LECTURE 1: CHERN CLASSES, EULER CHARACTERISTICS, AND ENUMERATIVE GEOMETRY

MARC LEVINE

Abstract. We discuss Euler characteristics from various points of view

1. Introduction

Intersection theory has a long and interesting history, and is closely tied to questions of enumerative geometry, that is, the counting of solutions to geometric problems in algebraic geometry, or more generally, attaching integer invariants to a given variety or finite collection of varieties.

In this lecture, we look at perhaps the most elementary invariant, the Euler characteristic. A topological space T with the homotopy type of a finite CW complex (say dimension d) has its Euler characteristic

$$
\chi^{\mathrm{top}}(T):=\sum_{i=0}^{d} \operatorname{dim}_{\mathbb{Q}} H_{i}(T, \mathbb{Q})
$$

In fact, one can use $\operatorname{dim}_{F} H_{i}(T, F)$ for any field F. For an algebraic variety X over \mathbb{C}, we have the space $X(\mathbb{C})$, so we have its Euler characteristic

$$
\chi^{\mathrm{top}}(X):=\chi^{\mathrm{top}}(X(\mathbb{C}))
$$

Over an arbitrary algebraically closed field k, we can use instead étale cohomology with \mathbb{Q}_{ℓ} coefficients for a prime ℓ different from the characteristic.

2. Chow groups and Chern classes

A somewhat more sophisticated definition in the case of a smooth proper scheme X over a field k is to use a version of the Gauß-Bonnet theorem

Theorem 2.1 (algebraic Gauß-Bonnet). Let X be a smooth proper scheme of dimension n over a field k. Then

$$
\chi^{\mathrm{top}}\left(X_{\bar{k}}\right)=\operatorname{deg}_{k} c_{n}\left(T_{X / k}\right)=(-1)^{n} \operatorname{deg}_{k} c_{n}\left(\Omega_{X / k}\right)
$$

Here $T_{X / k}$ is the tangent bundle of $X, \Omega_{X / k}$ is the sheaf of differentials, c_{n} is the nth Chern class with values in the Chow group $\mathrm{CH}^{n}(X)$, and deg_{k} is the degree map

$$
\operatorname{deg}_{k}: \mathrm{CH}^{n}(X) \rightarrow \mathrm{CH}^{0}(k)=\mathbb{Z}
$$

We won't be going into all these objects in detail, but let's just list a few useful objects and their properties.

Chow groups A variety X over a field k has its group of dimension i algebraic cycles $Z_{i}(X)$, the free abelian group on the dimension i subvarieties of X. The

[^0]subgroup $R_{i}(X) \subset Z_{i}(X)$ is generated by cycles of the form $\div f$, with f a non-zero rational function on some dimension $i+1$ subvariety of X. The quotient $\mathrm{CH}_{i}(X):=$ $Z_{i}(X) / R_{i}(X)$ is the dimension i Chow group of X. If X has pure dimenison d, we can index by codimension $Z^{i}(X):=Z_{d-i}(X), \mathrm{CH}^{i}(X)=\mathrm{CH}_{d-i}(X)$.

Each proper map $f: Y \rightarrow X$ induces a functorial pushforward map $f_{*}: Z_{i}(Y) \rightarrow$ $Z_{i}(X)$ that passes to $f_{*}: \mathrm{CH}_{i}(Y) \rightarrow \mathrm{CH}_{i}(X)$. If $f: Y \rightarrow X$ is an arbitrary map with X and Y smooth, we have pullback maps $f^{*}: \mathrm{CH}^{i}(X) \rightarrow \mathrm{CH}^{i}(Y)$. For X smooth, the graded group $\mathrm{CH}^{*}(X):=\oplus_{i} \mathrm{CH}^{i}(X)$ has a graded-ring structure and f^{*} is a ring homomorphism. The unit in $\mathrm{CH}^{0}(X)=\mathrm{CH}_{\operatorname{dim} X}(X)$ is the fundamental class $[X]=1 \cdot X$.

For f proper, X, Y smooth, we have the projection formula

$$
f_{*}\left(f^{*}(x) \cdot y\right)=x \cdot f_{*}(y)
$$

We have $\mathrm{CH}_{0}(\operatorname{Spec} k)=Z_{0}(\operatorname{Spec} k)=\mathbb{Z}$. For $\pi: X \rightarrow$ Spec k proper, we have the degree map

$$
\operatorname{deg}_{k}:=\pi_{*}: \mathrm{CH}_{0}(X) \rightarrow \mathrm{CH}_{0}(\operatorname{Spec} k)=\mathbb{Z}
$$

