Simple cuspidals and the Langlands correspondence

BIRS Workshop in Oaxaca

November 30, 2022

Guy Henniart
Laboratoire de Mathématiques d'ORSAY
Université Paris-Saclay, CNRS

Plan of the talk

1) Introduction
2) Simple cuspidals for $\operatorname{GL}(n, F)$
3) Simple cuspidals for $\operatorname{Sp}(2 n, F)$
4) The Langlands correspondence for simple cuspidals

1) Introduction

Let F be a non-Archimedean locally compact field, and G a split reductive group over \mathbb{Z}.

I shall focus on cuspidal (irreducible, complex) representations of $G(F)$. They are the building blocks in the theory of smooth representations of $G(F)$.

From Stevens's lectures, you know that a general way to construct them is via induction from an open compact mod. centre subgroup of G.

Actually for any G where all the cuspidals have been constructed, they are so obtained, and in a precise way. That is the case for GL(n) (Bushnell \& Kutzko), classical groups when the residue characteristic p of F is odd (Stevens et al.), and general G provided p is large enough (Yu , Fintzen).

1) Introduction

In 2010, Gross \& Reeder invented the simple cuspidals. They exist for any (split) G, and are given by an easy construction which is completely uniform across G and p. For GL(n) they are special cases of a construction due to Carayol in the 1970's.

I shall first describe them for $\operatorname{GL}(n)$ and $\operatorname{Sp}(2 n)$, then tell what they give through the local Langlands correspondence, which attaches to a cuspidal for $G(F)$ a morphism of the Weil group W_{F} of F into the dual group \widehat{G} of G, which is $\operatorname{GL}(n, \mathbb{C})$ when $G=\mathrm{GL}(n)$ and $\mathrm{SO}(2 n+1, \mathbb{C})$ when $G=\operatorname{Sp}(2 n)$.
2) Simple cuspidals for $G L(n, F)$

General notation :

- \mathcal{O}_{F} is the ring of integers of F.
- \mathfrak{p}_{F} its maximal ideal.
- $\kappa=\mathcal{O}_{F} / \mathfrak{p}_{F}, \quad q=\operatorname{card}(\kappa)=p^{f}$.
- ϖ a uniformizer of $F, \mathfrak{p}_{F}=\varpi \mathcal{O}_{F}$.
- ψ a non-trivial character of κ.

Notation for the general linear group :

$G=\mathrm{GL}(n, F)(n>1)$: linear automorphisms of F^{n}, with canonical basis e_{1}, \ldots, e_{n}. Identify F^{*} with the centre of G.

- $K=G L\left(n, \mathcal{O}_{F}\right)$.
- I Iwahori subgroup : matrices in K with upper triangular reduction mod. \mathfrak{p}_{F}.
- $N_{G}(I)=\langle\Pi\rangle I$, where $\Pi\left(e_{i}\right)=e_{i+1}$ for $i=1, \ldots, n-1$, and $\Pi\left(e_{n}\right)=\varpi e_{1}$. Note that $\Pi^{n}=\varpi \cdot$ id.

2) Simple cuspidals for $G L(n, F)$

- I^{1} the pro- p Iwahori : matrices in I with unipotent reduction $\bmod . \mathfrak{p}_{F}$ (i.e. diagonal entries in $1+\mathfrak{p}_{F}$).
- I^{2} consists of matrices x in I^{1} with $x_{i, i+1} \in \mathfrak{p}_{F}$ for $i=1, \ldots, n-1$ and $x_{n, 1} \in \mathfrak{p}_{F}^{2}$.
- $I^{1} / I^{2}=\kappa^{n}:$ send $x \in I^{1}$ to

$$
\left(x_{1,2} \bmod \cdot \mathfrak{p}_{F}, \ldots, x_{n-1, n} \bmod \cdot \mathfrak{p}_{F}, x_{n, 1} / \varpi \bmod \cdot \mathfrak{p}_{F}\right) .
$$

- ψ defines a character (ψ, \ldots, ψ) of κ^{n}, hence a character λ_{ψ} of I^{1}.

