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Abstract. We discuss Euler characteristics from various points of view

1. Introduction

Intersection theory has a long and interesting history, and is closely tied to
questions of enumerative geometry, that is, the counting of solutions to geometric
problems in algebraic geometry, or more generally, attaching integer invariants to
a given variety or finite collection of varieties.

In this lecture, we look at perhaps the most elementary invariant, the Euler char-
acteristic. A topological space T with the homotopy type of a finite CW complex
(say dimension d) has its Euler characteristic

χtop(T ) :=

d∑
i=0

dimQHi(T,Q)

In fact, one can use dimFHi(T, F ) for any field F . For an algebraic variety X over
C, we have the space X(C), so we have its Euler characteristic

χtop(X) := χtop(X(C))

Over an arbitrary algebraically closed field k, we can use instead étale cohomology
with Q` coefficients for a prime ` different from the characteristic.

2. Chow groups and Chern classes

A somewhat more sophisticated definition in the case of a smooth proper scheme
X over a field k is to use a version of the Gauß-Bonnet theorem

Theorem 2.1 (algebraic Gauß-Bonnet). Let X be a smooth proper scheme of di-
mension n over a field k. Then

χtop(Xk̄) = degk cn(TX/k) = (−1)n degk cn(ΩX/k).

Here TX/k is the tangent bundle of X, ΩX/k is the sheaf of differentials, cn is the
nth Chern class with values in the Chow group CHn(X), and degk is the degree
map

degk : CHn(X)→ CH0(k) = Z.
We won’t be going into all these objects in detail, but let’s just list a few useful

objects and their properties.

Chow groups A variety X over a field k has its group of dimension i algebraic
cycles Zi(X), the free abelian group on the dimension i subvarieties of X. The
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subgroup Ri(X) ⊂ Zi(X) is generated by cycles of the form ÷f , with f a non-zero
rational function on some dimension i+1 subvariety of X. The quotient CHi(X) :=
Zi(X)/Ri(X) is the dimension i Chow group of X. If X has pure dimenison d, we
can index by codimension Zi(X) := Zd−i(X), CHi(X) = CHd−i(X).

Each proper map f : Y → X induces a functorial pushforward map f∗ : Zi(Y )→
Zi(X) that passes to f∗ : CHi(Y ) → CHi(X). If f : Y → X is an arbitrary map
with X and Y smooth, we have pullback maps f∗ : CHi(X) → CHi(Y ). For X
smooth, the graded group CH∗(X) := ⊕iCHi(X) has a graded-ring structure and
f∗ is a ring homomorphism. The unit in CH0(X) = CHdimX(X) is the fundamental
class [X] = 1 ·X.

For f proper, X,Y smooth, we have the projection formula

f∗(f
∗(x) · y) = x · f∗(y)

We have CH0(Spec k) = Z0(Spec k) = Z. For π : X → Spec k proper, we have
the degree map

degk := π∗ : CH0(X)→ CH0(Spec k) = Z
Explicitly, if p ∈ X is a closed point, degk(p) is the field extension degree [k(p) : k].

Each vector bundle V (locally free coherent sheaf) on a smooth X has Chern
classes

ci(V ) ∈ CHi(X), i = 1, 2, . . .

with f∗ci(V ) = ci(f
∗V ) for f : Y → X map of smooth varieties. ci(V ) depends

only on the isomorphism class of V and ci(V ) = 0 for i > rank(V ); we set c0(V ) =
1 ∈ CH0(X). Sending a line bundle L to c1(L) ∈ CH1(X) defines an isomorphism

c1 : Pic(X)→ CH1(X)

For the case L = OX(D) for some divisor D ∈ Z1(X),

c1(OX(D)) = [D] ∈ CH1(X).

The top Chern class cr(V ) for r = rank(V ) is also called the Euler class and is
given by

cr(V ) = s∗2s1∗([X])

with s1, s2 : X → V any two sections. The canonical choice is s1 = s2 = s0, the
zero-section, but this is not necessary.

