Cluster structures on braid varieties

José Simental
joint with R. Casals, E. Gorsky, M. Gorsky, I. Le, L. Shen

Bases for Cluster Algebras, CMO September 29, 2022

Goal and plan

Goal: For any positive braid β, construct a cluster algebra structure on $\mathbb{C}[X(\beta)]$.

Plan:
(1) Braid varieties

- Definition.
- Double Bott-Samelson cells as braid varieties
- Richardson varieties as braid varieties.
(2) Cluster structures on braid varieties
- Algebraic weaves.
- Lusztig cycles.
- Constructing the cluster variables.
(3) Properties
- Local acyclicity.
- Existence of reddening sequences.
- Polinomiality.

Braid varieties: notation

Before defining braid varieties, let us fix some notation:

- G is a simple algebraic group with Dynkin diagram D (e.g. $\left.G=\mathrm{SL}_{n}\right)$.
- $B \subseteq G$ is a Borel subgroup (e.g. $B=$ upper triangular matrices)
- $T \subseteq B$ is a maximal torus (e.g. $T=$ diagonal matrices)
- $W=\left\langle s_{i}, i \in D \mid s_{i}^{2}=1, \ldots\right\rangle$ is the Weyl group (e.g.
$W=\left\langle s_{1}, \ldots, s_{n-1}\right\rangle=S_{n}$), $w_{0} \in W$ is its longest element (e.g.
$\left.w_{0}=[n, n-1, \ldots, 2,1]\right)$
- $\mathrm{Br}=\left\langle\sigma_{i}, i \in D \mid \ldots\right\rangle$ is the positive braid monoid.
- $\mathcal{B}:=G / B$ is the flag variety, that admits the Bruhat decomposition:

$$
\mathcal{B}:=\bigsqcup_{w \in W} B w B / B
$$

Demazure products

Let $\mathbf{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in D^{\ell}$. We define the Demazure product of \mathbf{i}, $\delta(\mathbf{i}) \in W$ inductively on ℓ as follows:

- $\delta(\emptyset)=e \in W$.
- $\delta\left(\mathbf{i}, i_{\ell+1}\right)= \begin{cases}\delta(\mathbf{i}) & \text { if } \delta(\mathbf{i}) s_{i_{\ell+1}}<\delta(\mathbf{i}) \\ \delta(\mathbf{i}) s_{i_{\ell+1}} & \text { else. }\end{cases}$

If $\beta_{\mathbf{i}}:=\sigma_{i_{1}} \cdots \sigma_{i_{\ell}} \in \mathrm{Br}$, then one can check that:

$$
\beta_{\mathbf{i}}=\beta_{\mathbf{j}} \Rightarrow \delta(\mathbf{i})=\delta(\mathbf{j})
$$

so that we have a well-defined notion of $\delta(\beta) \in W$ for $\beta \in \operatorname{Br}$.

Example

For $W=S_{3}, \delta\left(\sigma_{1}^{2} \sigma_{2}^{3}\right)=s_{1} s_{2}$.

Braid varieties: Definition

Let us recall that two flags $x B, y B \in G / B$ are said to be in position $w \in W$ if $x^{-1} y \in B w B$ (e.g. for $G=\mathrm{SL}_{n}$, two flags are in position s_{i} if they differ in precisely the i-th subspace). We denote this by $x B \xrightarrow{w} y B$.

Definition

Let $\mathbf{i}:=\left(i_{1}, \ldots, i_{\ell}\right) \in D^{\ell}$. The braid variety $X(\mathbf{i})$ is the space of $\ell+1$-tuples of flags $\left(x_{1} B, x_{2} B, \ldots, x_{\ell+1} B\right) \in \mathcal{B}^{\ell+1}$ such that:
(1) $x_{1} B=B$.
(2) $x_{\ell+1} B=\delta(\mathbf{i}) B$.
(3) $x_{j} B \xrightarrow{s_{i}} x_{j+1} B$.