Explicitly, if $p \in X$ is a closed point, $\operatorname{deg}_{k}(p)$ is the field extension degree $[k(p): k]$.
Each vector bundle V (locally free coherent sheaf) on a smooth X has Chern classes

$$
c_{i}(V) \in \mathrm{CH}^{i}(X), i=1,2, \ldots
$$

with $f^{*} c_{i}(V)=c_{i}\left(f^{*} V\right)$ for $f: Y \rightarrow X$ map of smooth varieties. $c_{i}(V)$ depends only on the isomorphism class of V and $c_{i}(V)=0$ for $i>\operatorname{rank}(V)$; we set $c_{0}(V)=$ $1 \in \mathrm{CH}^{0}(X)$. Sending a line bundle L to $c_{1}(L) \in \mathrm{CH}^{1}(X)$ defines an isomorphism

$$
c_{1}: \operatorname{Pic}(X) \rightarrow \mathrm{CH}^{1}(X)
$$

For the case $L=\mathcal{O}_{X}(D)$ for some divisor $D \in Z^{1}(X)$,

$$
c_{1}\left(\mathcal{O}_{X}(D)\right)=[D] \in \mathrm{CH}^{1}(X)
$$

The top Chern class $c_{r}(V)$ for $r=\operatorname{rank}(V)$ is also called the Euler class and is given by

$$
c_{r}(V)=s_{2}^{*} s_{1 *}([X])
$$

with $s_{1}, s_{2}: X \rightarrow V$ any two sections. The canonical choice is $s_{1}=s_{2}=s_{0}$, the zero-section, but this is not necessary.

The total Chern class $c(V):=\sum_{i=0}^{\operatorname{rank}(V)} c_{i}(V)$ satisfies the Whitney formula: If

$$
0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0
$$

is an exact sequence of vector bundles, then $c(V)=c\left(V^{\prime}\right) c\left(V^{\prime \prime}\right)$. Also, for the dual bundle V^{\vee}, we have

$$
c_{i}\left(V^{\vee}\right)=(-1)^{i} c_{i}(V)
$$

3. Intersections, Chern classes and enumerative problems

We give some examples to show how this machinery is useful in solving enumerative problems.
Bézout's theorem. Start with the simplest case: two curves in the plane, C_{1}, C_{2}, with no common components. Let C_{i} have defining equation $F_{i}\left(X_{0}, X_{1}, X_{2}\right)$, a homogeneous polynomial of degree d_{i}, so the intersection subscheme $C_{1} \cap C_{2}$ is defined
by the ideal $\left(F_{1}, F_{2}\right)$, and is a finite set of points. A each point $p \in C_{1} \cap C_{2}$, we have the intersection multiplicity

$$
m\left(C_{1}, C_{2}, p\right):=\ln g_{\mathcal{O}_{\mathbb{P}^{2}, p}} \mathcal{O}_{C_{1} \cap C_{2}, p}
$$

To explain this, we assume k is algebraically closed and take coordinates so that $p=(1,0,0) \in \mathbb{P}^{2}$. We pass to affine coordinates $x_{i}=X_{i} / X_{0}$ for the open subscheme $U_{0}=\mathbb{P}^{2} \backslash\left\{X_{0}=0\right\}=\operatorname{Spec} k\left[x_{1}, x_{2}\right]$, so $\mathcal{O}_{\mathbb{P}^{2}, p}$ is the local ring $k\left[x_{1}, x_{2}\right]_{\left(x_{1}, x_{2}\right)}$. Let $f_{i}=F_{i} / X_{0}^{d_{i}}$, so f_{i} is the defining equation of $C_{i} \cap U_{0}$, and $\left(f_{1}, f_{2}\right) \mathcal{O}_{\mathbb{P}^{2}, p}$ is an $\left(x_{1}, x_{2}\right)$-primary ideal. Thus $k\left[x_{1}, x_{2}\right]_{\left(x_{1}, x_{2}\right)} /\left(f_{1}, f_{2}\right)$ is a $k\left[x_{1}, x_{2}\right]_{\left(x_{1}, x_{2}\right)}$-module of finite length ℓ, with $\ell=\operatorname{dim}_{k} k\left[x_{1}, x_{2}\right]_{\left(x_{1}, x_{2}\right)} /\left(f_{1}, f_{2}\right)$, thus

$$
m\left(C_{1}, C_{2}, p\right)=\operatorname{dim}_{k} k\left[x_{1}, x_{2}\right]_{\left(x_{1}, x_{2}\right)} /\left(f_{1}, f_{2}\right)
$$

Let

$$
C_{1} \cdot C_{2}=\sum_{p \in C_{1} \cap C_{2}} m\left(C_{1}, C_{2}, p\right) \cdot p \in Z^{2}\left(\mathbb{P}^{2}\right) .
$$

On the other hand, each F_{i} is a section s_{i} of $\mathcal{O}_{\mathbb{P}^{2}}\left(d_{i}\right)$ and we have

$$
s_{i}^{*} s_{0 *}\left[\mathbb{P}^{2}\right]=\left[C_{i}\right]
$$

so

$$
c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(d_{i}\right)\right)=\left[C_{i}\right]
$$