Theorem
The intertwining set of λ_{ψ} in G is $J=\langle\Pi\rangle F^{*} I^{1}$, which is also its normalizer.
2) Simple cuspidals for $G L(n, F)$

Corollary

If λ is any character of J extending λ_{ψ}, then $\operatorname{ind}_{J}^{G} \lambda$ is a cuspidal representation of G.

Remarks.

1. Given ψ, λ is determined by its value on Π, and its restriction to U_{F}, which is trivial on $1+\mathfrak{p}_{F}$, hence amounts to a character of κ^{*}.
2. Varying ψ and λ, we get the simple cuspidals of G.
3. We may choose different non-trivial characters $\psi_{1}, \ldots, \psi_{n}$ on each coordinate of κ^{n}, and get cuspidals in the same fashion, but under the action of I / I^{1} they are equivalent to the preceding ones. Similarly if we change ϖ.
3) Simple cuspidals for $\operatorname{Sp}(2 n)$
$\widetilde{G}=\operatorname{GL}(2 n, F)$, and put \sim on the previous notation for \widetilde{G}.

Notation for the symplectic group :

$G=\operatorname{Sp}(2 n, F)$: subgroup of matrices in \widetilde{G} preserving the alternating form b with antidiagonal matrix with coefficient $b\left(e_{i}, e_{j}\right)=(-1)^{i-1}$ for $i+j=2 n+1$.

- The centre of G is the group μ of square roots of 1 in F^{*}.
- $K=G \cap \widetilde{K}=\operatorname{Sp}\left(2 n, \mathcal{O}_{F}\right)$.
- $I=G \cap \tilde{I}, I^{1}=G \cap \widetilde{I^{1}}, I^{2}=G \cap \widetilde{I^{2}}, I^{1} / I^{2}=\kappa^{n+1}$ sending

$$
x \mapsto\left(x_{1,2} \bmod . \mathfrak{p}_{F}, \ldots, x_{n, n+1} \bmod . \mathfrak{p}_{F}, x_{2 n, 1} / \varpi \bmod . \mathfrak{p}_{F}\right) .
$$

Let λ_{ψ} be the character of I^{1} given by ψ on each coordinate of κ^{n+1}.
3) Simple cuspidals for $\operatorname{Sp}(2 n)$

Theorem
The intertwining set of λ_{ψ} in G is $J=\mu I^{1}$, which is also its normalizer.

Corollary
If λ is any character of J extending $\lambda_{\psi}, \operatorname{ind}_{J}^{G} \lambda$ is a cuspidal representation of G.

1. Given ψ, λ is determined by its value on μ, given by a sign if p is odd, and trivial if $p=2$ (then I^{1} contains μ).
2. As for \widetilde{G}, we may allow different characters on each coordinate of κ^{n+1}. It does not give new cuspidals when $p=2$, but it gives twice more when p is odd, because κ^{*} modulo squares has order 2.
3. The cuspidals in 2) are the simple cuspidals of G.
4) The Langlands correspondence for simple cuspidals : the case of GL(n).

- F^{s} a separable algebraic closure of F.
- W_{F} its Weil group.
- Other notation as in section 2.

The local Langlands conjecture (Laumon, Rapoport \& Stuhler when $\operatorname{char}(F)=p$, Harris \& Taylor, H., Scholze, when $\operatorname{char}(F)=0$) attaches to a cuspidal for $\mathrm{GL}(n, F)$ (up to isomorphism) an irreducible n-dimensional representation of W_{F} (up to isomorphism), and conversely.
4) The Langlands correspondence for simple cuspidals : the case of GL(n).

Question : Let $n>1$. For a simple cuspidal π for $\mathrm{GL}(n, F)$, determined by $\varpi, \psi, \alpha=\lambda(\Pi)$ and the character χ of κ^{*} yielding the restriction of λ to U_{F}, can we describe the representation σ of W_{F}, of dimension n, associated to π ?

Answer : yes, but not easy. Bushnell \& H. 2013 give an explicit description of the projective representation given by σ, Imai \& Tsushima 2015 give a geometric realization of σ.
4) The Langlands correspondence for simple cuspidals : the case of GL(n).

