Simple cuspidals and the Langlands correspondence

BIRS Workshop in Oaxaca

November 30, 2022

Guy Henniart

Laboratoire de Mathématiques d'ORSAY Université Paris-Saclay, CNRS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Plan of the talk

- 1) Introduction
- 2) Simple cuspidals for GL(n, F)
- 3) Simple cuspidals for Sp(2n, F)
- 4) The Langlands correspondence for simple cuspidals

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1) Introduction

Let F be a non-Archimedean locally compact field, and G a split reductive group over \mathbb{Z} .

I shall focus on cuspidal (irreducible, complex) representations of G(F). They are the building blocks in the theory of smooth representations of G(F).

From Stevens's lectures, you know that a general way to construct them is via induction from an open compact mod. centre subgroup of G.

Actually for any G where all the cuspidals have been constructed, they are so obtained, and in a precise way. That is the case for GL(n) (Bushnell & Kutzko), classical groups when the residue characteristic p of F is odd (Stevens et al.), and general G provided p is large enough (Yu, Fintzen).

1) Introduction

In 2010, Gross & Reeder invented the simple cuspidals. They exist for any (split) G, and are given by an easy construction which is completely uniform across G and p. For GL(n) they are special cases of a construction due to Carayol in the 1970's.

I shall first describe them for GL(n) and Sp(2n), then tell what they give through the local Langlands correspondence, which attaches to a cuspidal for G(F) a morphism of the Weil group W_F of F into the dual group \hat{G} of G, which is $GL(n, \mathbb{C})$ when G = GL(n) and $SO(2n + 1, \mathbb{C})$ when G = Sp(2n).

2) Simple cuspidals for GL(n, F)

General notation :

- \mathcal{O}_F is the ring of integers of F.
- p_F its maximal ideal.

•
$$\kappa = \mathcal{O}_F/\mathfrak{p}_F$$
, $q = \operatorname{card}(\kappa) = p^f$.

- ϖ a uniformizer of F, $\mathfrak{p}_F = \varpi \mathcal{O}_F$.
- ψ a non-trivial character of κ .

Notation for the general linear group :

G = GL(n, F) (n > 1): linear automorphisms of F^n , with canonical basis e_1, \ldots, e_n . Identify F^* with the centre of G.

•
$$K = GL(n, \mathcal{O}_F).$$

- *I* lwahori subgroup : matrices in *K* with upper triangular reduction mod. p_{*F*}.
- $N_G(I) = \langle \Pi \rangle I$, where $\Pi(e_i) = e_{i+1}$ for i = 1, ..., n-1, and $\Pi(e_n) = \varpi e_1$. Note that $\Pi^n = \varpi \cdot id$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2) Simple cuspidals for GL(n, F)

- *I*¹ the pro-*p* lwahori : matrices in *I* with unipotent reduction mod. p_F (i.e. diagonal entries in 1 + p_F).
- I^2 consists of matrices x in I^1 with $x_{i,i+1} \in \mathfrak{p}_F$ for $i = 1, \ldots, n-1$ and $x_{n,1} \in \mathfrak{p}_F^2$.

•
$$I^1/I^2 = \kappa^n$$
 : send $x \in I^1$ to

$$(x_{1,2} \operatorname{mod.} \mathfrak{p}_F, \ldots, x_{n-1,n} \operatorname{mod.} \mathfrak{p}_F, x_{n,1}/\varpi \operatorname{mod.} \mathfrak{p}_F).$$

ψ defines a character (ψ,...,ψ) of κⁿ, hence a character λ_ψ of I¹.

Theorem

The intertwining set of λ_{ψ} in G is $J = \langle \Pi \rangle F^* I^1$, which is also its normalizer.

2) Simple cuspidals for GL(n, F)

Corollary

If λ is any character of J extending λ_{ψ} , then $\operatorname{ind}_{J}^{G} \lambda$ is a cuspidal representation of G.

Remarks.

- Given ψ, λ is determined by its value on Π, and its restriction to U_F, which is trivial on 1 + p_F, hence amounts to a character of κ*.
- 2. Varying ψ and λ , we get the simple cuspidals of G.
- 3. We may choose different non-trivial characters ψ_1, \ldots, ψ_n on each coordinate of κ^n , and get cuspidals in the same fashion, but under the action of I/I^1 they are equivalent to the preceding ones. Similarly if we change ϖ .

3) Simple cuspidals for Sp(2n)

 $\widetilde{G}=\operatorname{GL}(2n,F)$, and put \sim on the previous notation for $\widetilde{G}.$

Notation for the symplectic group :

 $G = \operatorname{Sp}(2n, F)$: subgroup of matrices in \widetilde{G} preserving the alternating form *b* with antidiagonal matrix with coefficient $b(e_i, e_j) = (-1)^{i-1}$ for i + j = 2n + 1.