Similarly, we have the section $\left(s_{1}, s_{2}\right)$ of $\mathcal{O}_{\mathbb{P}^{2}}\left(d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{2}}\left(d_{2}\right)$ and

$$
\left(s_{1}, s_{2}\right)^{*} s_{0 *}\left[\mathbb{P}^{2}\right]=\left[C_{1} \cdot C_{2}\right] \in \mathrm{CH}^{2}\left(\mathbb{P}^{2}\right)
$$

so

$$
c_{2}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{2}}\left(d_{2}\right)\right)=\left[C_{1} \cdot C_{2}\right] .
$$

The Whitney product formula says $c_{2}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{2}}\left(d_{2}\right)\right)=c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(d_{1}\right)\right) \cup$ $c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(d_{2}\right)\right)$ and since $c_{1}: \operatorname{Pic}\left(\mathbb{P}^{2}\right) \rightarrow \mathrm{CH}^{1}\left(\mathbb{P}^{2}\right)$ is a group homomorphism, we have

$$
\begin{aligned}
{\left[C_{1} \cdot C_{2}\right] } & =c_{2}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{2}}\left(d_{2}\right)\right) \\
& =c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(d_{1}\right)\right) \cup c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(d_{2}\right)\right) \\
& =d_{1} d_{2} \cdot c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right) \cdot c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)
\end{aligned}
$$

If we now take $d_{1}=d_{2}=1, F_{1}=X_{1}, F_{2}=X_{2}$, we have $C_{1} \cdot C_{2}=1 \cdot(1: 0: 0)$, so $c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right) \cup c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)=[1 \cdot(1: 0: 0)] \in \mathrm{CH}^{2}\left(\mathbb{P}^{2}\right)$, and thus

$$
\left[C_{1} \cdot C_{2}\right]=d_{1} d_{2} \cdot[(1: 0: 0)]
$$

Applying the pushforward to the point, $\pi: \mathbb{P}^{2} \rightarrow$ Spec k, we have $\pi_{*}(p)=1$ for all $p \in \mathbb{P}^{2}(k)$ and so

$$
\begin{aligned}
\sum_{p \in C_{1} \cap C_{2}} m\left(C_{1}, C_{2}, p\right) & =\pi_{*}\left(C_{1} \cdot C_{2}\right) \\
& =\pi_{*}\left(d_{1} d_{2} \cdot[(1: 0: 0)]\right) \\
& =d_{1} d_{2}
\end{aligned}
$$

which is exactly Bézout's theorem. The case of n hypersurfaces H_{1}, \ldots, H_{n} in \mathbb{P}^{n} that intersect in finitely many points is exactly the same: if these have degrees d_{1}, \ldots, d_{n}, then

$$
\operatorname{deg}_{k} H_{1} \cdots H_{n}=d_{1} \cdots d_{n}
$$

Lines on a cubic surface Consider a smooth cubic surface $S \subset \mathbb{P}^{3}$, with defining equation $F \in k\left[X_{0}, \ldots, X_{3}\right]_{3}$. We want to count the lines on S. For this, consider
the Grassmannian of 2-dimensional subspaces of $k^{4}, \operatorname{Gr}(2,4)$ (which is the same as lines in \mathbb{P}^{3}), with its tautological subbundle $E_{2} \rightarrow \operatorname{Gr}(2,4)$ of $\operatorname{Gr}(2,4) \times \mathbb{A}^{4}$: the fiber of E_{2} over a point $x \in \operatorname{Gr}(2,4)$ representing a 2-plane Π in k^{4} is $\Pi \subset k^{4}$. Note that $\operatorname{Gr}(2,4)$ is a smooth proper variety of dimension 4.

The polynomial F determines a degree 3 polynomial function on each fiber Π of E_{2}, by restricting F to Π, in other words, F gives a section s_{F} of $\operatorname{Sym}^{3} E_{2}^{\vee}$ over $\operatorname{Gr}(2,4) . s_{F}$ vanishes at $x \in G r(2,4)$ exactly when F vanishes on the corresponding plane Π, in other words, when the line $\ell_{x}:=\mathbb{P}(\Pi) \subset \mathbb{P}^{3}$ is contained in $V(F)=S$. Noting that $\operatorname{Sym}^{3} E_{2}^{\vee}$ is a vector bundle of rank 4 on $\operatorname{Gr}(2,4)$, we thus have

$$
\#\{\operatorname{lines} \text { in } S\}=\operatorname{deg}_{k} s_{F}^{*} s_{0 *}[\operatorname{Gr}(2,4)]=\operatorname{deg}_{k} c_{4}\left(\operatorname{Sym}^{3} E_{2}^{\vee}\right)
$$