Braid varieties

Theorem (Escobar, Casals-Gorsky-Gorsky-S., Mellit, Shen-Weng)

- The braid variety $X(\mathbf{i})$ is a smooth, affine variety of dimension $\ell-\ell(\delta(\mathbf{i}))$.
- If $\beta_{\mathbf{i}}=\beta_{\mathbf{j}}$ then the braid varieties $X(\mathbf{i})$ and $X(\mathbf{j})$ are canonically isomorphic.
- If $\delta(\mathbf{i}, j)=\delta(\mathbf{i}) s_{j}$ then $X(\mathbf{i}) \cong X(\mathbf{i}, j)$.

The second bullet point justifies the name braid variety, and we have a well-defined notion of $X(\beta)$ for $\beta \in \mathrm{Br}$.
The third bullet point allows us to assume wlog that $\delta(\beta)=w_{0}$.

Example

For $G=\mathrm{SL}_{2}$, let $\beta=\sigma^{2}$. Then, $X(\beta)=\mathbb{C}^{\times}$.

Braid varieties

Theorem (Escobar, Casals-Gorsky-Gorsky-S., Mellit, Shen-Weng)

- The braid variety $X(\mathbf{i})$ is a smooth, affine variety of dimension $\ell-\ell(\delta(\mathbf{i}))$.
- If $\beta_{\mathbf{i}}=\beta_{\mathbf{j}}$ then the braid varieties $X(\mathbf{i})$ and $X(\mathbf{j})$ are canonically isomorphic.
- If $\delta(\mathbf{i}, j)=\delta(\mathbf{i}) s_{j}$ then $X(\mathbf{i}) \cong X(\mathbf{i}, j)$.

The second bullet point justifies the name braid variety, and we have a well-defined notion of $X(\beta)$ for $\beta \in \mathrm{Br}$.
The third bullet point allows us to assume wlog that $\delta(\beta)=w_{0}$.

Example

For $G=\mathrm{SL}_{2}$, let $\beta=\sigma^{2}$. Then, $X(\beta)=\mathbb{C}^{\times} .\left(B \xrightarrow{s} x_{1} B \xrightarrow{s} B_{-}\right)$

Braid varieties: coordinates

To give coordinates to braid varieties, we use a pinning. These are a family of compatible maps,

$$
\varphi_{i}: \mathrm{SL}_{2} \rightarrow G, \quad i \in D
$$

and we define

$$
B_{i}(z):=\varphi_{i}\left(\begin{array}{cc}
z & -1 \\
1 & 0
\end{array}\right) \in G, \quad z \in \mathbb{C}
$$

And for $\beta=\sigma_{i_{1}} \cdots \sigma_{i_{\ell}} \in \operatorname{Br}$ define

$$
B_{\beta}(z):=B_{i_{1}}\left(z_{1}\right) \cdots B_{i_{\ell}}\left(z_{\ell}\right), \quad z=\left(z_{1}, \ldots, z_{\ell}\right) \in \mathbb{C}^{\ell}
$$

So that

$$
X(\beta)=\left\{z \in \mathbb{C}^{\ell} \mid \delta(\beta)^{-1} B_{\beta}(z) \in B\right\}
$$

It is known (Lusztig 1994) that a pinning always exists, and any two pinnings are conjugate.

Double Bott-Samelson cells

Definition (Shen-Weng)

Let $\beta \in \mathrm{Br}$. The (half-decorated) double Bott-Samelson cell is the locus:

$$
\operatorname{Conf}(\beta):=\left\{z \in \mathbb{C}^{\ell} \mid B_{\beta}(z) \in B_{-} B\right\}
$$

This is a Zariski (principal) open set in \mathbb{C}^{ℓ}, given by the non-vanishing of several generalized minors of $B_{\beta}(z)$.

It is not hard to show that, if $\Delta \in \mathrm{Br}$ denotes a minimal lift of w_{0} then:

$$
X(\Delta \beta) \cong \operatorname{Conf}(\beta)
$$

Theorem (Shen-Weng)

The variety $\operatorname{Conf}(\beta)$ admits a cluster structure.

Richardson varieties

Let $v, w \in W$. The open Richardson variety is the intersection:

$$
R(v, w):=(B w B) / B \cap\left(B_{-} v B\right) / B \subseteq \mathcal{B}
$$

of a Schubert cell and an opposite Schubert cell. It is known that this is an affine variety that is nonempty if and only if $v \leq w$. In this case, $\operatorname{dim}(R(v, w))=\ell(w)-\ell(v)$.

