
LECTURE 2: QUADRATIC INTERSECTION THEORY

MARC LEVINE

Abstract. We introduce some basic notions about a quadratic refinement of

intersection theory and characteristic classes.

1. Introduction

We have seen that the Chow groups, with their intersection product and the
Chern classes of vector bundles, gives a path to computing enumerative invariants
for geometric problems over an algebraically closed field. Here we refine this to a
setting where the invariants live in the Grothendieck-Witt ring. This gives infor-
mation on enumerative problems over the reals by taking the signature, and other
invariants of quadratic forms, such as the discriminant, gives information over other
fields.

2. Chow-Witt groups and Witt sheaf cohomology

There is a rather sophisticated description of the Chow ring of a smooth variety
X as sheaf cohomology:

(2.1) CHn(X) = Hn(X,KMn )

where KM∗ is the sheaf of Milnor K-groups. For a local ring R (with infinite residue
field), KM

∗ (R) is the tensor algebra on the group of units R× modulo the Steinberg
relation

KM
∗ (R) := (R×)⊗Z/〈u⊗ 1− u | u, 1− u ∈ R×〉

KM
∗ (R) = ⊕n≥0K

M
n (R) is a graded ring with multiplication induced from the

multiplication in the tensor algebra and extends to a sheaf of graded rings KM∗ on
a scheme X with stalk at x ∈ X KM

∗ (OX,x); note that KM1 = O×X and KM0 is
the constant sheaf Z. The identity (2.1) is known as Bloch’s formula; this is the
classical identity

H1(X,O×X) = Pic(X) = CH1(X)

for n = 1, and was proven in general by Kato. The main point is to show that KMn
admits a flasque resolution of the form

0→ KMn → ⊕x∈X(0)ix∗K
M
n (k(x))

∂−→ ⊕x∈X(1)ix∗K
M
n−1(k(x))

∂−→ . . .

∂−→ ⊕x∈X(n−1)ix∗K
M
1 (k(x))

∂−→ ⊕x∈X(n)ix∗K
M
0 (k(x))→ 0
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2 M. LEVINE

with X(q) the set of codimension q points of X, so

Hn(X,KMn ) = coker[⊕x∈X(n−1)KM
1 (k(x))

∂−→ ⊕x∈X(n)KM
0 (k(x))]

= coker[⊕x∈X(n−1)k(x)×
div−−→ ⊕x∈X(n)Z]

= CHn(X).

The quadratic refinement, the Chow-Witt groups, were first defined by Barge and
Morel. Later one, Hopkins and Morel defined the Milnor-Witt K-groups, which lead
to a definition of the Chow-Witt groups completely parallel to Bloch’s formula.

For a field F , KMW
∗ (F ) is the graded, associative Z-algebra defined by generators

and relations

• Generators:
– [u] in degree 1 for u ∈ F×
– η in degree -1.

• Relations:
– [u]η = η[u] for all u ∈ F×
– [u][1− u] = 0 for u, 1− u ∈ F×
– [uv] = [u] + [v] + η[u][v]
– let h := 2 + η[−1]. Then η · h = 0

Morel shows that the KMW
∗ (F ) extend to define a sheaf of graded rings KMW

∗
on a smooth k-scheme X. Here is a resumé of some of the first properties of this
construction.

Proposition 2.1. Let X be a smooth k-scheme.

1. Let GW, W denote sheaves of Grothendieck-Witt rings, resp. Witt groups, on X.
There is natural isomorphism KMW

0
∼= GW and for n < 0 a natural isomorphism

KMW
n

∼=W.

2. The element η defines a global section of KMW
−1 and KMW

∗ /(η) ∼= KM∗ .

3. Let I ⊂ GW be the kernel of the rank homomorphism. Then for all n ≥ 0, the
surjection KMW

n → KMn has kernel In+1.

4. The assignment X 7→ KMW
n,X extends to a sheaf on smooth k-schemes: Let

f : Y → X be a morphism of smooth k-schemes. There is a natural pullback map
of sheaves f∗ : f−1KMW

n,X → KMW
n,Y , with (fg)∗ = g∗f∗. The items (1)-(3) are

natural with respect to f∗.

