
LECTURE 3: COMPUTATIONAL METHODS

MARC LEVINE

Abstract. We discuss computing quadratic Euler characteristic via Hodge

cohomology and the Jacobian ring, as well as using normalizer localization to

compute degrees of quadratic Euler classes.

1. Introduction

As they carry more information than the classical Z-valued invariants, the qua-
dratic invariants are often more difficult to compute. In this lecture, we will go over
some of the computational tools that have been developed to enable such computa-
tions. The methods include the development of a calculus of characteristic classes
of vector bundles with values in Witt sheaf cohomology, algebraic computations of
the quadratic Euler characteristics of smooth hypersurfaces in Pn, and localization
techniques for computing Euler classes and virtual fundamental classes. As a fur-
ther example we look at a quadratic count of twisted cubic curves on hypersurfaces
and complete intersections in a projective space.

2. The motivic Gauß-Bonnet theorem and computations of the
quadratic Euler characteristic

We need a bit a background about the motivic stable homotopy category SH(k)
a field k. SH(k) is a triangulated, symmetric monoidal category, with product ∧
and with translation functor ΣS1 := −∧ S1. Gm-suspension ΣGm is also invertible
and P1-suspension ΣP1 is the same as ΣS1ΣGm = ΣGmΣS1 . One defines the family
of suspension operations

Σa,b := Σa−bS1 ΣbGm .

We have the category of pointed spaces over k, Spc•(k), this being the category of
pointed simplicial presheaves on Smk, with the Yoneda embedding Smk → Spc•(k)
sending X to the representable presheaf X+ of sets, with an added base-point.
There is a P1-suspension functor

Σ∞P1(−)+ : Spc•(k)→ SH(k); X 7→ Σ∞P1X
in particular, we have Σ∞P1X+ ∈ SH(k) for each X ∈ Smk, but also objects such as
Σ∞P1X/X \Z for Z ⊂ X an arbitrary closed subset. The unit for the smash product
∧ is the motivic sphere spectrum Sk := Σ∞Spec k+.

Each E ∈ SH(B) defines a bi-graded cohomology theory on Spc•(k) by setting

Ea,b(X ) := HomSH(B)(Σ
∞
P1X ,Σa,bE),

giving the functor
Ea,b : Spc•(k)op → Ab.
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For X = X+ this is usual E-cohomology, Ea,b(X), and for X = X/X \Z, this gives

the E-cohomology with supports Ea,bZ (X), with the long exact sequence

. . .→ Ea,bZ (X)→ Ea,b(X)→ Ea,b(X \ Z)
δ−→ Ea+1,b

Z (X)→ . . .

We usually work with commutative rings E in SH(k), with unit u : Sk → E and
product E ∧ E → E . This makes E∗,∗(X) := ⊕a,bEa,b(X) into a bi-graded ring with
unit 1EX ∈ E0,0, 1X := p∗X(u), pX : X → Spec k the structure map.

We will work with two special types of E in SH(k): the oriented spectra and the
SL-oriented spectra; these “simplify” the E-cohomology in the following way. There
is a canonical isomorphism

Σ∞P1(Ar ×X/(Ar \ {0})×X) ∼= Σ2r,rX+

giving the canonical isomorphism, for V → X the trivial rank r vector bundle on
X,

Ea+2r,b+r
0V

(V ) ∼= Ea,b(X)

If E is oriented, one has canonical and natural isomorphisms

Ea+2r,b+r
0V

(V ) ∼
φV // Ea,b(X)

for arbitrary V → X (r = rankV ). If E is SL-oriented, one has canonical and
natural isomorphisms

Ea+2r,b+r
0V

(V ) ∼
φV,ρ
// Ea,b(X)

for each isomorphism ρ : detV
∼−→ OX (if such exists). An oriented theory is also

SL-oriented, and the isomorphism φV,ρ is independent of ρ.