Theorem

Let $\beta(w)$ be a reduced lift to Br of w, and similarly for $\beta\left(v^{-1} w_{0}\right)$. Then:

$$
X\left(\beta(w) \beta\left(v^{-1} w_{0}\right)\right) \cong R(v, w)
$$

$$
B \xrightarrow{s_{i_{1}}} x_{1} B \xrightarrow{s_{i_{2}}} \cdots \xrightarrow{s_{i_{k}}} x_{k} B \xrightarrow{s_{j_{1}}} x_{k+1} B \xrightarrow{s_{j_{2}}} \cdots \xrightarrow{s_{j_{t}}} x_{k+t} B=B_{-}
$$

Richardson varieties

Let $v, w \in W$. The open Richardson variety is the intersection:

$$
R(v, w):=(B w B) / B \cap\left(B_{-} v B\right) / B \subseteq \mathcal{B}
$$

of a Schubert cell and an opposite Schubert cell. It is known that this is an affine variety that is nonempty if and only if $v \leq w$. In this case, $\operatorname{dim}(R(v, w))=\ell(w)-\ell(v)$.

Theorem

Let $\beta(w)$ be a reduced lift to Br of w, and similarly for $\beta\left(v^{-1} w_{0}\right)$. Then:

$$
X\left(\beta(w) \beta\left(v^{-1} w_{0}\right)\right) \cong R(v, w)
$$

$$
B \xrightarrow{s_{i_{1}}} x_{1} B \xrightarrow{s_{i_{2}}} \cdots \xrightarrow{s_{i_{k}}} x_{k} B \xrightarrow{s_{j_{1}}} x_{k+1} B \xrightarrow{s_{j_{2}}} \cdots \xrightarrow{s_{j_{t}}} x_{k+t} B=B_{-}
$$

Richardson varieties

Let $v, w \in W$. The open Richardson variety is the intersection:

$$
R(v, w):=(B w B) / B \cap\left(B_{-} v B\right) / B \subseteq \mathcal{B}
$$

of a Schubert cell and an opposite Schubert cell. It is known that this is an affine variety that is nonempty if and only if $v \leq w$. In this case, $\operatorname{dim}(R(v, w))=\ell(w)-\ell(v)$.

Theorem

Let $\beta(w)$ be a reduced lift to Br of w, and similarly for $\beta\left(v^{-1} w_{0}\right)$. Then:

$$
X\left(\beta(w) \beta\left(v^{-1} w_{0}\right)\right) \cong R(v, w)
$$

That open Richardson varieties admit cluster structures was conjectured by Leclerc in 2016. The case of positroids is known thanks to work of (Galashin-Lam 2019, Serhiyenko-Sherman-Bennett-Williams 2019)

Cluster structures on braid varieties

Theorem (Casals-Gorsky-Gorsky-Le-Shen-S.)

For any simple algebraic group G and any $\beta \in \mathrm{Br}$, the braid variety $X(\beta)$ admits a cluster structure.

Remark

As we have seen this morning, independent work of Galashin-Lam-Sherman-Bennett-Speyer constructs a cluster structure on $X(\beta)$. It would be interesting to compare these cluster structures.

To prove the theorem, one needs to:
(1) Find candidates for cluster tori in $X(\beta)$.
(2) Find a system of coordinates for each cluster tori, that are regular functions on $X(\beta)$.
(3) Find a mutation rule, and show that the coordinates from (2) remain regular upon mutation.

Algebraic weaves

For simplicity, we will assume that G is simply laced.

An algebraic weave $\mathfrak{w}: \beta \rightarrow \delta(\beta)$ is a graph on a rectangle R, whose edges are colored by the vertices of the Dynkin diagram D and whose vertices are of the following type:

- Univalent vertices, which are located only on the top and bottom sides of R. On the top, the colors of the edges adjacent to these vertices spell β from left-to-right. On the bottom, they spell $\delta(\beta)$.
- Trivalent vertices, located in the interior of R.
- Tetravalent vertives, located in the interior of R.
- Hexavalent vertices, located in the interior of R.