The total Chern class c(V ) :=
∑rank(V )
i=0 ci(V ) satisfies the Whitney formula: If

0→ V ′ → V → V ′′ → 0

is an exact sequence of vector bundles, then c(V ) = c(V ′)c(V ′′). Also, for the dual
bundle V ∨, we have

ci(V
∨) = (−1)ici(V ).

3. Intersections, Chern classes and enumerative problems

We give some examples to show how this machinery is useful in solving enumer-
ative problems.

Bézout’s theorem. Start with the simplest case: two curves in the plane, C1, C2,
with no common components. Let Ci have defining equation Fi(X0, X1, X2), a ho-
mogeneous polynomial of degree di, so the intersection subscheme C1∩C2 is defined
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by the ideal (F1, F2), and is a finite set of points. A each point p ∈ C1 ∩ C2, we
have the intersection multiplicity

m(C1, C2, p) := lngOP2,p
OC1∩C2,p

To explain this, we assume k is algebraically closed and take coordinates so that
p = (1, 0, 0) ∈ P2. We pass to affine coordinates xi = Xi/X0 for the open subscheme
U0 = P2 \ {X0 = 0} = Spec k[x1, x2], so OP2,p is the local ring k[x1, x2](x1,x2). Let

fi = Fi/X
di
0 , so fi is the defining equation of Ci ∩ U0, and (f1, f2)OP2,p is an

(x1, x2)-primary ideal. Thus k[x1, x2](x1,x2)/(f1, f2) is a k[x1, x2](x1,x2)-module of
finite length `, with ` = dimkk[x1, x2](x1,x2)/(f1, f2), thus

m(C1, C2, p) = dimkk[x1, x2](x1,x2)/(f1, f2)

Let
C1 · C2 =

∑
p∈C1∩C2

m(C1, C2, p) · p ∈ Z2(P2).

On the other hand, each Fi is a section si of OP2(di) and we have

s∗i s0∗[P2] = [Ci]

so
c1(OP2(di)) = [Ci]

Similarly, we have the section (s1, s2) of OP2(d1)⊕OP2(d2) and

(s1, s2)∗s0∗[P2] = [C1 · C2] ∈ CH2(P2)

so
c2(OP2(d1)⊕OP2(d2)) = [C1 · C2].

The Whitney product formula says c2(OP2(d1) ⊕ OP2(d2)) = c1(OP2(d1)) ∪
c1(OP2(d2)) and since c1 : Pic(P2)→ CH1(P2) is a group homomorphism, we have

[C1 · C2] = c2(OP2(d1)⊕OP2(d2))

= c1(OP2(d1)) ∪ c1(OP2(d2))

= d1d2 · c1(OP2(1)) · c1(OP2(1))

If we now take d1 = d2 = 1, F1 = X1, F2 = X2, we have C1 · C2 = 1 · (1 : 0 : 0),
so c1(OP2(1)) ∪ c1(OP2(1)) = [1 · (1 : 0 : 0)] ∈ CH2(P2), and thus

[C1 · C2] = d1d2 · [(1 : 0 : 0)]

Applying the pushforward to the point, π : P2 → Spec k, we have π∗(p) = 1 for all
p ∈ P2(k) and so ∑

p∈C1∩C2

m(C1, C2, p) = π∗(C1 · C2)

= π∗(d1d2 · [(1 : 0 : 0)])

= d1d2

which is exactly Bézout’s theorem. The case of n hypersurfaces H1, . . . ,Hn in Pn
that intersect in finitely many points is exactly the same: if these have degrees
d1, . . . , dn, then

degkH1 · · ·Hn = d1 · · · dn
Lines on a cubic surface Consider a smooth cubic surface S ⊂ P3, with defining
equation F ∈ k[X0, . . . , X3]3. We want to count the lines on S. For this, consider
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the Grassmannian of 2-dimensional subspaces of k4, Gr(2, 4) (which is the same as
lines in P3), with its tautological subbundle E2 → Gr(2, 4) of Gr(2, 4) × A4: the
fiber of E2 over a point x ∈ Gr(2, 4) representing a 2-plane Π in k4 is Π ⊂ k4. Note
that Gr(2, 4) is a smooth proper variety of dimension 4.