Great difference if p divides n or not. The extreme cases are $(p, n)=1$ and $n=p^{r}$ for some $r>0$. The general case is a mix of the two.

For $(p, n)=1, \Pi$ generates a totally ramified tame extension E of F, of degree n; we can see E in F^{s}, W_{E} as an index n subgroup of W_{F}, and σ is induced from a character of W_{E}, equivalently of E^{*}, which sends

$$
1+x \mapsto \psi\left(x / \varpi \bmod . \mathfrak{p}_{E}\right)
$$

for $x \in \mathfrak{p}_{E}$ (note that $\kappa_{E}=\kappa$), and by α and χ on Π and the Teichmüller lifts of κ^{*} (up to a slight explicit sign tweak).

The main difficulty is when $n=p^{r}$, because then σ is primitive, very hard to describe!
4) The Langlands correspondence for simple cuspidals : the case of GL(n).

Main information :

LLC preserves L - and ε-factors for pairs. In particular, if Ψ is a non-trivial character of F and μ a character of F^{*}, we have

$$
\varepsilon(\mu \pi, s, \Psi)=\varepsilon(\mu \sigma, s, \Psi)
$$

Looking at the exponent of q^{-s}, we obtain

$$
\operatorname{Sw}(\sigma)=1
$$

Also the central character ω_{π} of π corresponds to $\operatorname{det}(\sigma)$ via class field theory (ω_{π} is trivial on $1+\mathfrak{p}_{F}$, given by χ on \mathcal{O}_{F}^{*}, by α^{n} on π).
4) The Langlands correspondence for simple cuspidals : the case of $\mathrm{GL}(n)$.

Moreover σ with $\operatorname{Sw}(\sigma)=1$ is determined, as is π, by few data, $\operatorname{det}(\sigma)$ and $\varepsilon(\mu \sigma, s, \Psi)$ for tame μ. Taking Ψ to be trivial on \mathfrak{p}_{F} and given by ψ on \mathcal{O}_{F}, then one computes $\varepsilon(\mu \sigma, s, \Psi)$ in terms of $\varpi, \alpha, \chi, \mu$.

When n is prime to p, one checks that the above description gives the answer (Adrian and Liu 2016).

When n is a power of $p, \operatorname{Sw}(\sigma)=1$ implies that σ is indeed primitive. Let G be the image of σ and G_{1} its wild inertia subgroup. By work of H . Koch in the 1970's, G_{1} is a Heisenberg type group and there is a minimal Galois tame extension E / F such that the restriction σ_{E} to E becomes induced from degree p extensions (n^{2} of them actually), equivalently is stable by twisting by an order p character.
4) The Langlands correspondence for simple cuspidals : the case of GL(n).

The main tools for Bushnell \& H. are the theory of base change (Arthur \& Clozel) and explicit tame versions (Bushnell \& H.).

For a cyclic extension K / F, base change constructs the procedure parallel to restriction to W_{K} on the Weil group side, but independently of that side.
B. \& H . determine E / F using tame base change, and the projective representation attached to σ_{E} using character twists. They find E / F as an explicit totally ramified extension of degree $n+1$, and explicit equations for the inducing extensions E^{\prime} / E.
4) The Langlands correspondence for simple cuspidals : the case of GL(n).

Imai and Tsushima proceed differently. Motivated by B. \& H. and their own work on Deligne-Lusztig varieties, they guess G as a group, and make it act on a curve over κ. Using an Artin-Schreier sheaf attached to ψ, they get a representation of G on its cohomology. Then they produce G as a quotient of W_{F} and check that the representation thus obtained is the right one.
4) The Langlands correspondence for simple cuspidals : the case of $\operatorname{Sp}(2 n)$

- Notation as in Section 3.
- Hypothesis : $\operatorname{char}(\mathrm{F})=0$.