So, we need to find a way to compute Chern classes of symmetric powers.
This is done via the splitting principle, which roughly speaking says that for computing Chern classes of a functor (like Sym^{3}) applied to a vector bundle, we may assume that the vector bundle is a sum of line bundles. So take $E^{\vee}=M_{1} \oplus M_{2}$. Let $\xi_{i}=c_{1}\left(M_{i}\right)$, then $c_{1}\left(E^{\vee}\right)=\xi_{1}+\xi_{2}, c_{2}\left(E^{\vee}\right)=\xi_{1} \xi_{2}$.

$$
\mathrm{Sym}^{3} E^{\vee}=M_{1}^{\otimes 3} \oplus M_{1}^{\otimes 2} \otimes M_{2} \oplus M_{1} \otimes M_{2}^{\otimes 2} \oplus M_{2}^{\otimes 3}
$$

so

$$
\begin{aligned}
c_{4}\left(\operatorname{Sym}^{3} E^{\vee}\right) & =c_{1}\left(M_{1}^{\otimes 3}\right) \cdot c_{1}\left(M_{1}^{\otimes 2} \otimes M_{2}\right) \cdot c_{1}\left(M_{1} \otimes M_{2}^{\otimes 2}\right) \cdot c_{1}\left(M_{2}^{\otimes 3}\right) \\
& =\left(3 \xi_{1}\right) \cdot\left(2 \xi_{1}+\xi_{2}\right) \cdot\left(\xi_{1}+2 \xi_{2}\right) \cdot\left(3 \xi_{2}\right) \\
& =9 \xi_{1} \xi_{2}\left(2 \xi_{1}^{2}+2 \xi_{2}^{2}+5 \xi_{1} \xi_{2}\right) \\
& =9 \xi_{1} \xi_{2}\left(2\left(\xi_{1}+\xi_{2}\right)^{2}+\xi_{1} \xi_{2}\right) \\
& =9\left(\xi_{1} \xi_{2}\right)^{2}+18\left(\xi_{1} \xi_{2}\right) \cdot\left(\xi_{1}+\xi_{2}\right)^{2} \\
& =9 c_{2}\left(E^{\vee}\right)^{2}+18 c_{2}\left(E^{\vee}\right) \cdot c_{1}\left(E^{\vee}\right)^{2}
\end{aligned}
$$

The point of the splitting principle is that this identity will hold, even if E^{\vee} is not a sum of line bundles.

In any case, we now need to compute the degrees of $c_{2}\left(E^{\vee}\right)^{2}$ and $c_{2}\left(E^{\vee}\right) \cdot c_{1}\left(E^{\vee}\right)^{2}$. Note that an linear polynomial L in X_{0}, \ldots, X_{3} gives a section s_{L} of E^{\vee}, so $c_{2}\left(E^{\vee}\right)$ is the class of $V\left(s_{L}\right)$. But $V\left(s_{L}\right)$ is just the variety of lines in \mathbb{P}^{3} contained in $L=0$, which is a \mathbb{P}^{2}. Similarly, $c_{2}\left(E^{\vee}\right)^{2}$ is the class of $V\left(s_{L}\right) \cdot V\left(s_{L^{\prime}}\right)$, in other words, the lines in $V(L) \cap V\left(L^{\prime}\right)$, which is just a single line if L and L^{\prime} are independent. Thus

$$
\operatorname{deg}_{k} c_{2}\left(E^{\vee}\right)^{2}=1
$$

Also $c_{2}\left(E^{\vee}\right) \cdot c_{1}\left(E^{\vee}\right)^{2}$ is just the restriction of $c_{1}\left(E^{\vee}\right)^{2}$ to $V\left(s_{L}\right)$, so

$$
\operatorname{deg}_{k}\left(c_{2}\left(E^{\vee}\right) \cdot c_{1}\left(E^{\vee}\right)^{2}\right)=\operatorname{deg}_{k}\left(c_{1}\left(E_{\mid \mathbb{P}^{2}}^{\vee}\right)^{2}\right)
$$

In general c_{1} of a vector bundle V is the same as c_{1} of the line bundle $\operatorname{det} V$, so

$$
c_{1}\left(E_{\mid \mathbb{P}^{2}}^{\vee}\right)^{2}=c_{1}\left(\operatorname{det} E_{\mid \mathbb{P}^{2}}^{\vee}\right)^{2}
$$

Finally, one shows that $\operatorname{det} E_{\mid \mathbb{P}^{2}}^{\vee}=\mathcal{O}_{\mathbb{P}^{2}}(1)$, so using Bézout's therem we have

$$
\operatorname{deg}_{k}\left(c_{1}\left(\operatorname{det} E_{\mid \mathbb{P}^{2}}^{\vee}\right)^{2}\right)=\operatorname{deg}_{k}\left(c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)^{2}\right)=1
$$

Putting this altogether gives

$$
\#\{\text { lines in } S\}=\operatorname{deg}_{k} c_{4}\left(E^{\vee}\right)=9+18=27
$$

