3. Higgs bundles for non-constant groups

af. Non-Abelian Hodge correspondence

Non-Abelian Hodge theory sets up a correspondence

G-local systems

with completely

reducible

monodromy

space over X

How (T1X; G)//

recall that G-e = G-e

How (ToX; G) / G: recall that G.e = G.e

Caffine variety / G)

X: nonsingular complex projective variety

G: complex reductive affine algebraic group

Higgs Field: D: E → Nx & E

Observations

(i) if rk(E) = 1, a Higgs field is just a (holomorphic) 1-form 0 6 2 8 ELL(E)

E* @ E ~ ~ Ox if E is

 $H^1(X;\mathbb{C}^*)$ If dim X = 1, we have (X compact, connected)

where
$$g = jenus of X$$
.

Hower

 $G = jenus of X$.

Exponential exact sequence (dim X = 1) $\rightarrow \ \underline{\mathbb{Z}}_{x} \longrightarrow \underline{\mathbb{Z}}_{x} \xrightarrow{\epsilon x \rho} \ \underline{\mathbb{C}}_{x}^{*} \longrightarrow$ exp(f): U -> C+ flat line bundles $0 \longrightarrow H^{1}(X; \mathbf{Z}_{X}) \longrightarrow H^{1}(X; \mathbf{G}_{X}) \longrightarrow H^{1}(X; \mathbf{C}_{X}^{*}) \xrightarrow{O} H^{1}(X; \mathbf{Z}_{X})$

The exactness of

The exactness of
$$0 \rightarrow H^{1}(X; \mathbb{Z}_{x}) \rightarrow H^{1}(X; \mathbb{Z}_{x}) \rightarrow H^{1}(X; \mathbb{Z}_{x})$$

Tac
$$(X) := \log^{-1}(0) \simeq \frac{H^1(X; 0_X)}{H^1(X; \frac{0_X}{2_X})} \simeq \frac{Q^2}{2^{\frac{1}{2}}}$$

Harmonic forms H1(X;Cx) We seek to understand the wap d-closed 1-forms HICX; Ox) d-exact 1-forms (d-closed (0,1)-forms 10-exad Cont-forms $H^{1}(X;O_{X}) \simeq H^{0,1}(X) \simeq Harm^{0,1}(X) = \left\{\beta \in \Omega^{1}(X;C) \mid \Delta_{5}\beta = 0\right\}$ wherever the constraints of the second states of the

Kähler identities and the Hodge decomposition theorem

Recall that
$$d = \partial + \overline{\partial}_{i} = d^{10} + d^{0.1}$$
 (for 1-Forms)

and that $\Omega^{\circ}_{co}(X;Cl = \Omega^{\circ}_{co}(X;Cl \oplus \Omega^{\circ}_{co}(X;Cl))$

The Kähler identities on X imply that

$$\Delta_{L} = 2 \Delta_{\overline{\partial}}$$

In particular $\omega = \alpha + \beta$ satisfies $\Delta_{L} = 0$ iff

(no) $(0,1)$ $\Delta_{\overline{\partial}} \propto = 0$ and

 $X \approx h l co$

Hodge decomposition: $H^{1}(X; \underline{G}_{x}) \simeq H^{1}_{IR}(X; \underline{G}) \simeq H^{1,0}(X) \oplus H^{0,1}(X)$ $\downarrow \text{ Projection } \simeq H^{0}(X; \Omega_{x}^{1}) \oplus H^{1}(X; \Omega_{x}^{1})$ $H^{1}(X; \Omega_{x}^{1}) \times H^{1}(X; \Omega_{x}^{1}) \oplus H^{1}(X; \Omega_{x}^{1})$

The Abdian case of the NAHC (in dimension 1)

homeo u

Six R (polar decomposition)

Six R (polar decomposition)

homeo

Observation

The rank1 case of the NAHT of a corre X yields a homeomorphism:

- p these two moduli spaces this is the cotangent bundle are homeomorphic but of Jac(X)

not isomorphic as algebraic varieties

or complex analytic manifolds

- Jac(X) x H°(X; SLX)

this is the cotangent bundle

of Jac(X)

(Dolbeanlt space)

The higher rank case Building on work by Kobayashi, Hitchin, Donaldson, Corlette and Simpson r=2, dim X=1 r, dim X arbitrary have generalized Hodge theory to the higher rack case C* replaced

| Flat rector burdles | = ? | { semistable Higgs burdles } of rank r & degree 0 }

Harmonic bundles

A hormonic bundle is a quadraple
$$(E, h, A, \psi)$$

where:
 $E \rightarrow X$ is a C^{∞} complex vector bundle

of
$$\xi = \Omega_{eco}(X; Herm (E, h))$$

such that $\int F_A + \frac{1}{2} [Y_A Y] = 0$
in equations $d_A Y = 0$

Hitchin equations
$$d_{4} y = 0$$

$$d_{4} y = 0$$

From harmonic bundles to Higgs and flat bundles { harmonic bundles { (E, h, A, Y) } $\mathcal{E} = \left(E, L_{\mu}^{0,1} \right)$ $\Theta = \psi^{1,0}$ D=Aty (flat vector bundles) Higgs bundles with }
varishing Chern classes }
(E, D) $F_{A} + 2[4,4] = 0$ (a) $F_{0} = 0$ day = 0 $\begin{cases} \lambda_{n} \psi = 0 \end{cases} \iff \begin{cases} \lambda_{n}^{0/1} \partial = 0 \\ \partial_{n} \partial = 0 \end{cases}$ $F_{A} + \frac{1}{2}[Y_{A}Y] = 0$ $F_{A} + [\theta_{A}\theta^{*}] = 0$ $F_{A} + [\theta_{A}\theta^{*}] = 0$ $F_{A} + [\theta_{A}\theta^{*}] = 0$ dry = 0 => (E,D) has
completely
reducible
holonomy

Harmoric metrics (i) on a flot burdle (E,D): a metric h induces a decomposition D= A + 4 with A h-unitary and of Hermitian (satisfying FA+ 2 [tax) = 0 and day = 0) Theorem (Donaldson - Corlette) If D has completely reducible holorony, then (E,D) admits h such that day =0

c.c. (E, 7) comes from a harmonic bundle.

Harnoric metrics

(ii) on a Higgs burdle (ξ,θ):

Since ξ is holomorphiz, a metric h determines a Chern connection A, which is unitary, and a Hermitian 1-form $\psi := \theta + \theta^{*h}$ (satisfying $d_{A}\psi = 0$ and $d_{A}^{*h}\psi = 0$).

Theorem (Hitchin-Simpson)

If $(\xi, \theta) = (\xi_1, \theta_2) \oplus \dots \oplus (\xi_k, \theta_k)$ with

each (ξ_i, θ_i) stable with vanishing Chern classes

then (ξ, θ) admits h such that $F_A + [\theta_1 \theta_2^{*h}] = 0$ i.e. (ξ, θ) comes from a harmonic bundle.

Stubility for degree O Higgs bundles

Let (E, O) be a degree O Higgs burdle.

Then (ξ, θ) is called stable if $\forall (04 \exists \xi \xi)$ such that $\theta(\exists) \subset \mathfrak{N}_{\chi} \otimes \exists$, one has deg $\exists < 0$.

Examples (i) rank 1 Higgs bundles (Z,
$$\Theta$$
)