The polynomial F determines a degree 3 polynomial function on each fiber Π
of E2, by restricting F to Π, in other words, F gives a section sF of Sym3E∨2 over
Gr(2, 4). sF vanishes at x ∈ Gr(2, 4) exactly when F vanishes on the corresponding
plane Π, in other words, when the line `x := P(Π) ⊂ P3 is contained in V (F ) = S.
Noting that Sym3E∨2 is a vector bundle of rank 4 on Gr(2, 4), we thus have

#{lines in S} = degk s
∗
F s0∗[Gr(2, 4)] = degk c4(Sym3E∨2 ).

So, we need to find a way to compute Chern classes of symmetric powers.
This is done via the splitting principle, which roughly speaking says that for

computing Chern classes of a functor (like Sym3) applied to a vector bundle, we
may assume that the vector bundle is a sum of line bundles. So take E∨ = M1⊕M2.
Let ξi = c1(Mi), then c1(E∨) = ξ1 + ξ2, c2(E∨) = ξ1ξ2.

Sym3E∨ = M⊗3
1 ⊕M⊗2

1 ⊗M2 ⊕M1 ⊗M⊗2
2 ⊕M⊗3

2 ,

so

c4(Sym3E∨) = c1(M⊗3
1 ) · c1(M⊗2

1 ⊗M2) · c1(M1 ⊗M⊗2
2 ) · c1(M⊗3

2 )

= (3ξ1) · (2ξ1 + ξ2) · (ξ1 + 2ξ2) · (3ξ2)

= 9ξ1ξ2(2ξ2
1 + 2ξ2

2 + 5ξ1ξ2)

= 9ξ1ξ2(2(ξ1 + ξ2)2 + ξ1ξ2)

= 9(ξ1ξ2)2 + 18(ξ1ξ2) · (ξ1 + ξ2)2

= 9c2(E∨)2 + 18c2(E∨) · c1(E∨)2.

The point of the splitting principle is that this identity will hold, even if E∨ is not
a sum of line bundles.

In any case, we now need to compute the degrees of c2(E∨)2 and c2(E∨)·c1(E∨)2.
Note that an linear polynomial L in X0, . . . , X3 gives a section sL of E∨, so c2(E∨)
is the class of V (sL). But V (sL) is just the variety of lines in P3 contained in L = 0,
which is a P2. Similarly, c2(E∨)2 is the class of V (sL) · V (sL′), in other words, the
lines in V (L)∩ V (L′), which is just a single line if L and L′ are independent. Thus

degk c2(E∨)2 = 1

Also c2(E∨) · c1(E∨)2 is just the restriction of c1(E∨)2 to V (sL), so

degk(c2(E∨) · c1(E∨)2) = degk(c1(E∨|P2)2)

In general c1 of a vector bundle V is the same as c1 of the line bundle detV , so

c1(E∨|P2)2 = c1(detE∨|P2)2

Finally, one shows that detE∨|P2 = OP2(1), so using Bézout’s therem we have

degk(c1(detE∨|P2)2) = degk(c1(OP2(1))2) = 1

Putting this altogether gives

#{ lines in S} = degk c4(E∨) = 9 + 18 = 27.

The Gauß-Bonnet theorem and the Euler characteristic
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For X smooth and proper of dimension n, we have cn(TX/k) ∈ CHn(X) =
CH0(X) and thus degk(cn(TX/k)) = (−1)n degk(cn(ΩX/k) is a well-defined integer.
The Gauß-Bonnet theorem says that this is exactly the topological Euler charac-
teristic. On the enumerative side, one can compute χtop(X) for X a smooth degree
d hypersurface in Pn+1 explicitly as follows.