The Gauß-Bonnet theorem and the Euler characteristic

For X smooth and proper of dimension n, we have $c_{n}\left(T_{X / k}\right) \in \mathrm{CH}^{n}(X)=$ $\mathrm{CH}_{0}(X)$ and thus $\operatorname{deg}_{k}\left(c_{n}\left(T_{X / k}\right)\right)=(-1)^{n} \operatorname{deg}_{k}\left(c_{n}\left(\Omega_{X / k}\right)\right.$ is a well-defined integer. The Gauß-Bonnet theorem says that this is exactly the topological Euler characteristic. On the enumerative side, one can compute $\chi^{\text {top }}(X)$ for X a smooth degree d hypersurface in \mathbb{P}^{n+1} explicitly as follows.

We have the Euler sequence for $T_{\mathbb{P}^{n+1}}$

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n+1}} \rightarrow \mathcal{O}_{\mathbb{P}^{n+1}}(1)^{n+2} \rightarrow T_{\mathbb{P}^{n+1}} \rightarrow 0
$$

which gives

$$
\left.c\left(T_{\mathbb{P}^{n+1}}\right)=c\left(\mathcal{O}_{\mathbb{P}^{n+1}}(1)\right)^{n+2}\right) / c\left(\mathcal{O}_{\mathbb{P}^{n+1}}\right)=(1+h)^{n+2}
$$

with $h \in \mathrm{CH}^{1}\left(\mathbb{P}^{n+1}\right)$ the class of a hyperplane $H \subset \mathbb{P}^{n+1}$. The tangent-normal bundle sequence for $i: X \rightarrow \mathbb{P}^{n+1}$ of degree d

$$
0 \rightarrow T_{X} \rightarrow i^{*} T_{\mathbb{P}^{n+1}} \rightarrow i^{*} \mathcal{O}_{\mathbb{P}^{n+1}}(d) \rightarrow 0
$$

gives

$$
c\left(T_{X}\right)=i^{*}\left[c\left(T_{\mathbb{P}^{n+1}}\right) / c\left(* \mathcal{O}_{\mathbb{P}^{n+1}}(d)\right)\right]=i^{*}\left[(1+h)^{n+2} /(1+d h)\right]
$$

Taking the degree n component gives
$\operatorname{deg}_{k} c_{n}\left(T_{X}\right)=\operatorname{deg}_{k} i_{*} c_{n}\left(T_{X}\right)=\operatorname{deg}_{k} i_{*} i^{*}\left[h^{n} \sum_{i+j=n}(-1)^{j}\binom{n+2}{i} d^{j}\right]=\sum_{i+j=n}(-1)^{j}\binom{n+2}{i} d^{j+1}$
since

$$
i_{*} i^{*} h^{n}=i_{*}\left([X] \cdot i^{*} h^{n}\right)=i_{*}([X]) \cdot h^{n}=d
$$

Here is a table:

n	$\chi^{\mathrm{top}}\left(X_{d}\right)$
1	$-d^{2}+3 d$
2	$d^{3}-4 d^{2}+6 d$
3	$-d^{4}+5 d^{3}-10 d^{2}+10 d$
4	$d^{5}-6 d^{4}+15 d^{3}-20 d^{2}+15 d$

Another consequence of the Gauß-Bonnet theorem is a version of the RiemannHurwitz formula

Theorem 3.1. Let $f: X \rightarrow C$ be a morphism of a smooth proper variety X of dimension n to a smooth projective curve C, giving the differential df : $f^{*} \omega_{C} \rightarrow$ Ω_{X}. Suppose that the induced section df : $\mathcal{O}_{X} \rightarrow \Omega_{X} \otimes f^{*} \omega_{C}^{-1}$ has isolated zeros p_{1}, \ldots, p_{r}, with multiplicities m_{1}, \ldots, m_{r}. Let X_{p} be a general (smooth) fiber. Then

$$
\chi^{\mathrm{top}}(X)=\chi^{\mathrm{top}}\left(X_{p}\right) \cdot \chi^{\mathrm{top}}(C)+(-1)^{n} \cdot \sum_{i} m_{i}
$$

Proof. Using the splitting principle one shows that for V a rank n bundle and L a lilne bundle, one has

$$
c_{n}(V \otimes L)=\sum_{i=0}^{n} c_{n-i}(V) \cdot c_{1}(L)^{i}
$$

Since $c_{n}\left(\Omega_{X} \otimes f^{*} \omega_{C}^{-1}\right)=\sum_{i} m_{i}$ and $c_{1}\left(f^{*} \omega_{C}^{-1}\right)^{i}=f^{*}\left(c_{1}\left(\omega_{C}^{-1}\right)^{i}\right)=0$ (since C has dimension 1), this gives

$$
\sum_{i} m_{i}=\operatorname{deg}_{k}\left(c_{n}\left(\Omega_{X}\right)+c_{n-1}\left(\Omega_{X}\right) \cdot f^{*}\left(c_{1}\left(T_{C}\right)\right)\right)
$$

