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1) Introduction

Let F be a non-Archimedean locally compact field, and G a split
reductive group over Z.

I shall focus on cuspidal (irreducible, complex) representations of
G (F ). They are the building blocks in the theory of smooth
representations of G (F ).

From Stevens’s lectures, you know that a general way to construct
them is via induction from an open compact mod. centre subgroup
of G .

Actually for any G where all the cuspidals have been constructed,
they are so obtained, and in a precise way. That is the case for
GL(n) (Bushnell & Kutzko), classical groups when the residue
characteristic p of F is odd (Stevens et al.), and general G provided
p is large enough (Yu, Fintzen).



1) Introduction

In 2010, Gross & Reeder invented the simple cuspidals. They exist
for any (split) G , and are given by an easy construction which is
completely uniform across G and p. For GL(n) they are special
cases of a construction due to Carayol in the 1970’s.

I shall first describe them for GL(n) and Sp(2n), then tell what
they give through the local Langlands correspondence, which
attaches to a cuspidal for G (F ) a morphism of the Weil group WF

of F into the dual group Ĝ of G , which is GL(n,C) when
G = GL(n) and SO(2n + 1,C) when G = Sp(2n).



2) Simple cuspidals for GL(n,F )

General notation :

• OF is the ring of integers of F .

• pF its maximal ideal.

• κ = OF/pF , q = card(κ) = pf .

• $ a uniformizer of F , pF = $OF .

• ψ a non-trivial character of κ.

Notation for the general linear group :

G = GL(n,F ) (n > 1) : linear automorphisms of F n, with
canonical basis e1, . . . , en. Identify F ∗ with the centre of G .

• K = GL(n,OF ).

• I Iwahori subgroup : matrices in K with upper triangular
reduction mod. pF .

• NG (I ) = 〈Π〉 I , where Π(ei ) = ei+1 for i = 1, . . . , n − 1, and
Π(en) = $e1. Note that Πn = $ · id.



2) Simple cuspidals for GL(n,F )

• I 1 the pro-p Iwahori : matrices in I with unipotent reduction
mod. pF (i.e. diagonal entries in 1 + pF ).

• I 2 consists of matrices x in I 1 with xi ,i+1 ∈ pF for
i = 1, . . . , n − 1 and xn,1 ∈ p2F .

• I 1/I 2 = κn : send x ∈ I 1 to

(x1,2mod. pF , . . . , xn−1,n mod. pF , xn,1/$mod. pF ).

• ψ defines a character (ψ, . . . , ψ) of κn, hence a character λψ
of I 1.

Theorem
The intertwining set of λψ in G is J = 〈Π〉F ∗I 1, which is also its
normalizer.



2) Simple cuspidals for GL(n,F )

Corollary

If λ is any character of J extending λψ, then indGJ λ is a cuspidal
representation of G .

Remarks.

1. Given ψ, λ is determined by its value on Π, and its restriction
to UF , which is trivial on 1 + pF , hence amounts to a
character of κ∗.

2. Varying ψ and λ, we get the simple cuspidals of G .

3. We may choose different non-trivial characters ψ1, . . . , ψn on
each coordinate of κn, and get cuspidals in the same fashion,
but under the action of I/I 1 they are equivalent to the
preceding ones. Similarly if we change $.



3) Simple cuspidals for Sp(2n)

G̃ = GL(2n,F ), and put ∼ on the previous notation for G̃ .

Notation for the symplectic group :

G = Sp(2n,F ) : subgroup of matrices in G̃ preserving the
alternating form b with antidiagonal matrix with coefficient
b(ei , ej) = (−1)i−1 for i + j = 2n + 1.

• The centre of G is the group µ of square roots of 1 in F ∗.

• K = G ∩ K̃ = Sp(2n,OF ).

• I = G ∩ Ĩ , I 1 = G ∩ Ĩ 1, I 2 = G ∩ Ĩ 2, I 1/I 2 = κn+1 sending

x 7→ (x1,2 mod. pF , . . . , xn,n+1 mod. pF , x2n,1/$ mod. pF ).

Let λψ be the character of I 1 given by ψ on each coordinate of
κn+1.



3) Simple cuspidals for Sp(2n)

Theorem
The intertwining set of λψ in G is J = µI 1, which is also its
normalizer.