Definition 2.1. Let E be an SL-oriented spectrum. L → X a line bundle on
X ∈ Smk. Let L be the invertible sheaf of section of L. Define the L-twisted
E-cohomology by

Ea,b(X;L) := Ea+2,b+1
0L

(L)

Note that Ea,b(X;L) = Ea,b(X) if E is oriented.
An SL-oriented theory E admits proper pushforward maps similar to those we

have seen for C̃H: given a proper morphism f : Y → X in Smk, of relative
dimension d, and L an invertible sheaf on X, we have

f∗ : Ea,b(Y, f∗L ⊗ ωY/k)→ Ea−2d,b−d(X,L)..

with (gf)∗ = g∗f∗, and a projection formula if E is a commutative ring spectrum:
f∗(f

∗(x) ·y) = x ·f∗(y). Thus, we also have Euler classes eE(V ) ∈ E2r,r(X,det−1 V )
for V → X a rank r vector bundle

eE(V ) = s∗s0∗(1X)

for s : X → V any section. For E oriented, we have f∗ as above, without needing
any twists, and in addition to the Euler class, we have all the Chern classes cEi (V ) ∈
E2i,i(X), with cEr (V ) = eE(V ) for r = rank(V ).

We can now state a version of the motivic Gauß-Bonnet theorem. Recall that
χ(X/k) ∈ GW(k) is defined by taking the categorical Euler characteristic

χSH(k)(Σ
∞
P1X+) ∈ EndSH(k)(Sk)

for the dualizable object Σ∞P1X+ of the symmetric monoidal category SH(k), and
then using Morel’s theorem, giving the isomorphism GW(k) ∼= EndSH(k)(Sk).
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Theorem 2.2. Let E be an SL-oriented ring spectrum with unit u : S → E, and
let pX : X → Spec k be a smooth proper k-scheme. Applying u to χ(X/k) ∈
EndSH(k)(Sk) gives u∗(χ(X/k)) ∈ E0,0(k) = HomSH(k)(Sk, E). Then

u∗(χ(X/k)) = pX∗(e
E(TX/k))

Examples 2.3. Take pX : X → k smooth and proper of dimension n.

1. E = HZ representing motivic cohomology. HZ is an oriented ring spectrum and
HZ2n,n(X) = CHn(X). The unit map uHZ : End(Sk)→ HZ0,0(k) is the rank map
rank : GW(k)→ Z, and we thus have

rank(χ(X/k)) = uHZ∗(χ(X/k)) = pX∗(e
CH(TX/k)) = degk(cCH

n (TX/k))

in other words, rank(χ(X/k)) = χtop(X).

2. E = H̃Z representing “Milnor-Witt motivic cohomology”, H̃Z is an SL-oriented

ring spectrum and H̃Z
2n,n

(X,L) = C̃H
n
(X;L). u

H̃Z induces the identity map

GW(k) = End(Sk)→ H̃Z
0,0

(k) = C̃H
n
(k) = GW(k), so

χ(X/k) = u
H̃Z∗(χ(X/k)) = ˜degk(eCW (TX/k))

3. H∗(−,W) is represented by the SL-oriented ring spectrum EM(W∗) via

EM(W∗)a,b(X;L) = Ha−b(X,W(L))

and we thus have

π(χ(X/k)) = uEM(W∗)∗(χ(X/k)) = ˜degk(eW(TX/k))

where π : GW(k)→W (k) is the canonical surjection.

4. E = KGL, representing algebraic K-theory KGLa,b(X) = K2b−a(X). KGL is
oriented and uKGL∗ induces the rank map GW(k)→ Z, so

χtop(X) = rank(χ(X/k)) = uKGL∗(χ(X/k)) = pX∗(e
K(TX/k))

The pushforward in K0 is defined by taking the derived pushforward of coherent
sheaves, then taking a resolution by locally free sheaves. For p : V → X a rank r
vector bundle, with 0-section s0 : X → V , we have s0∗(1X) = s0∗(OX), which has
the Koszul resolution

0→ Λrp∗V∨ → . . .→ Λjp∗V∨ → . . .→ p∗V∨ → s0∗(OX)→ 0

where V is the sheaf of sections of V , so

eK(V ) =

r∑
j=0

(−1)j [ΛjV∨]

and

pX∗(e
K(TX/k)) =

dimX∑
i,j=0

(−1)i+jdimkH
i(X,ΩjX/k)

that is

χtop(X) =

dimX∑
i,j=0

(−1)i+jdimkH
i(X,ΩjX/k)
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Let n = dimkX. We have the quadratic form qhdg on ⊕i,jHi(X,ΩjX/k)[j − i]
defined by composing the product