We have the Euler sequence for TPn+1

0→ OPn+1 → OPn+1(1)n+2 → TPn+1 → 0

which gives

c(TPn+1) = c(OPn+1(1))n+2)/c(OPn+1) = (1 + h)n+2

with h ∈ CH1(Pn+1) the class of a hyperplane H ⊂ Pn+1. The tangent-normal
bundle sequence for i : X → Pn+1 of degree d

0→ TX → i∗TPn+1 → i∗OPn+1(d)→ 0

gives
c(TX) = i∗ [c(TPn+1)/c(∗OPn+1(d))] = i∗[(1 + h)n+2/(1 + dh)]

Taking the degree n component gives

degk cn(TX) = degk i∗cn(TX) = degk i∗i
∗[hn

∑
i+j=n

(−1)j
(
n+ 2

i

)
dj ] =

∑
i+j=n

(−1)j
(
n+ 2

i

)
dj+1

since
i∗i
∗hn = i∗([X] · i∗hn) = i∗([X]) · hn = d

Here is a table:

n χtop(Xd)

1 −d2 + 3d
2 d3 − 4d2 + 6d
3 −d4 + 5d3 − 10d2 + 10d
4 d5 − 6d4 + 15d3 − 20d2 + 15d

Another consequence of the Gauß-Bonnet theorem is a version of the Riemann-
Hurwitz formula

Theorem 3.1. Let f : X → C be a morphism of a smooth proper variety X of
dimension n to a smooth projective curve C, giving the differential df : f∗ωC →
ΩX . Suppose that the induced section df : OX → ΩX ⊗ f∗ω−1

C has isolated zeros
p1, . . . , pr, with multiplicities m1, . . . ,mr. Let Xp be a general (smooth) fiber. Then

χtop(X) = χtop(Xp) · χtop(C) + (−1)n ·
∑
i

mi

Proof. Using the splitting principle one shows that for V a rank n bundle and L a
lilne bundle, one has

cn(V ⊗ L) =

n∑
i=0

cn−i(V ) · c1(L)i

Since cn(ΩX ⊗ f∗ω−1
C ) =

∑
imi and c1(f∗ω−1

C )i = f∗(c1(ω−1
C )i) = 0 (since C has

dimension 1), this gives∑
i

mi = degk(cn(ΩX) + cn−1(ΩX) · f∗(c1(TC)))
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Since ΩX = T∨X , we have

degk(cn(ΩX) = (−1)nχtop(X).

Since the normal bundle to Xp is trivial, we have

ΩX ⊗OXp = ΩXp ⊕OXp

so if c1(TC)) =
∑
i nipi with the pi taken so that Xpi is smooth, we have

cn−1(ΩX) · f∗(c1(TC)) =
∑
i

iXpi∗
(ni · cn−1(ΩXpi

))

Each of the fibers Xpi have the same Euler characteristic, so

degk cn−1(ΩX) · f∗(c1(TC)) = (−1)n−1χtop(Xp) · χtop(C)

Putting this altogether gives the result. �

4. Dualizable objects and abstract Euler characteristics

Let (C,⊗, 1, τ) be a symmetric monoidal category with symmetry constraint
τx,y : x⊗ y → y ⊗ x.

Definition 4.1. (1) The dual of an object x in C is a triple (x∨, δ, ev) with x∨ in
C, and δ : 1→ x⊗ x∨, ev : x∨ ⊗ x→ 1 morphisms such that both compositions

x ∼= 1⊗ x δ⊗Id−−−→ x⊗ x∨ ⊗ x Id⊗ev−−−−→ x⊗ 1 ∼= x

x∨ ∼= x∨ ⊗ 1
Id⊗δ−−−→ x∨ ⊗ x⊗ x∨ ev⊗Id−−−−→ 1⊗ x∨ ∼= x∨

are identity morphisms.