Corollary

If λ is any character of J extending λψ, indGJ λ is a cuspidal
representation of G .

1. Given ψ, λ is determined by its value on µ, given by a sign if
p is odd, and trivial if p = 2 (then I 1 contains µ).

2. As for G̃ , we may allow different characters on each
coordinate of κn+1. It does not give new cuspidals when
p = 2, but it gives twice more when p is odd, because κ∗

modulo squares has order 2.

3. The cuspidals in 2) are the simple cuspidals of G .



4) The Langlands correspondence for simple cuspidals :
spaci the case of GL(n).

• F s a separable algebraic closure of F .

• WF its Weil group.

• Other notation as in section 2.

The local Langlands conjecture (Laumon, Rapoport & Stuhler
when char(F ) = p, Harris & Taylor, H., Scholze, when
char(F ) = 0) attaches to a cuspidal for GL(n,F ) (up to
isomorphism) an irreducible n-dimensional representation of WF

(up to isomorphism), and conversely.



4) The Langlands correspondence for simple cuspidals :
spaci the case of GL(n).

Question : Let n > 1. For a simple cuspidal π for
GL(n,F ), determined by $, ψ, α = λ(Π) and the cha-
racter χ of κ∗ yielding the restriction of λ to UF , can we
describe the representation σ of WF , of dimension n, as-
sociated to π ?

Answer : yes, but not easy. Bushnell & H. 2013 give an
explicit description of the projective representation given
by σ, Imai & Tsushima 2015 give a geometric realization
of σ.



4) The Langlands correspondence for simple cuspidals :
spaci the case of GL(n).

Great difference if p divides n or not. The extreme cases are
(p, n) = 1 and n = pr for some r > 0. The general case is a mix of
the two.

For (p, n) = 1, Π generates a totally ramified tame extension E of
F , of degree n ; we can see E in F s , WE as an index n subgroup of
WF , and σ is induced from a character of WE , equivalently of E ∗,
which sends

1 + x 7→ ψ(x/$ mod. pE ),

for x ∈ pE (note that κE = κ), and by α and χ on Π and the
Teichmüller lifts of κ∗ (up to a slight explicit sign tweak).

The main difficulty is when n = pr , because then σ is primitive,
very hard to describe !



4) The Langlands correspondence for simple cuspidals :
spaci the case of GL(n).

Main information :

LLC preserves L- and ε-factors for pairs. In particular, if Ψ is a
non-trivial character of F and µ a character of F ∗, we have

ε(µπ, s,Ψ) = ε(µσ, s,Ψ).

Looking at the exponent of q−s , we obtain

Sw(σ) = 1.

Also the central character ωπ of π corresponds to det(σ) via class
field theory (ωπ is trivial on 1 + pF , given by χ on O∗F , by αn on π).



4) The Langlands correspondence for simple cuspidals :
spaci the case of GL(n).

Moreover σ with Sw(σ) = 1 is determined, as is π, by few data,
det(σ) and ε(µσ, s,Ψ) for tame µ. Taking Ψ to be trivial on pF
and given by ψ on OF , then one computes ε(µσ, s,Ψ) in terms of
$,α, χ, µ.

When n is prime to p, one checks that the above description gives
the answer (Adrian and Liu 2016).

When n is a power of p, Sw(σ) = 1 implies that σ is indeed
primitive. Let G be the image of σ and G1 its wild inertia
subgroup. By work of H. Koch in the 1970’s, G1 is a Heisenberg
type group and there is a minimal Galois tame extension E/F such
that the restriction σE to E becomes induced from degree p
extensions (n2 of them actually), equivalently is stable by twisting
by an order p character.



4) The Langlands correspondence for simple cuspidals :
spaci the case of GL(n).

The main tools for Bushnell & H. are the theory of base change
(Arthur & Clozel) and explicit tame versions (Bushnell & H.).

For a cyclic extension K/F , base change constructs the procedure
parallel to restriction to WK on the Weil group side, but
independently of that side.

B. & H. determine E/F using tame base change, and the
projective representation attached to σE using character twists.
They find E/F as an explicit totally ramified extension of degree
n + 1, and explicit equations for the inducing extensions E ′/E .



4) The Langlands correspondence for simple cuspidals :
spaci the case of GL(n).