• The centre of G is the group μ of square roots of 1 in F^* .

•
$$K = G \cap \widetilde{K} = \operatorname{Sp}(2n, \mathcal{O}_F).$$

• $I = G \cap \widetilde{I}, I^1 = G \cap \widetilde{I^1}, I^2 = G \cap \widetilde{I^2}, I^1/I^2 = \kappa^{n+1}$ sending

 $x \mapsto (x_{1,2} \mod \mathfrak{p}_F, \dots, x_{n,n+1} \mod \mathfrak{p}_F, x_{2n,1}/\varpi \mod \mathfrak{p}_F).$

Let λ_{ψ} be the character of I^1 given by ψ on each coordinate of κ^{n+1} .

3) Simple cuspidals for Sp(2n)

Theorem

The intertwining set of λ_{ψ} in G is $J = \mu I^1$, which is also its normalizer.

Corollary

If λ is any character of J extending λ_{ψ} , $\operatorname{ind}_{J}^{G} \lambda$ is a cuspidal representation of G.

- 1. Given ψ , λ is determined by its value on μ , given by a sign if p is odd, and trivial if p = 2 (then I^1 contains μ).
- As for G̃, we may allow different characters on each coordinate of κⁿ⁺¹. It does not give new cuspidals when p = 2, but it gives twice more when p is odd, because κ* modulo squares has order 2.
- 3. The cuspidals in 2) are the simple cuspidals of G.

- F^s a separable algebraic closure of F.
- W_F its Weil group.
- Other notation as in section 2.

The local Langlands conjecture (Laumon, Rapoport & Stuhler when char(F) = p, Harris & Taylor, H., Scholze, when char(F) = 0) attaches to a cuspidal for GL(n, F) (up to isomorphism) an irreducible *n*-dimensional representation of W_F (up to isomorphism), and conversely.

Question : Let n > 1. For a simple cuspidal π for GL(n, F), determined by ϖ , ψ , $\alpha = \lambda(\Pi)$ and the character χ of κ^* yielding the restriction of λ to U_F , can we describe the representation σ of W_F , of dimension n, associated to π ?

Answer : yes, but not easy. Bushnell & H. 2013 give an explicit description of the projective representation given by σ , Imai & Tsushima 2015 give a geometric realization of σ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Great difference if p divides n or not. The extreme cases are (p, n) = 1 and $n = p^r$ for some r > 0. The general case is a mix of the two.

For (p, n) = 1, Π generates a totally ramified tame extension E of F, of degree n; we can see E in F^s , W_E as an index n subgroup of W_F , and σ is induced from a character of W_E , equivalently of E^* , which sends

 $1 + x \mapsto \psi(x/\varpi \mod \mathfrak{p}_E),$

for $x \in \mathfrak{p}_E$ (note that $\kappa_E = \kappa$), and by α and χ on Π and the Teichmüller lifts of κ^* (up to a slight explicit sign tweak).

The main difficulty is when $n = p^r$, because then σ is **primitive**, very hard to describe !

Main information :

LLC preserves L- and ε -factors for pairs. In particular, if Ψ is a non-trivial character of F and μ a character of F^* , we have

$$\varepsilon(\mu\pi, s, \Psi) = \varepsilon(\mu\sigma, s, \Psi).$$

Looking at the exponent of q^{-s} , we obtain

$$Sw(\sigma) = 1.$$

Also the central character ω_{π} of π corresponds to det (σ) via class field theory (ω_{π} is trivial on $1 + \mathfrak{p}_{F}$, given by χ on \mathcal{O}_{F}^{*} , by α^{n} on π).

Moreover σ with $Sw(\sigma) = 1$ is determined, as is π , by few data, det(σ) and $\varepsilon(\mu\sigma, s, \Psi)$ for tame μ . Taking Ψ to be trivial on \mathfrak{p}_F and given by ψ on \mathcal{O}_F , then one computes $\varepsilon(\mu\sigma, s, \Psi)$ in terms of $\varpi, \alpha, \chi, \mu$.

When n is prime to p, one checks that the above description gives the answer (Adrian and Liu 2016).

When *n* is a power of *p*, $Sw(\sigma) = 1$ implies that σ is indeed primitive. Let *G* be the image of σ and *G*₁ its wild inertia subgroup. By work of H. Koch in the 1970's, *G*₁ is a Heisenberg type group and there is a minimal Galois tame extension E/F such that the restriction σ_E to *E* becomes induced from degree *p* extensions (n^2 of them actually), equivalently is stable by twisting by an order *p* character.