Hi(X,ΩjX/k)[j − i]⊗k Hn−i(X,Ωn−jX/k)[i− j]→ Hn(X,ΩnX/k)

with the canonical trace map

TrX/k : Hn(X,ΩnX/k)→ k

Theorem 2.4 (L.-Raksit). χ(X/k) = [qhdg] ∈ GW(k)

Proof. We apply the motivic Gauß-Bonnet formula to E = KQ, the ring spectrum
representing hermitian K-theory (K-theory of quadratic forms). The unit map
induces the identity

GW(k) = EndSH(k)(Sk)→ KQ0,0(k) = GW(k)

We then use the explicit known expressions for s0∗, s
∗
0 and pX∗ �

Remark 2.5. qhdg is a sum of hyperbolic forms for i 6= j, i + j < n and i < j,
i+ j = n,

qhdgi,j : Hi(X,ΩjX/k)[j − i]⊕Hn−i(X,Ωn−jX/k)[i− j]→ k

and in addition, in case n = 2m, the form

qhdgm,m : Hm(X,ΩmX/k)→ k

Thus, applying π : GW(k)→W (k), we have

π(χ(X/k)) =

{
0 ∈W (k) if n is odd

[qm,m] ∈W (k) if n = 2m is even

3. Explicit computations for a hypersurface

Let X ⊂ Pn+1 be a hypersurface of degree d, defined by a homogeneous polyno-
mial F ∈ k[X0, . . . , Xn+1]. We assume that d is prime to chark if chark > 0. We
have already seen the Jacobian ring

J(F ) := k[X0, . . . , Xn+1]/(∂F/∂X0, . . . , ∂F/∂Xn+1)

J(F ) is a graded ring with maximal non-zero degree (d− 2)(n+ 2). Write

∂F/∂Xi =

n+1∑
j=0

aijXj

and let eSS(F ) be the image in J(F )(d−2)(n+2) of det(aij); in fact J(F )(d−2)(n+2) =
k · eSS(F ) 6= {0}. Let ` : J(F ) → k be the projection on J(F )(d−2)(n+2) followed
by the isomorphism J(F )(d−2)(n+2)

∼= k sending eSS(F ) to 1. This gives us the
non-degenerate quadratic form on J(F )

qSS : J(F )→ k; qSS(x) = `(x2).

Carlson-Griffiths (and others) have defined isomorphisms

ψq : Hq(X,Ωn−qX )prim → J(F )d(q+1)−n−2

where Hq(X,Ωn−qX )prim = Hq(X,Ωn−qX ) if 2q 6= n, and if 2q = n,

Hq(X,ΩqX/k)prim = (chdg1 (OX(1))q)⊥ = {x ∈ Hq(X,ΩqX/k) | x·(chdg1 (OX(1))q) = 0}
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Here chdg1 (OX(1)) ∈ H1(X,Ω1
X/k) is the 1st Chern class, which can be defined by

applying the dlog map O×X → Ω1 to [OX(1)] ∈ H1(X,O×X). Let

qhdgSS (F ) : ⊕nq=0J(F )d(q+1)−n−2 → k

be the restriction of qSS .

Theorem 3.1 (L.-Pepin Lehalleur- Srinivas). Let X be a smooth hypersurface of
degree d in Pn+1, with d prime to chark if chark > 0. Then χ(X/k) is represented by

the quadratic form 〈−d〉·qhdgSS +(n+1/2)H if n is odd and by 〈d〉+〈−d〉·qhdgSS +(n/2)H
if n is even.

Exercises 1. Show again that χ(X/k) is hyperbolic if X is smooth and proper
over k of odd dimension, using Theorem 2.4.

2. Compute χ(X/k) for X = V (F ) ⊂ Pn+1, F =
∑n+1
i=0 aiX

d
i , using Theorem 3.1.

