartheta[?])$

$\operatorname{val}_{(0,-1)}\left(\vartheta_{\mathrm{B}}[m]\right)$

$=\min \left(-m_{2}, m_{1}-m_{2}, m_{1}\right)$
$\operatorname{val}_{(1,-2)}\left(\vartheta_{\mathrm{B}}[m]\right)$

$$
=\min \left(m_{1}-2 m_{2}, m_{1}-m_{2}, 3 m_{1}+m_{2}, 3 m_{1}-2 m_{2}\right)
$$

Gosh, these are also tropicalizations of Laurent polynomials!

Example

Both val $(0,-1)\left(\vartheta_{\mathrm{B}}[m]\right)$ and $\mathrm{val}_{(1,-2)}\left(\vartheta_{\mathrm{B}}[m]\right)$ can be realized as $\operatorname{val}_{m}(f)$
for any Laurent polynomial f with respective Newton polytopes:

Can these $f s$ be realized as theta functions in some other seed?

Theta Reciprocity [Cheung-Mandel-Magee-M, to appear]

Let \mathfrak{s} be a seed on M. For all $m \in M$ and $n \in N$,

$$
\operatorname{val}_{n}\left(\vartheta_{\mathfrak{s}}[m]\right)=\operatorname{val}_{m}\left(\vartheta_{\mathfrak{s} v} \vee[n]\right)
$$

where \mathfrak{s}^{\vee} is the mirror dual seed to \mathfrak{s}.

Some remarks

- Conjectured in [GHKK, Remark 9.11], who proved it when one of $\vartheta_{\mathfrak{s}}[m]$ and $\vartheta_{\mathfrak{s}^{\vee}}[n]$ is a cluster variable.
- This theorem extends to infinite theta functions by defining $\operatorname{val}_{n}(\vartheta[m])$ to be the infimum of n over the support.
- This implies reciprocity also holds for any basis with the same Newton polytopes as the theta basis.
- The skew-symmetrizable case involves considerably more machinery, and may wait until a second paper.

I'll tell you what the mirror dual is, in the case of cluster algebras.

Mirror dual theta functions of \mathcal{A}-type seeds

If \mathfrak{s} is the \mathcal{A}-type seed of an exchange matrix B, then

$$
\vartheta_{\mathfrak{s}^{\vee}}[n]=y^{n} F_{\mathrm{B}^{\top}}\left[\mathrm{B}^{\top} n\right]
$$

where $F_{\mathrm{B}^{\top}}\left[\mathrm{B}^{\top} n\right]$ is the F -polynomial of $\vartheta_{\mathrm{B}^{\top}}\left[\mathrm{B}^{\top} n\right]$.

Theta reciprocity and F-polynomials

Let B be an exchange matrix. For any $m, n \in \mathbb{Z}^{\text {height(} B)}$,

$$
\begin{aligned}
\operatorname{val}_{n}\left(\vartheta_{\mathrm{B}}[m]\right) & =\operatorname{val}_{m}\left(y^{n} F_{\mathrm{B}^{\top}}\left[\mathrm{B}^{\top} n\right]\right) \\
& =m \cdot n+\operatorname{val}_{m}\left(F_{\mathrm{B}^{\top}}\left[\mathrm{B}^{\top} n\right]\right)
\end{aligned}
$$

Example

Recall the formula from earlier:

$$
\operatorname{val}_{(0,1)}\left(\vartheta_{\mathrm{B}}[m]\right)=\min \left(-m_{2}, m_{1}-m_{2}, m_{1}\right)
$$

If $n=(0,-1)$, then $\mathrm{B}^{\top} n=(-1,0)$.

$$
\begin{aligned}
\vartheta_{\mathrm{B}^{\top}}[-1,0] & =\frac{x_{1}+1+x_{2}}{x_{1} x_{2}}=x^{(-1,0)}+x^{(-1,-1)}+x^{(0,-1)} \\
& =x^{(-1,0)}\left(1+x^{\mathrm{B}^{\top}(1,0)}+x^{\mathrm{B}^{\top}(1,1)}\right) \\
F_{\mathrm{B}^{\top}}[-1,0] & =1+y^{(1,0)}+y^{(1,1)} \\
\vartheta_{\mathfrak{s}^{\vee}}[0,-1] & =y^{(0,-1)}\left(1+y^{(1,0)}+y^{(1,1)}\right) \\
& =y^{(0,-1)}+y^{(1,-1)}+y^{(1,0)} \\
\operatorname{val}_{m}\left(\vartheta_{\mathfrak{s} \vee}[0,-1]\right) & =\min \left(-m_{2}, m_{1}-m_{2}, m_{1}\right)
\end{aligned}
$$

Theta Reciprocity: an intrinsic description

Let Θ and Θ^{\vee} denote the theta bases of \mathfrak{s} and \mathfrak{s}^{\vee}, respectively. Given $\left(\vartheta, \vartheta^{\vee}\right) \in \Theta \times \Theta^{\vee}$, we can define two numbers:

- Apply the valuation parameterizing ϑ to ϑ^{\vee}.
- Apply the valuation parameterizing ϑ^{\vee} to ϑ.