(ii) $E = \int_{-\infty}^{\infty} \Omega_{x}^{n}$, $\Theta = \begin{pmatrix} 0 & 91 \\ 1 & 0 \end{pmatrix}$

$$\Theta: \mathcal{L}_{\times}^{1/2} \oplus \boxed{\mathcal{L}_{\times}^{3/2}} \oplus \mathcal{L}_{\times}^{3/2} \oplus \mathcal{L}_{\times}^{3/2})$$

$$q_{1} \in \Gamma(\mathcal{L}_{\times}^{-1/2}, \mathcal{L}_{\times}^{3/2}))$$

by. The non-constart case g -> X a group burdle on X G: complex reductive group A principal G-Higgs burdle 9 - Higgs torsor is a pair (ξ, θ) is a pair (E, D) · E is a principal G-burdle · Eis a g-torset · DE H°(X; Q ad (E)) . OEHO(X; D, wad(E)) such that [On 0] = 0 such that-[ord] =0 $(ad(E) = (E \times Lic(g))/q$ (al(E) = (E x Lie (G))/G Example G=GL(n,G) adle/co End(V)

Eco V --- classical Higgs Example g = X x G) -> principal ulla

Relation to equivariant principal burdles

Assume that $g = g_p := (\tilde{X} \times G) / For y : T_n X \to Aut(G)$.

[the only case in which we can have a correspondence with trusted local systems]

Define a cover $X_{\ell} \xrightarrow{f} X$ by $T_{n}X_{\ell} := Ker \varphi \land T_{n}X$.

Galois cover, Finite if $F:=I_{n} \xrightarrow{\varphi} is Finite$ That (X_{θ})

prof = Gxp = X1 x G because

Taxy acts trivially on G

$$E \xrightarrow{\tau_{f}} E \qquad \tau_{n_{F}} = i \lambda_{E}$$

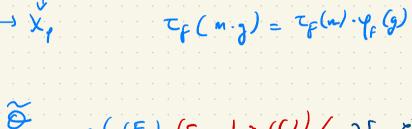
$$\tau_{f,f_{c}} = \tau_{f_{n}} \tau_{f_{c}}$$

$$X_{q} \xrightarrow{\mathsf{F}} X_{q}$$

$$\theta \in H^{\circ}(X, \Omega_{1}^{1} \otimes aL(E))$$

1

12



1

$$V_{X_{1}} = V_{X_{2}} = V_{X_{3}} = V_{X_{4}} = V_{X_{5}} = V$$

Equivariant NAHC

flat vector burdles

Higgs bundles with

ravishing Chetn classes

nd study the existence of F-invariant solutions to Hitchin's equations

Stability (à la Ramanathan, when din X = 1) An F-equivariant principal G-Higgs burdle (E, J, T) or X, is called stable if, for all F-invationt parabolic subgroup PCG and all F-equivariant reduction of structure group s: Xp -> E/p such that O(Tx,) c ad(s'E), deg ak (Ep) < 0 OK in all out examples

Example (no stability issue here) Recall the case of a Riemann surface with involution (7,0): o acts on C via 3 132 and we can both at twisted local systems for the non-constant group go (Yx C*)/co> [anti-invariant rank 1 local systems] NAHE on Y: {flat C* -bundles () [rank 1 line bundles of degree of with a holomorphic 1-form } 5-twisted Golocal systems on X

Observations

(i) go-Higgs torsors are not classical Higgs bundle on X (as opposed to the case of invariant local systems or X, giving rise to local systems and classical Higgs bundles on X)

(ci) The NAME on X/62 yields a homoonorphism

$$\left(\begin{array}{c}
\text{Hom}(\mathbb{T}_{\lambda} \times_{i} \mathbb{C}^{*}_{\lambda} \times_{o>})/\\
\mathbb{C}^{*}
\end{array}\right) \simeq \mathbb{T}^{*} \operatorname{Bun}_{g} = \mathbb{T}^{*} \operatorname{Joc}(X)/\\
\mathbb{C}^{*}$$

which is a twisted version How (Ta X; C*)

(iii) When the space X is allowed to be an orbifold, then the total space of the cover Xq -> X is not a manifold in general. So, to apply the equivariant version of the NAHC, one needs to pass to a higher degree cover, which is not canonical in general. Applications of this point of riew include the study of Hitchin components for cocompact Fuchsian groups (CPGL(2,1R).

Daniele Alessandrini · Gye-Seon Lee · Florent Schaffhauser

Hitchin components for orbifolds