Since $\Omega_{X}=T_{X}^{\vee}$, we have

$$
\operatorname{deg}_{k}\left(c_{n}\left(\Omega_{X}\right)=(-1)^{n} \chi^{\operatorname{top}}(X)\right.
$$

Since the normal bundle to X_{p} is trivial, we have

$$
\Omega_{X} \otimes \mathcal{O}_{X_{p}}=\Omega_{X_{p}} \oplus \mathcal{O}_{X_{p}}
$$

so if $\left.c_{1}\left(T_{C}\right)\right)=\sum_{i} n_{i} p_{i}$ with the p_{i} taken so that $X_{p_{i}}$ is smooth, we have

$$
c_{n-1}\left(\Omega_{X}\right) \cdot f^{*}\left(c_{1}\left(T_{C}\right)\right)=\sum_{i} i_{X_{p_{i} *}}\left(n_{i} \cdot c_{n-1}\left(\Omega_{X_{p_{i}}}\right)\right)
$$

Each of the fibers $X_{p_{i}}$ have the same Euler characteristic, so

$$
\operatorname{deg}_{k} c_{n-1}\left(\Omega_{X}\right) \cdot f^{*}\left(c_{1}\left(T_{C}\right)\right)=(-1)^{n-1} \chi^{\operatorname{top}}\left(X_{p}\right) \cdot \chi^{\operatorname{top}}(C)
$$

Putting this altogether gives the result.

4. Dualizable objects and abstract Euler characteristics

Let $(\mathcal{C}, \otimes, 1, \tau)$ be a symmetric monoidal category with symmetry constraint $\tau_{x, y}: x \otimes y \rightarrow y \otimes x$.
Definition 4.1. (1) The dual of an object x in \mathcal{C} is a triple $\left(x^{\vee}, \delta, e v\right)$ with x^{\vee} in \mathcal{C}, and $\delta: 1 \rightarrow x \otimes x^{\vee}, e v: x^{\vee} \otimes x \rightarrow 1$ morphisms such that both compositions

$$
\begin{gathered}
x \cong 1 \otimes x \xrightarrow{\delta \otimes \mathrm{Id}} x \otimes x^{\vee} \otimes x \xrightarrow{\mathrm{Id} \otimes e v} x \otimes 1 \cong x \\
x^{\vee} \cong x^{\vee} \otimes 1 \xrightarrow{\mathrm{Id} \otimes \delta} x^{\vee} \otimes x \otimes x^{\vee} \xrightarrow{e v \otimes \mathrm{Id}} 1 \otimes x^{\vee} \cong x^{\vee}
\end{gathered}
$$

are identity morphisms.
(2) Suppose x both has dual $\left(x^{\vee}, \delta, e v\right)$ and let $f: x \rightarrow x$ be an endomorphism. Define the trace $\operatorname{Tr}_{x}(f) \in \operatorname{End}_{\mathcal{C}}(1)$ as the composition

$$
1 \xrightarrow{\delta} x \otimes x^{\vee} \xrightarrow{f \otimes \mathrm{Id}} x \otimes x^{\vee} \xrightarrow{\tau_{x, x} \vee} x^{\vee} \otimes x \xrightarrow{e v} 1
$$

The Euler characteristic $\chi_{\mathcal{C}}(x)$ is by definition $\operatorname{Tr}_{\mathcal{C}}\left(\operatorname{Id}_{x}\right)$.
Examples 4.2. 1. Let $\mathcal{C}=k-\operatorname{Vec}$, the category of k-vector spaces, with $\otimes=\otimes_{k}$, unit k and $\tau(a \otimes b)=b \otimes a$. Then $V \in k-\mathbf{V e c}$ is dualizable if and only if $\operatorname{dim}_{k} V<\infty$, the dual is the usual dual vector space, $e v: V^{\vee} \otimes_{k} V \rightarrow k$ is the evaluation map $f \otimes v \mapsto f(v)$, and $\delta: k \rightarrow V \otimes_{k} V^{\vee}$ sends $1 \in k$ to $\sum_{i} e_{i} \otimes e^{i}$, where e_{1}, \ldots, e_{n} is a basis of V with dual basis e^{1}, \ldots, e^{n}. The trace is the usual trace and $\chi(V)=\operatorname{dim}_{k} V$ as an element of $\operatorname{End}_{k}(k) \cong k$.
2. For $\mathcal{C}=$ graded k-vector spaces, we have a similar story, except that $\tau(a \otimes$ $b)=(-1)^{|a||b|} b \otimes a$, for a, b homogeneous of degrees $|a|$, $|b|$. If $V=\oplus_{n} V_{n}$, then $\chi(V)=\sum_{n}(-1)^{n} \operatorname{dim}_{k} V_{n}$.
3. For $\mathcal{C}=D(k-\mathbf{V e c})$, the derived category, the dualizable objects are the complexes K_{*} such that the homology $H_{*}\left(K_{*}\right)=\oplus_{n} H_{n}\left(K_{*}\right)$ is finite dimenisonal over k and $\chi\left(K_{*}\right)=\sum_{n}(-1)^{n} \operatorname{dim}_{k} H_{n}\left(K_{*}\right)$, again as an element of $\operatorname{End}(k) \cong k$. Sending a finite CW complex T to its singular chain complex $C_{*}(T, k)$ we see that