Algebraic weaves

Figure: A weave $\mathfrak{w}: \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{2} \rightarrow \sigma_{1} \sigma_{2} \sigma_{1}$

Weaves as flag moduli

Figure: Moduli of flags determined by a weave. All flags are completely determined by those on top, and this determines an open torus $T_{\mathfrak{w}}$ in $X(\beta)$

Weaves as paths on words

From another point of view, a weave is a sequence of braid words starting at (a word for) β and finishing at (a word for) $\delta(\beta)$, using the following types of local steps:

- Trivalent vertices: $\sigma_{i} \sigma_{i} \mapsto \sigma_{i}$.
- Tetravalent vertices: $\sigma_{i} \sigma_{j} \mapsto \sigma_{j} \sigma_{i}$.
- Hexavalent vertices: $\sigma_{i} \sigma_{j} \sigma_{i} \mapsto \sigma_{j} \sigma_{i} \sigma_{j}$.

Weaves as equations of braid elements

One last viewpoint on weaves is that they encode certain equations among products of elements of the form $B_{i}(z)$. To do this, we label every edge by (several) variables which are rational functions on z_{1}, \ldots, z_{ℓ}, the top labels being z_{1}, \ldots, z_{ℓ}.

$B_{i}\left(z_{1}\right) B_{j}\left(z_{2}\right) B_{i}\left(z_{3}\right)=$ $B_{j}\left(z_{3}\right) B_{i}\left(z_{1} z_{3}-z_{2}\right) B_{j}\left(z_{1}\right)$

$B_{i}(z) B_{k}(w)=B_{k}(w) B_{i}(z) \quad B_{i}\left(z_{1}\right) B_{i}\left(z_{2}\right)=B_{i}\left(z_{1}-z_{2}^{-1}\right) U$ $z_{2} \neq 0, U \in B$

Warning: A trivalent vertex is going to affect all labels to its right!

s-variables

Definition

For a trivalent vertex v, we define its s-variable s_{v} to be the label on its right incoming edge.

The s-variables are coordinates for the torus $T_{\mathfrak{w}}$ defined by the weave \mathfrak{w}, but they are only rational functions on $X(\beta)$.

Simultaneously, we will define a quiver $Q_{\mathfrak{w}}$ and create an upper unitriangular change of variables that gives a system of coordinates in $T_{\mathfrak{w}}$ consisting of regular functions on $X(\beta)$.

Lusztig cycles

For any trivalent vertex v, we define a function $\gamma_{v}: \operatorname{edges}(\mathfrak{w}) \rightarrow \mathbb{Z}_{\geq 0}$ as follows

- For any edge above $v, \gamma_{v}(e)=0$.
- For the outgoing edge of $v, \gamma_{v}(e)=1$.
- Below v, γ_{v} satisfies a tropical version of Lusztig's coordinates:
- If e_{1}, e_{2} are the incoming edges of a trivalent vertex v^{\prime} and e_{3} is the outgoing edge then $\gamma_{v}\left(e_{3}\right)=\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{2}\right)\right)$.
- If e_{1}, e_{2} are the incoming edges of a tetravalent vertex, and $e_{1}^{\prime}, e_{2}^{\prime}$ the outgoing edges, then $\gamma_{v}\left(e_{1}^{\prime}\right)=\gamma_{v}\left(e_{2}\right), \gamma_{v}\left(e_{2}^{\prime}\right)=\gamma_{v}\left(e_{1}\right)$.
- If e_{1}, e_{2}, e_{3} are the incoming edges of a hexavalent vertex and $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ the outgoing edges, then

$$
\begin{aligned}
\gamma_{v}\left(e_{1}^{\prime}\right)= & \gamma_{v}\left(e_{2}\right)+\gamma_{v}\left(e_{3}\right)-\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right), \\
& \gamma_{v}\left(e_{2}^{\prime}\right)=\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right), \\
\gamma_{v}\left(e_{3}^{\prime}\right)= & \gamma_{v}\left(e_{2}\right)+\gamma_{v}\left(e_{1}\right)-\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right) .
\end{aligned}
$$

Lusztig cycles

For any trivalent vertex v, we define a function $\gamma_{v}: \operatorname{edges}(\mathfrak{w}) \rightarrow \mathbb{Z}_{\geq 0}$ as follows

- For any edge above $v, \gamma_{v}(e)=0$.
- For the outgoing edge of $v, \gamma_{v}(e)=1$.
- Below v, γ_{v} satisfies a tropical version of Lusztig's coordinates:

- If e_{1}, e_{2} are the incoming edges of a tetravalent vertex, and $e_{1}^{\prime}, e_{2}^{\prime}$ the outgoing edges, then $\gamma_{v}\left(e_{1}^{\prime}\right)=\gamma_{v}\left(e_{2}\right), \gamma_{v}\left(e_{2}^{\prime}\right)=\gamma_{v}\left(e_{1}\right)$.
- If e_{1}, e_{2}, e_{3} are the incoming edges of a hexavalent vertex and $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ the outgoing edges, then

$$
\begin{aligned}
\gamma_{v}\left(e_{1}^{\prime}\right)= & \gamma_{v}\left(e_{2}\right)+\gamma_{v}\left(e_{3}\right)-\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right) \\
& \gamma_{v}\left(e_{2}^{\prime}\right)=\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right) \\
\gamma_{v}\left(e_{3}^{\prime}\right)= & \gamma_{v}\left(e_{2}\right)+\gamma_{v}\left(e_{1}\right)-\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right)
\end{aligned}
$$

Lusztig cycles

For any trivalent vertex v, we define a function $\gamma_{v}: \operatorname{edges}(\mathfrak{w}) \rightarrow \mathbb{Z}_{\geq 0}$ as follows

- For any edge above $v, \gamma_{v}(e)=0$.
- For the outgoing edge of $v, \gamma_{v}(e)=1$.
- Below v, γ_{v} satisfies a tropical version of Lusztig's coordinates:

- If e_{1}, e_{2}, e_{3} are the incoming edges of a hexavalent vertex and $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ the outgoing edges, then

$$
\begin{aligned}
\gamma_{v}\left(e_{1}^{\prime}\right)= & \gamma_{v}\left(e_{2}\right)+\gamma_{v}\left(e_{3}\right)-\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right), \\
& \gamma_{v}\left(e_{2}^{\prime}\right)=\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right), \\
\gamma_{v}\left(e_{3}^{\prime}\right)= & \gamma_{v}\left(e_{2}\right)+\gamma_{v}\left(e_{1}\right)-\min \left(\gamma_{v}\left(e_{1}\right), \gamma_{v}\left(e_{3}\right)\right) . \text { 三 }
\end{aligned}
$$

Lusztig cycles

For any trivalent vertex v, we define a function $\gamma_{v}: \operatorname{edges}(\mathfrak{w}) \rightarrow \mathbb{Z}_{\geq 0}$ as follows

- For any edge above $v, \gamma_{v}(e)=0$.
- For the outgoing edge of $v, \gamma_{v}(e)=1$.
- Below v, γ_{v} satisfies a tropical version of Lusztig's coordinates:

Lusztig cycles

Figure: The cycle γ_{v} for the topmost trivalent vertex of \mathfrak{w}.

Frozen and mutable

We say that a trivalent vertex v of \mathfrak{w} is frozen if there exists an edge e on the bottom of \mathfrak{w} such that $\gamma_{v}(e) \neq 0$. Else, we say that v is mutable.

Frozen and mutable

Equivalently, a trivalent vertex $\beta_{1} \sigma_{i} \sigma_{i} \beta_{2} \rightarrow \beta_{1} \sigma_{i} \beta_{2}$ is frozen if

$$
\delta\left(\beta_{1} \beta_{2}\right)<\delta\left(\beta_{1} \sigma_{i} \beta_{2}\right)
$$

Intersections

Now we define a skew-symmetric matrix ε using intersections of cycles at tri- and hexa-valent vertices.

- If t is a trivalent vertex of \mathfrak{w} with incoming edges e_{1}, e_{2} and outgoing edge e_{3} then:

$$
\#_{t}\left(\gamma_{v}, \gamma_{v^{\prime}}\right)=\left|\begin{array}{ccc}
1 & 1 & 1 \\
\gamma_{v}\left(e_{1}\right) & \gamma_{v}\left(e_{3}\right) & \gamma_{v}\left(e_{2}\right) \\
\gamma_{v^{\prime}}\left(e_{1}\right) & \gamma_{v^{\prime}}\left(e_{3}\right) & \gamma_{v^{\prime}}\left(e_{2}\right)
\end{array}\right|
$$