(2) Suppose x both has dual (x∨, δ, ev) and let f : x → x be an endomorphism.
Define the trace Trx(f) ∈ EndC(1) as the composition

1
δ−→ x⊗ x∨ f⊗Id−−−→ x⊗ x∨

τx,x∨−−−→ x∨ ⊗ x ev−→ 1

The Euler characteristic χC(x) is by definition TrC(Idx).

Examples 4.2. 1. Let C = k −Vec, the category of k-vector spaces, with ⊗ = ⊗k,
unit k and τ(a ⊗ b) = b ⊗ a. Then V ∈ k − Vec is dualizable if and only if
dimkV < ∞, the dual is the usual dual vector space, ev : V ∨ ⊗k V → k is the
evaluation map f ⊗ v 7→ f(v), and δ : k → V ⊗k V ∨ sends 1 ∈ k to

∑
i ei ⊗ ei,

where e1, . . . , en is a basis of V with dual basis e1, . . . , en. The trace is the usual
trace and χ(V ) = dimkV as an element of Endk(k) ∼= k.

2. For C = graded k-vector spaces, we have a similar story, except that τ(a ⊗
b) = (−1)|a||b|b ⊗ a, for a, b homogeneous of degrees |a|, |b|. If V = ⊕nVn, then
χ(V ) =

∑
n(−1)ndimkVn.

3. For C = D(k − Vec), the derived category, the dualizable objects are the
complexes K∗ such that the homology H∗(K∗) = ⊕nHn(K∗) is finite dimenisonal
over k and χ(K∗) =

∑
n(−1)ndimkHn(K∗), again as an element of End(k) ∼= k.

Sending a finite CW complex T to its singular chain complex C∗(T, k) we see that

χ(C∗(T, k)) = χtop(T )

in k. We have a similar computation for C = D(Ab) and for the integral singular
chain complex C∗(T,Z), giving χ(C∗(T,Z)) = χtop(T ) ∈ Z = EndD(Ab)(Z).

4. We may take C to be the category Sp of spectra, which is symmetric monoidal
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with unit the sphere spectrum S. Note that End(S) is the 0th stable homotopy
group of spheres, which is Z, and that the dualizable objects are the thick subcate-
gory generated by the suspension spectra of finite CW complexes. One recoves the
usual topological Euler characteristic

χSp(Σ∞T+) = χtop(T ).

5. Morel’s theorem and the quadratic Euler characteristic

Morel and Voevodsky have defined a homotopy theory where finite sets in the
classical theory get replaced by smooth algebraic varieties over a given field k. The
replacement of the stable homotopy category is the motivic stable homotopy category
over k, SH(k). This is a symmetric monoidal category with unit the motivic sphere
spectrum Sk. The operation of P1 suspension, ΣP1 is formally inverted in SH(k).

For each pair of integers a, b one has the associated suspension functor Σa,b; for
a ≥ b ≥ 0, this is smash product with Sa−b ∧ G∧bm and for arbitrary (a, b), this is
defined as

Σa,b = Σa+2N,b+NΣ−NP1 ; N >> 0.

The fact that S1 ∧Gm ∼= P1 implies that this is well-defined, independent of N .
To construct the Grothendieck-Witt ring over k, GW(k) one starts with the set of

isomorphism classes of non-degenerate symmetric bilinear forms over k (this is the
same as non-degenerate quadratic forms over k if 1/2 ∈ k. This is a commutative
monoid under orthogonal direct sum, and GW(k) is a group completion, that is
elements are form differences of non-degenerate symmetric bilinear forms (up to
isomorphism). GW(k) is a ring, with product induced by tensor product: for
b : V × V → k, b′ : W ×W → k, we have b ⊗ b′ : (V ⊗W ) × (V ⊗W ) → k with
b⊗ b′(v ⊗ w, v′ ⊗ w′) = b(v, v′)b′(w,w′). This makes GW(k) into a ring.

We will usually work away from characteristic 2, and so will speak mainly of
quadratic forms.