4. Localization in Witt-sheaf cohomology

Torus localization is a powerful technique for computing degrees of characteristic
classes. The basic idea is to endow a (smooth) k-scheme X with an action by a torus
T = Gnm and apply the Atiyah-Bott localization theorem (in this setting proven by
Edidin-Graham). First one needs to define the T -equivariant Chow groups. This is
done using an algebraic approximation of a contractible space ET on which T acts
freely, and then defining CH∗T (X) := CH∗(X×ET/T ) (roughly speaking). Each T -
equivariant vector bundle V → X defines a vector bundle V ×ET/T → X×ET/T
and thus has Chern classes

cTi (V ) ∈ CH∗T (X)

Taking X = Spec k, a T -equivariant vector bundle is just a representation ρ : T →
Autk(V ) on some k-vector space V . Letting xi = cT1 (πi), where πi : T → Gm =
Autk(k), we have

CH∗(BT ) := CH∗T (Spec k) = Z[x1, . . . , xn]

One can also define CHT
n (X) = CHdimX−n

T (X).

Theorem 4.1. Let i : XT → X be the inclusion of the fixed points. Then there is
a non-zero homogeneous polynomial P ∈ Z[x1, . . . , xn]d for some d > 0 such that

i∗ : CHT
∗ (XT )→ CHT

∗ (X)

is an isomorphism after inverting P .

Allied with this is the Bott residue theorem, which says, for an equivariant vector
bundle V → X, we have

i∗(c
T
i (i∗V )/cm(Ni)) = cTi (V )

after inverting perhaps a larger P . Here m is the codimenison of XT in X and Ni
is the normal bundle.

We would like to apply this to computations in equivariant Witt sheaf cohomol-
ogy, but there is a problem: the equivariant Euler classes eT (πi) are all zero, so
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H∗(BT,W) = W (k) concentrated in degree 0. Instead, we use a small enlargement
of Gm, namely, let N ⊂ SL2 be the normalizer of the torus

Gm = {
(
t 0
0 t−1

)
}

N is generated by this Gm, together with an additional element

σ :=

(
0 1
−1 0

)
Let e ∈ H2(BN,W) be the Euler class of the rank two vector bundle associated

to the representation N ⊂ SL2 ⊂ GL2. Then

H∗(BN,W)[1/e] = W (k)[e, 1/e]

In fact H∗(BN,W) is almost W (k)[e], except there is one extra element q ∈
H0(BN,W), which we won’t care about.

Replacing T with Nn, we have a nearly direct analog of the Atiyah-Bott local-
ization theorem and the Bott residue formula. Unfortunately, the localization will
in general kill the (very interesting) two-primary torsion in W (k), but will at least
let us get at the signature information coming from total orderings on k.

With Sabrina Pauli, we have applied this to compute the quadratic counts for
twisted cubics on hypersurfaces and complete intersections in a Pn. One has the
closure Hn of the locus of smooth twisted cubics in a suitable Hilbert scheme. Hn

is a smooth projective variety of dimension 4n, with universal bundle p : Cn →
Hn with map q : Cn → Pn. As for lines, we have the locally free sheaf Em,n =
p∗q
∗OPn(m), whose Euler class counts the twisted cubics on a hypersurface of

degree m. Since Em,n has rank 3m+ 1, the condition for finiteness is

3m+ 1 = 4n

for example a quintic in P4. There is an additional orientation condition, namely
n must be even and m ≡ 1 mod 4; there are similar numerical and orienta-
tion conditions for complete intersections of multi-degree (m1, . . . ,mr). Using the
equivariant machinery, we developed an algorithm for computing the signature of
˜degk(eW(Em,n)), which yields for example the following table

n degree(s) signature rank

4 (5) 765 317206375
5 (3,3) 90 6424326
10 (13) 768328170191602020 794950563369917462703511361114326425387076
11 (3,11) 4407109540744680 31190844968321382445502880736987040916
11 (5,9) 313563865853700 163485878349332902738690353538800900
11 (7,7) 136498002303600 31226586782010349970656128100205356
12 (3,3,9) 43033957366680 3550223653760462519107147253925204
12 (3,5,7) 5860412510400 67944157218032107464152121768900
12 (5,5,5) 1833366298500 6807595425960514917741859812500

Marc Levine, Universität Duisburg-Essen, Fakultät Mathematik, Campus Essen, 45117

Essen, Germany
Email address: marc.levine@uni-due.de