Arthur associates to a cuspidal (more generally, a discrete series) π for $G=\operatorname{Sp}(2 n, F)$ a morphism $\phi=\phi(\pi)$ of $W_{F} \times \operatorname{SL}(2, \mathbb{C})$ into $\widehat{G}=\mathrm{SO}(2 n+1, \mathbb{C})$, up to conjugation by \widehat{G}, with the \widehat{G}-irreducibility condition that ϕ is the direct sum of inequivalent irreducible orthogonal representations $\phi_{1}, \ldots, \phi_{r}$. The discrete series with the same parameter ϕ form an L-packet $L(\phi)$ with 2^{r-1} elements. Given a <Whittaker datum», the L-packet contains a unique element with a corresponding Whittaker model.
4) The Langlands correspondence for simple cuspidals : the case of $\operatorname{Sp}(2 n)$

Question : Assume π simple. Can we describe ϕ ?

1. ϕ is trivial on $\operatorname{SL}(2, \mathbb{C})$. That is easy, because π has a Whittaker model. Indeed, if ϕ is not trivial on $\operatorname{SL}(2, \mathbb{C})$, the element in $L(\phi)$ with a Whittaker model cannot be supercuspidal (Mœglin, Xu).
2. $r=1$ or 2 . In fact, ϕ is either irreducible, or is the sum of a character and an irreducible representation of dimension $2 n$ (Oi). That is hard, and uses the full strength of Arthur's construction via endoscopy and twisted endoscopy.
4) The Langlands correspondence for simple cuspidals: the case of $\mathrm{Sp}(2 n)$

Two different outcomes :

- podd $(\mathrm{Oi}): \phi$ is reducible (indeed there is no irreducible orthogonal representation of W_{F} with odd dimension >1), in fact $r=2$. The two irreducible components are explicitly determined by the character λ which induces π. One is a character, and the other, of dimension $2 n$, is in fact the parameter attached to a simple cuspidal for GL $(2 n, F)$, corresponding to the same choices of ϖ and ψ.
- $p=2$ (H. for $F=\mathbb{Q}_{2}$ using results of Adrian \& Kaplan, H. \& Oi in general) : ϕ is irreducible, and is the representation attached to a simple cuspidal for $\mathrm{GL}(2 n+1, F)$, which is explicited from the data defining λ, and also corresponds to the same choice of ϖ and ψ.

4) The Langlands correspondence for simple cuspidals : the case of $\mathrm{Sp}(2 n)$

Remarks :

1. Arthur in fact does not give ϕ directly, but the representations π_{i} of general linear groups corresponding to the ϕ_{i} 's, and indeed we use his endoscopic and twisted endoscopic character relations to get a hold on the π_{i} 's, not on ϕ directly.
2. When p is odd, Oi also treats split special orthogonal groups. We have now completed the case $\mathrm{p}=2$, using the approach of Adrian, and computations by Adrian and Kaplan.
3. The construction of Gross \& Reeder has been generalized by Reeder \& Yu to some (tame) non-split groups. When p is odd, Oi treats tamely ramified (non-split) special orthogonal groups, and also unramified unitary groups. When $p=2$, unramified non-split special orthogonal groups and unramified unitary groups remain to be treated.
4) The Langlands correspondence for simple cuspidals : the case of $\mathrm{Sp}(2 n)$
Let us give a bit of (simplified) detail on how Property 2 is proved.
Assume the component ϕ_{i} has dimension n_{i}. There is an <endoscopic group» H of G with L-group (nearly) the product of the $\mathrm{O}\left(n_{i}, \mathbb{C}\right)$. Then ϕ factors through the L-group of H, hence a parameter ϕ^{\prime} for H and a corresponding packet $L\left(\phi^{\prime}\right)$. Arthur has shown that, for a regular semisimple element g of G, there is an endoscopic character relation equating a certain linear combination (with signs as coefficients) of the characters at g of the elements of $L(\phi)$ to a linear combination (with <transfer factors» as coefficients) of the characters of the elements of $L\left(\phi^{\prime}\right)$ at the <norms» of g. Oi selects nice elements g (which he calls <affine generic») and shows that at some such g the linear combination for G does not vanish. It follows that the linear combination for H does not vanish. But the characteristic polynomial of a norm of a nice g is irreducible (of degree $2 n$), which imposes $r=1$, $n_{1}=2 n+1$, or $r=2, n_{1}=1$ and $n_{2}=2 n$.