Theta Reciprocity implies these two numbers are the same, and so we have a well-defined theta pairing:

$$
\Theta \times \Theta^{\vee} \rightarrow \mathbb{Z}
$$

Such a pairing was conjectured in 2003 by Fock and Goncharov.

Example

For a marked surface, Θ can be identified with simple multicurves, Θ^{\vee} can be identified with certain laminations, and the theta pairing is (a multiple of) the number of intersections.

What we can say with a Λ-matrix

Definition: Compatible pairs

A compatible pair (Λ, B) consists of

- an extended exchange matrix B, and
- a skew-symmetric matrix Λ,
such that $\Lambda B=\left[\begin{array}{ll}D & 0\end{array}\right]^{\top}$ for some diagonal matrix D.
The pair is positive if the diagonal entries of D are positive.

Example

For any integers $b, c>0$, we have a positive compatible pair:

$$
\mathrm{B}=\left[\begin{array}{cc}
0 & -c \\
b & 0
\end{array}\right] \quad \Lambda=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

We can use a Λ matrix to reformulate Theta Reciprocity.

Lambda-Theta Reciprocity

Let (Λ, B) be a positive compatible pair. Then for all $m, m^{\prime} \in M$,

$$
\operatorname{val}_{-\wedge m^{\prime}}\left(\vartheta_{\mathrm{B}}[m]\right)=\operatorname{val}_{\Lambda m}\left(\vartheta_{-\mathrm{B}}\left[m^{\prime}\right]\right)
$$

Note $\vartheta_{\mathrm{B}}[m]$ and $\vartheta_{-\mathrm{B}}\left[m^{\prime}\right]$ lie in the same cluster algebra*.

Example

If $m^{\prime}=(-1,0)$, then $-\Lambda m^{\prime}=(0,-1)$ and so

$$
\begin{aligned}
\operatorname{val}_{(0,-1)}\left(\vartheta_{\mathrm{B}}[m]\right) & =\operatorname{val}_{\wedge m}\left(\vartheta_{-\mathrm{B}}[-1,0]\right) \\
& =\operatorname{val}_{\left(m_{2},-m_{1}\right)}\left(x^{(-1,0)}+x^{(-1,-1)}+x^{(0,-1)}\right) \\
& =\min \left(-m_{2}, m_{1}-m_{2}, m_{1}\right)
\end{aligned}
$$

We can also use Λ to reinterpret valuations of theta functions.

Definition: Λ-momentum

If (Λ, B) is a compatible pair and Γ is a broken line in $\mathfrak{D}(B)$, then

$$
\Gamma(t) \cdot \Lambda \Gamma^{\prime}(t)
$$

is independent of t. We call this quantity the Λ-momentum of Γ.

Example/Etymology

For the compatible pair

$$
B=\left[\begin{array}{cc}
0 & -c \\
b & 0
\end{array}\right] \quad \Lambda=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

the Λ-momentum of a broken line is its angular momentum counter-clockwise around the origin.

Theorem: Tropical theta functions and Λ-momentum
If (Λ, B) is a positive compatible pair and $m, m^{\prime} \in M$, then $\operatorname{val}_{\Lambda m^{\prime}}\left(\vartheta_{\mathrm{B}}[m]\right)=$ minimum Λ-momentum of a broken line with initial derivative $-m$ and endpoint m^{\prime}

Interactive Example

Let's play around with these broken lines!

In [CMMM], we first prove Theta Reciprocity in terms of Λ-momenta, and then derive the original statement.

Application: Lifting theta functions

Definition: Polynomial in a cluster variable x

A theta function is polynomial in x if its Laurent expansion in some cluster containing x has no negative powers of x.
[Cao-Li, 2018]: If this holds in one cluster, it holds in all of them.

Theorem: Polynomial lifting

If ϑ is a theta function which is polynomial in a set of frozen variables, ϑ remains a theta function when they are unfrozen.

An example chosen at random

Imagine that you come across a seed with the following quiver.

An example chosen at random

Freeze every vertex except the two ends of the double arrow:

An example chosen at random

Then $\frac{b x_{1}^{2}+a b c+c x_{2}^{2}}{x_{1} x_{2}}$ is a theta function in the original seed.

Construction: The loop element of a double arrow

Let B be an extended exchange matrix, and let i, j be mutable indices such that $B_{i, j}=2$. Define $c \in \mathbb{Z}^{m}$ by

$$
c_{k}:=\max \left(\mathrm{B}_{k, i},-\mathrm{B}_{k, j}, 0\right)
$$

Then the following loop element

$$
\ell:=\frac{x^{c+\mathrm{B} e_{j}}+x^{c}+x^{c-\mathrm{Be}} i_{i}}{x_{i} x_{j}}
$$

is a theta function of B, as are all Chebyshev polynomials in ℓ.

This construction yields all closed simple loops (and their bracelets) in the cluster algebra of a marked surface of genus 0 .

Open questions

- Which good bases for cluster algebras have the same Newton polytopes as the theta basis?
- For which cluster algebras can every theta function be lifted from a rank 2 freezing?
- What does the theta pairing look like when the theta bases are parameterized by some interesting class of objects?