- If t is a hexavalent vertex of \mathfrak{w} with incoming edges e_{1}, e_{2}, e_{3} and outgoing edges $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ then $\#_{t}\left(\gamma_{v}, \gamma_{v^{\prime}}\right)$ is:

$$
\frac{1}{2}\left(\left|\begin{array}{ccc}
1 & 1 & 1 \\
\gamma_{v}\left(e_{1}\right) & \gamma_{v}\left(e_{2}\right) & \gamma_{v}\left(e_{3}\right) \\
\gamma_{v^{\prime}}\left(e_{1}\right) & \gamma_{v^{\prime}}\left(e_{2}\right) & \gamma_{v^{\prime}}\left(e_{3}\right)
\end{array}\right|-\left|\begin{array}{ccc}
1 & 1 & 1 \\
\gamma_{v}\left(e_{1}^{\prime}\right) & \gamma_{v}\left(e_{2}^{\prime}\right) & \gamma_{v}\left(e_{3}^{\prime}\right) \\
\gamma_{v^{\prime}}\left(e_{1}^{\prime}\right) & \gamma_{v^{\prime}}\left(e_{2}^{\prime}\right) & \gamma_{v^{\prime}}\left(e_{3}^{\prime}\right)
\end{array}\right|\right)
$$

And we define

$$
\varepsilon_{v, v^{\prime}}:=\sum_{t} \#_{t}\left(\gamma_{v}, \gamma_{v^{\prime}}\right)
$$

Example

Example

Example

Cluster variables

Recall that the s-vairable s_{v} of a trivalent vertex v is the rational function labeling its right incoming edge.

Theorem (Casals-Gorsky-Gorsky-Le-Shen-S.)

Let \mathfrak{w} be a weave such that, for each trivalent vertex v, either its right arm e_{r}^{v} or its left arm e_{l}^{v} goes all the way to the top. Then,

$$
A_{v}:=s_{v} \times \prod_{v^{\prime}} A_{v^{\prime}}^{\gamma_{v^{\prime}}\left(e_{r}^{v}\right)+\gamma_{v^{\prime}}\left(e_{l}^{v}\right)}
$$

is a regular function on $X(\beta)$, and together with the intersection form give $X(\beta)$ a cluster structure.

Example

$A_{1}=z_{5}, A_{2}=-z_{6} z_{7}+z_{5} z_{8}, A_{3}=-z_{6} z_{7} z_{9}+z_{5} z_{8} z_{9}-z_{5}$
$A_{4}=-z_{6} z_{9}+z_{5} z_{10}, A_{5}=-z_{7} z_{9}+z_{5} z_{11}, A_{6}=z_{6} z_{7} z_{10} z_{11}-$
$z_{5} z_{8} z_{10} z_{11}-z_{6} z_{7} z_{9} z_{12}+z_{5} z_{8} z_{9} z_{12}-z_{8} z_{9}+z_{7} z_{10}+z_{6} z_{11}-z_{5} z_{12}+1$.

Example

Mutating:

$$
\begin{aligned}
A_{1}^{\prime}= & \frac{A_{2} A_{4} A_{5}+A_{3}^{2}}{A_{1}} \\
= & z_{6} z_{7} z_{8} z_{9}^{2}+z_{5} z_{8}^{2} z_{9}^{2}+z_{6} z_{7}^{2} z_{9} z_{10}-z_{5} z_{7} z_{8} z_{9} z_{10}+z_{6}^{2} z_{7} z_{9} z_{11}+ \\
& -z_{5} z_{6} z_{8} z_{9} z_{11}-z_{5} z_{6} z_{7} z_{10} z_{11}+z_{5}^{2} z_{8} z_{10} z_{11}+2 z_{6} z_{7} z_{9}-2 z_{5} z_{8} z_{9}+z_{5}
\end{aligned}
$$

$A_{2}^{\prime}=\frac{A_{1}+A_{3}}{A_{2}}=z_{9}$.
$A_{3}^{\prime}=\frac{A_{2} A_{4} A_{5}+A_{1}^{2} A_{6}}{A_{3}}=z_{6} z_{7} z_{9}-z_{5} z_{7} z_{10}-z_{5} z_{6} z_{11}+z_{5}^{2} z_{12}-z_{5}$.
These are all regular, and in fact polynomials!