The main tools for Bushnell & H. are the theory of base change (Arthur & Clozel) and explicit tame versions (Bushnell & H.).

For a cyclic extension K/F, base change constructs the procedure parallel to restriction to W_K on the Weil group side, but independently of that side.

B. & H. determine E/F using tame base change, and the projective representation attached to σ_E using character twists. They find E/F as an explicit totally ramified extension of degree n + 1, and explicit equations for the inducing extensions E'/E.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Imai and Tsushima proceed differently. Motivated by B. & H. and their own work on Deligne-Lusztig varieties, they guess G as a group, and make it act on a curve over κ . Using an Artin-Schreier sheaf attached to ψ , they get a representation of G on its cohomology. Then they produce G as a quotient of W_F and check that the representation thus obtained is the right one.

- Notation as in Section 3.
- Hypothesis : char(F)=0.

Arthur associates to a cuspidal (more generally, a discrete series) π for $G = \operatorname{Sp}(2n, F)$ a morphism $\phi = \phi(\pi)$ of $W_F \times \operatorname{SL}(2, \mathbb{C})$ into $\widehat{G} = \operatorname{SO}(2n+1, \mathbb{C})$, up to conjugation by \widehat{G} , with the \widehat{G} -irreducibility condition that ϕ is the direct sum of inequivalent irreducible orthogonal representations ϕ_1, \ldots, ϕ_r . The discrete series with the same parameter ϕ form an *L*-packet $L(\phi)$ with 2^{r-1} elements. Given a «Whittaker datum», the *L*-packet contains a unique element with a corresponding Whittaker model.

Question : Assume π simple. Can we describe ϕ ?

- 1. ϕ is trivial on $SL(2, \mathbb{C})$. That is easy, because π has a Whittaker model. Indeed, if ϕ is not trivial on $SL(2, \mathbb{C})$, the element in $L(\phi)$ with a Whittaker model cannot be supercuspidal (Mœglin, Xu).
- 2. r = 1 or 2. In fact, ϕ is either irreducible, or is the sum of a character and an irreducible representation of dimension 2n (Oi).That is hard, and uses the full strength of Arthur's construction via endoscopy and twisted endoscopy.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Two different outcomes :

- p odd (Oi) : φ is reducible (indeed there is no irreducible orthogonal representation of W_F with odd dimension > 1), in fact r = 2. The two irreducible components are explicitly determined by the character λ which induces π. One is a character, and the other, of dimension 2n, is in fact the parameter attached to a simple cuspidal for GL(2n, F), corresponding to the same choices of ∞ and ψ.
- p = 2 (H. for F = Q₂ using results of Adrian & Kaplan, H. & Oi in general) : φ is irreducible, and is the representation attached to a simple cuspidal for GL(2n + 1, F), which is explicited from the data defining λ, and also corresponds to the same choice of ϖ and ψ.

Remarks :

- 1. Arthur in fact does not give ϕ directly, but the representations π_i of general linear groups corresponding to the ϕ_i 's, and indeed we use his endoscopic and twisted endoscopic character relations to get a hold on the π_i 's, not on ϕ directly.
- When p is odd, Oi also treats split special orthogonal groups. We have now completed the case p=2, using the approach of Adrian, and computations by Adrian and Kaplan.
- 3. The construction of Gross & Reeder has been generalized by Reeder & Yu to some (tame) non-split groups. When p is odd, Oi treats tamely ramified (non-split) special orthogonal groups, and also unramified unitary groups. When p = 2, unramified non-split special orthogonal groups and unramified unitary groups remain to be treated.

Let us give a bit of (simplified) detail on how Property 2 is proved. Assume the component ϕ_i has dimension n_i . There is an «endoscopic group» H of G with L-group (nearly) the product of the $O(n_i, \mathbb{C})$. Then ϕ factors through the *L*-group of *H*, hence a parameter ϕ' for H and a corresponding packet $L(\phi')$. Arthur has shown that, for a regular semisimple element g of G, there is an endoscopic character relation equating a certain linear combination (with signs as coefficients) of the characters at g of the elements of $L(\phi)$ to a linear combination (with «transfer factors» as coefficients) of the characters of the elements of $L(\phi')$ at the «norms» of g. Oi selects nice elements g (which he calls «affine generic») and shows that at some such g the linear combination for G does not vanish. It follows that the linear combination for Hdoes not vanish. But the characteristic polynomial of a norm of a nice g is irreducible (of degree 2n), which imposes r = 1, $n_1 = 2n + 1$, or r = 2, $n_1 = 1$ and $n_2 = 2n$.