$$
\chi\left(C_{*}(T, k)\right)=\chi^{\operatorname{top}}(T)
$$

in k. We have a similar computation for $\mathcal{C}=D(\mathbf{A b})$ and for the integral singular chain complex $C_{*}(T, \mathbb{Z})$, giving $\chi\left(C_{*}(T, \mathbb{Z})\right)=\chi^{\operatorname{top}}(T) \in \mathbb{Z}=\operatorname{End}_{D(\mathbf{A b})}(\mathbb{Z})$.
4. We may take \mathcal{C} to be the category Sp of spectra, which is symmetric monoidal
with unit the sphere spectrum \mathbb{S}. Note that $\operatorname{End}(\mathbb{S})$ is the 0th stable homotopy group of spheres, which is \mathbb{Z}, and that the dualizable objects are the thick subcategory generated by the suspension spectra of finite CW complexes. One recoves the usual topological Euler characteristic

$$
\chi_{\mathrm{Sp}}\left(\Sigma^{\infty} T_{+}\right)=\chi^{\operatorname{top}}(T)
$$

5. Morel's theorem and the quadratic Euler characteristic

Morel and Voevodsky have defined a homotopy theory where finite sets in the classical theory get replaced by smooth algebraic varieties over a given field k. The replacement of the stable homotopy category is the motivic stable homotopy category over $k, \mathrm{SH}(k)$. This is a symmetric monoidal category with unit the motivic sphere spectrum \mathbb{S}_{k}. The operation of \mathbb{P}^{1} suspension, $\Sigma_{\mathbb{P}^{1}}$ is formally inverted in $\mathrm{SH}(k)$.

For each pair of integers a, b one has the associated suspension functor $\Sigma^{a, b}$; for $a \geq b \geq 0$, this is smash product with $S^{a-b} \wedge \mathbb{G}_{m}^{\wedge b}$ and for arbitrary (a, b), this is defined as

$$
\Sigma^{a, b}=\Sigma^{a+2 N, b+N} \Sigma_{\mathbb{P}^{1}}^{-N} ; \quad N \gg 0
$$

The fact that $S^{1} \wedge \mathbb{G}_{m} \cong \mathbb{P}^{1}$ implies that this is well-defined, independent of N.
To construct the Grothendieck-Witt ring over k, GW (k) one starts with the set of isomorphism classes of non-degenerate symmetric bilinear forms over k (this is the same as non-degenerate quadratic forms over k if $1 / 2 \in k$. This is a commutative monoid under orthogonal direct sum, and GW (k) is a group completion, that is elements are form differences of non-degenerate symmetric bilinear forms (up to isomorphism). GW (k) is a ring, with product induced by tensor product: for $b: V \times V \rightarrow k, b^{\prime}: W \times W \rightarrow k$, we have $b \otimes b^{\prime}:(V \otimes W) \times(V \otimes W) \rightarrow k$ with $b \otimes b^{\prime}\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right)=b\left(v, v^{\prime}\right) b^{\prime}\left(w, w^{\prime}\right)$. This makes GW (k) into a ring.

We will usually work away from characteristic 2 , and so will speak mainly of quadratic forms.

A non-degenerate form q has its rank, namely, the dimension of the vector space on which it is defined. Sending q to $\operatorname{rank} q$ defines a ring homomorphism rank : $\operatorname{GW}(k) \rightarrow \mathbb{Z}$.

For $u \in k^{\times}$, we have the rank 1 form $\langle u\rangle$ with $\langle u\rangle(x)=u x^{2}$, more generally, we have the rank n form $\sum_{i=1}^{n}\left\langle u_{i}\right\rangle$ with $\sum_{i=1}^{n}\left\langle u_{i}\right\rangle\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} u_{i} x_{i}^{2}$. Away from characteristic 2 , every quadratic form is isomorphic to such a "diagonal" form. The hyperbolic form is $H(x, y)=x^{2}-y^{2}=\langle 1\rangle+\langle-1\rangle$. For a form q, we have $q \cdot H=\operatorname{rank}(q) \cdot H$. The Witt ring $W(k)$ is defined by