Weave mutation

Figure: Weave mutation corresponds to cluster mutation.

Theorem (Elias, CGGLSS)

For a fixed expression for $\delta(\beta)$, any two weaves $\mathfrak{w}, \mathfrak{w}^{\prime}: \beta \rightarrow \delta(\beta)$ are related by a sequence of equivalences and mutations.

Polinomiality

Theorem (CGGLSS)

The way we have defined cluster variable starting from s-variables, the exchange relations are already valid in the polynomial algebra $\mathbb{C}\left[z_{1}, \ldots, z_{\ell}\right]$.

Polinomiality

Theorem (CGGLSS)

The way we have defined cluster variable starting from s-variables, the exchange relations are already valid in the polynomial algebra $\mathbb{C}\left[z_{1}, \ldots, z_{\ell}\right]$.

$$
\widetilde{X}(\beta):=\left\{B \xrightarrow{s_{i_{1}}} x_{1} B \xrightarrow{s_{i_{2}}} \cdots \xrightarrow{s_{i_{\ell}}} x_{\ell} B \mid x_{\ell} B \in B w_{0} B / B\right\}
$$

Fibers of π are affine spaces of dimension $\ell\left(w_{0}\right)$. When $\beta=\Delta \beta^{\prime}$ in fact $\widetilde{X}(\beta)=\mathbb{C}^{\ell\left(w_{0}\right)} \times X(\beta)$.

Properties

The cluster structure on $X(\beta)$ satisfies the following properties:

- Cyclic rotation. If $s_{i^{*}}=w_{0} s_{i} w_{0}$ then we have an isomorphism $\mathbb{C}\left[X\left(\beta \sigma_{i}\right)\right] \rightarrow \mathbb{C}\left[X\left(\sigma_{i^{*}} \beta\right)\right]$. This is a quasi-cluster isomorphism. (see also (Casals-Weng '22))
- $\mathcal{A}=\mathcal{U}$. We have $\mathbb{C}[X(\beta)]=\mathcal{A}\left(Q_{\mathfrak{w}}\right)=\mathcal{U}\left(Q_{\mathfrak{w}}\right)$ for any weave \mathfrak{w}. Moreover, the elements $z_{i} \in \mathbb{C}[X(\beta)]$ are cluster monomials (for probably different clusters).
- Full rank. The exchange matrix $\varepsilon_{\mathfrak{w}}$ has full rank.
- Local acyclicity. The cluster algebra $\mathcal{A}\left(Q_{\mathfrak{w}}\right)$ is locally acyclic. In fact, $X(\beta)$ can be covered with cluster open sets of the form $X\left(\beta^{\prime}\right)$ for smaller braids β^{\prime}.

Reddening sequences

- Upon the identification $X(\Delta \beta) \cong \operatorname{Conf}(\beta)$, we obtain the same cluster structure as Shen-Weng. Moreover, if \mathfrak{w} is a weave on $\Delta \beta$ such that, for every trivalent vertex v, its right arm goes all the way to the top, then we obtain the quiver associated to the wiring diagram of β.
- If $\delta\left(\beta \sigma_{i}\right)=\delta(\beta)$, then the quiver for $X(\beta)$ is obtained from that of $X\left(\beta \sigma_{i}\right)$ by deleting a frozen sink and freezing all variables adjacent to this frozen variable.
- If $\delta\left(\sigma_{i} \beta\right)=\delta(\beta)$, then the quiver for $X(\beta)$ is obtained from that of $X\left(\sigma_{i} \beta\right)$ by deleting a frozen source and freezing all variables adjacent to this frozen variable.
- It follows that this cluster structure admits a reddening sequence.
- It also follows that $\mathbb{C}[X(\beta)]$ admits a basis of ϑ-functions.

Thanks for your attention!

Happy Birthday Professor Leclerc!

The non-simply laced case

If G is non-simply laced, we still have the notion of a weave, where now we have ($2 d$)-valent vertices as well. Any weave in non-simply laced type unfolds to one in simply-laced type, and we obtain the cluster structure by identifying cluster variables in the simply-laced type.

Non-simply laced example

Non-simply laced example

Non-simply laced example