Imai and Tsushima proceed differently. Motivated by B. & H. and
their own work on Deligne-Lusztig varieties, they guess G as a
group, and make it act on a curve over κ. Using an Artin-Schreier
sheaf attached to ψ, they get a representation of G on its
cohomology. Then they produce G as a quotient of WF and check
that the representation thus obtained is the right one.



4) The Langlands correspondence for simple cuspidals :
spaci the case of Sp(2n)

• Notation as in Section 3.

• Hypothesis : char(F)=0.

Arthur associates to a cuspidal (more generally, a discrete series) π
for G = Sp(2n,F ) a morphism φ = φ(π) of WF × SL(2,C) into
Ĝ = SO(2n + 1,C), up to conjugation by Ĝ , with the
Ĝ -irreducibility condition that φ is the direct sum of inequivalent
irreducible orthogonal representations φ1, . . . , φr . The discrete
series with the same parameter φ form an L-packet L(φ) with 2r−1

elements. Given a �Whittaker datum�, the L-packet contains a
unique element with a corresponding Whittaker model.



4) The Langlands correspondence for simple cuspidals :
spaci the case of Sp(2n)

Question : Assume π simple. Can we describe φ ?

1. φ is trivial on SL(2,C). That is easy, because π has a
Whittaker model. Indeed, if φ is not trivial on SL(2,C), the
element in L(φ) with a Whittaker model cannot be
supercuspidal (Mœglin, Xu).

2. r = 1 or 2. In fact, φ is either irreducible, or is the sum of a
character and an irreducible representation of dimension 2n
(Oi).That is hard, and uses the full strength of Arthur’s
construction via endoscopy and twisted endoscopy.



4) The Langlands correspondence for simple cuspidals :
spaci the case of Sp(2n)

Two different outcomes :

I p odd (Oi) : φ is reducible (indeed there is no irreducible
orthogonal representation of WF with odd dimension > 1), in
fact r = 2. The two irreducible components are explicitly
determined by the character λ which induces π. One is a
character, and the other, of dimension 2n, is in fact the
parameter attached to a simple cuspidal for GL(2n,F ),
corresponding to the same choices of $ and ψ.

I p = 2 (H. for F = Q2 using results of Adrian & Kaplan, H. &
Oi in general) : φ is irreducible, and is the representation
attached to a simple cuspidal for GL(2n + 1,F ), which is
explicited from the data defining λ, and also corresponds to
the same choice of $ and ψ.



4) The Langlands correspondence for simple cuspidals :
spaci the case of Sp(2n)

Remarks :

1. Arthur in fact does not give φ directly, but the representations
πi of general linear groups corresponding to the φi ’s, and
indeed we use his endoscopic and twisted endoscopic
character relations to get a hold on the πi ’s, not on φ directly.

2. When p is odd, Oi also treats split special orthogonal groups.
We have now completed the case p=2, using the approach of
Adrian, and computations by Adrian and Kaplan.

3. The construction of Gross & Reeder has been generalized by
Reeder & Yu to some (tame) non-split groups. When p is
odd, Oi treats tamely ramified (non-split) special orthogonal
groups, and also unramified unitary groups. When p = 2,
unramified non-split special orthogonal groups and unramified
unitary groups remain to be treated.



4) The Langlands correspondence for simple cuspidals :
spaci the case of Sp(2n)

Let us give a bit of (simplified) detail on how Property 2 is proved.

Assume the component φi has dimension ni . There is an
�endoscopic group� H of G with L-group (nearly) the product of
the O(ni ,C). Then φ factors through the L-group of H, hence a
parameter φ′ for H and a corresponding packet L(φ′). Arthur has
shown that, for a regular semisimple element g of G , there is an
endoscopic character relation equating a certain linear combination
(with signs as coefficients) of the characters at g of the elements
of L(φ) to a linear combination (with �transfer factors� as
coefficients) of the characters of the elements of L(φ′) at the
�norms� of g . Oi selects nice elements g (which he calls �affine
generic�) and shows that at some such g the linear combination
for G does not vanish. It follows that the linear combination for H
does not vanish. But the characteristic polynomial of a norm of a
nice g is irreducible (of degree 2n), which imposes r = 1,
n1 = 2n + 1, or r = 2, n1 = 1 and n2 = 2n.