$$
W(k):=\operatorname{GW}(k) /(H)
$$

For k algebraically closed, the rank homomorphism is an isomorphism $\mathrm{GW}(k) \cong$ \mathbb{Z}. For $k=\mathbb{R}$, Sylverster's theorem of inertia says that each $q \in \mathrm{GW}(\mathbb{R})$ is uniquely of the form $q=a \cdot\langle 1\rangle+b \cdot\langle-1\rangle, a, b \in \mathbb{Z}$, and the signature homomorphism

$$
\operatorname{sig}: G W(\mathbb{R}) \rightarrow \mathbb{Z}
$$

is given by $\operatorname{sig}(a \cdot\langle 1\rangle+b \cdot\langle-1\rangle)=a-b$.
Theorem 5.1 (Morel). There is a natural isomorphism

$$
\operatorname{GW}(k) \cong \operatorname{End}_{\mathrm{SH}(k)}\left(\mathbb{S}_{k}\right)
$$

Each smooth proper variety over k, X, defines a dualizable object $\Sigma_{\mathbb{P}^{1}}^{\infty} X_{+}$in $\mathrm{SH}(k)$, so one has the associated Euler characteristic

$$
\chi(X / k):=\chi_{\mathrm{SH}(k)}\left(\Sigma_{\mathbb{P}^{1}}^{\infty} X_{+}\right) \in \operatorname{End}_{\mathrm{SH}(k)}\left(\mathbb{S}_{k}\right)=\operatorname{GW}(k)
$$

If we assume that k has characteristic zero, or if we invert p if k has characteristic $p>0, \Sigma_{\mathbb{P}^{1}}^{\infty} U_{+}$is dualizable for all smooth U, so the definition of $\chi(X / k)$ extends to arbitrary smooth U over k. Under the same assumptions, $\chi(X / k)$ extends to the Euler characteristic with compact support, $\chi_{c}(Z / k)$ for arbitrary finite type k-schemes, with $\chi(X / k)=\chi_{c}(X / k)$ for X smooth and proper.

The formal properties of categorical Euler characteristics and additional structural properties of $\mathrm{SH}(k)$ yield a number of properties of these Euler characteristics: For $u \in k^{\times}$, let $\langle u\rangle$ denote the rank one form $\langle u\rangle(x, y)=u x y$.

- $\chi\left(\Sigma^{a, b} X / k\right)=(-1)^{a}(\langle-1\rangle)^{b} \cdot \chi(X / k)$
- If Z contains a closed subscheme W with open complement U, then

$$
\chi_{c}(Z / k)=\chi_{c}(U / k)+\chi_{c}(W / k)
$$

If Z and W are smooth, and W has codimension c in Z, then

$$
\chi_{c}(Z / k)=\chi(U / k)+\langle-1\rangle^{c} \chi(W / k)
$$

- If $E \rightarrow B$ is a fiber bundle with fiber F, locally trivial in the Nisnevich topology, and E, B and F are smooth, then

$$
\chi(E / k)=\chi(B / k) \cdot \chi(F / k)
$$

- For X a smooth k-scheme, we have $\operatorname{rank} \chi(X / k)=\chi^{\text {top }}(X)$. If $k=\mathbb{C}$, this says $\operatorname{rank} \chi(X / \mathbb{C})=\chi^{\text {top }}(X(\mathbb{C}))$. If $k=\mathbb{R}$, we have $\operatorname{sig} \chi(X / \mathbb{R})=$ $\chi^{\text {top }}(X(\mathbb{R}))$.
- Suppose X is cellular: there is a stratification $\emptyset=X_{-1} \subset X_{0} \subset \ldots \subset X_{n}=$ X with $X_{i} \subset X$ closed of dimension i, such that $X_{i} \backslash X_{i-1}$ is a disjoint union of affine spaces \mathbb{A}_{k}^{i}. Then $\mathrm{CH}^{j}(X)$ is a free abelian group of finite rank for each j, and letting $r_{+}=\sum_{j \text { even }} \operatorname{rankCH}^{j}(X), r_{-}=\sum_{j \text { odd }} \operatorname{rankCH}^{j}(X)$, we have

$$
\chi(X / k)=r_{+} \cdot\langle 1\rangle+r_{-} \cdot\langle-1\rangle .
$$

For example

$$
\chi\left(\mathbb{P}^{n} / k\right)=\sum_{i=0}^{n}\langle-1\rangle^{i}
$$

- Let $Z \subset X$ be a smooth closed subscheme of a smooth k-scheme X, of codimension c and let \tilde{X} be the blow-up of X along Z. Then

$$
\chi(\tilde{X} / k)=\chi(X / k)+\left(\sum_{i=1}^{c-1}\langle-1\rangle^{i}\right) \cdot \chi(Z / k)
$$

Since the rank n form $\sum_{i=0}^{n-1}\langle-1\rangle^{i}$ comes up alot, we denote this by n_{ϵ}.

[^0]: Date: September 18, 2022.