A non-degenerate form q has its rank, namely, the dimension of the vector space
on which it is defined. Sending q to rankq defines a ring homomorphism rank :
GW(k)→ Z.

For u ∈ k×, we have the rank 1 form 〈u〉 with 〈u〉(x) = ux2, more generally,
we have the rank n form

∑n
i=1〈ui〉 with

∑n
i=1〈ui〉(x1, . . . , xn) =

∑n
i=1 uix

2
i . Away

from characteristic 2, every quadratic form is isomorphic to such a “diagonal” form.
The hyperbolic form is H(x, y) = x2 − y2 = 〈1〉 + 〈−1〉. For a form q, we have
q ·H = rank(q) ·H. The Witt ring W (k) is defined by

W (k) := GW(k)/(H).

For k algebraically closed, the rank homomorphism is an isomorphism GW(k) ∼=
Z. For k = R, Sylverster’s theorem of inertia says that each q ∈ GW(R) is uniquely
of the form q = a · 〈1〉+ b · 〈−1〉, a, b ∈ Z, and the signature homomorphism

sig : GW(R)→ Z

is given by sig(a · 〈1〉+ b · 〈−1〉) = a− b.

Theorem 5.1 (Morel). There is a natural isomorphism

GW(k) ∼= EndSH(k)(Sk)
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Each smooth proper variety over k, X, defines a dualizable object Σ∞P1X+ in
SH(k), so one has the associated Euler characteristic

χ(X/k) := χSH(k)(Σ
∞
P1X+) ∈ EndSH(k)(Sk) = GW(k)

If we assume that k has characteristic zero, or if we invert p if k has characteristic
p > 0, Σ∞P1U+ is dualizable for all smooth U , so the definition of χ(X/k) extends
to arbitrary smooth U over k. Under the same assumptions, χ(X/k) extends to
the Euler characteristic with compact support, χc(Z/k) for arbitrary finite type
k-schemes, with χ(X/k) = χc(X/k) for X smooth and proper.

The formal properties of categorical Euler characteristics and additional struc-
tural properties of SH(k) yield a number of properties of these Euler characteristics:
For u ∈ k×, let 〈u〉 denote the rank one form 〈u〉(x, y) = uxy.

• χ(Σa,bX/k) = (−1)a(〈−1〉)b · χ(X/k)
• If Z contains a closed subscheme W with open complement U , then

χc(Z/k) = χc(U/k) + χc(W/k)

If Z and W are smooth, and W has codimension c in Z, then

χc(Z/k) = χ(U/k) + 〈−1〉cχ(W/k)

• If E → B is a fiber bundle with fiber F , locally trivial in the Nisnevich
topology, and E,B and F are smooth, then

χ(E/k) = χ(B/k) · χ(F/k)

• For X a smooth k-scheme, we have rankχ(X/k) = χtop(X). If k = C,
this says rankχ(X/C) = χtop(X(C)). If k = R, we have sigχ(X/R) =
χtop(X(R)).

• Suppose X is cellular: there is a stratification ∅ = X−1 ⊂ X0 ⊂ . . . ⊂ Xn =
X with Xi ⊂ X closed of dimension i, such that Xi\Xi−1 is a disjoint union
of affine spaces Aik. Then CHj(X) is a free abelian group of finite rank for

each j, and letting r+ =
∑
j even rankCHj(X), r− =

∑
j odd rankCHj(X),

we have
χ(X/k) = r+ · 〈1〉+ r− · 〈−1〉.

For example

χ(Pn/k) =

n∑
i=0

〈−1〉i

• Let Z ⊂ X be a smooth closed subscheme of a smooth k-scheme X, of
codimension c and let X̃ be the blow-up of X along Z. Then

χ(X̃/k) = χ(X/k) + (

c−1∑
i=1

〈−1〉i) · χ(Z/k).

Since the rank n form
∑n−1
i=0 〈−1〉i comes up alot, we denote this by nε.
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