Definition 2.2. Let X be a smooth k-scheme. For n ≥ 0, the nth Chow-Witt

group C̃H
n
(X) is defined as

C̃H
n
(X) := Hn(X,KMW

n )

Via the surjection KMW
n → KMn , we have the map C̃H

n
(X) → CHn(X), with

kernel and cokernel arising from H∗(X, In+1), which gives the new “quadratic” in-

formation. The pullback maps f∗ for f : Y → X induces pullbacks f∗ : C̃H
n
(X)→

C̃H
n
(Y ) compatible with the pullbacks f∗ : CHn(X) → CHn(Y ). There are also

pushforward maps for proper maps, but here we need to introduce a new ingredient:
orientations and twisting.

Given an invertible sheaf L on X, we can form the twisted version GW(L) of
GW, this being the sheaf of quadratic forms with values in L (instead of in OX).
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GW(L) is a GW = KMW
0 module by multiplication, and we can define the twisted

Milnor-Witt sheaf by

KMW
n (L) = KMW

n ⊗GW GW(L)

We can think of a section of KMW
n (L) as locally in the form s · λ, with s a section

of KMW
n and λ a nowhere zero section of L, with the relation

s · (uλ) = (〈u〉 · s) · λ
for u a unit.

Definition 2.3. The L-twisted Chow-Witt groups are defined by

CHn(X;L) := Hn(X,KMW
n (L))

There is a Gersten-type resolution of the Milnor-Witt sheaves, which gives an in-
terpretation of the Chow-Witt groups as “cycles with coefficients in the Grothendieck-
Witt group”. This is called the Rost-Schmid resolution and looks like this (d =
dimkX)

0→ KMW
n → ⊕x∈X(0)KMW

n (k(x))
∂−→ ⊕x∈X(1)KMW

n−1 (k(x); det−1 mx/m
2
x)

∂−→ . . .

∂−→ ⊕x∈X(q)KMW
n−q (k(x); det−1 mx/m

2
x)

∂−→ . . .

∂−→ ⊕x∈X(d−1)KMW
n−d+1(k(x); det−1 mx/m

2
x)

∂−→ ⊕x∈X(d)KMW
n−d (k(x); det−1 mx/m

2
x)→ 0

Looking at the terms in degree n−1, n, n+1, ones sees that an element x of C̃H
n
(X)

is represented by a finite formal sum∑
j

qj · Zj

where the Zj are codimension n subvarieties of X, qj is in GW(k(Zj),detNj),
and Nj is the restriction to Spec k(Zj) of the normal sheaf (IZj/I2

Zj
)∨. There is

the coboundary condition ∂(
∑
j qj · Zj) = 0, living in the twisted Witt groups of

codimension one points of the Zjs, and all this is modulo the boundary of elements
of the twisted KMW

1 of generic points of codimension n−1 subvarieties. One should
think of these relations as a quadratic version of the divisor of rational functions.

Since 〈u2v〉 = 〈v〉, we have canonical isomorphisms

CHn(X;L ⊗M⊗2) ∼= CHn(X;L)

For f : Y → X a proper map of smooth varieties of relative dimension d, and L an
invertible sheaf on X we have the pushforward map

f∗ : Hp(Y,KMW
q (ωf ⊗ f∗L))→ Hp−d(X,KMW

q−d (L))

Here ωf is the relative dualizing sheaf ωf := ωY/k ⊗ f∗ω−1
X/k, and ωY/k = ΩdimY

Y/k is

the sheaf of top degree differential forms (similarly for ωX/k). This gives

f∗ : C̃H
n
(Y, ωf ⊗ f∗L)→ C̃H

n−d
(X,L)

For a rank r vector bundle p : V → X with zero section s0 : X → V , we have

ωs0 = detV

giving the pushforward

s0∗ : C̃H
m

(X)→ C̃H
m+r

(V, p∗ det−1 V )
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and the Euler class

e(V ) := s∗s0∗(1X) ∈ C̃H
r
(X,det−1 V ).

For pX : X → Spec k smooth and proper of dimension n we have the quadratic
degree

d̃egk := pX∗ : C̃H
n
(X,ωX/k)→ C̃H

0
(Spec k) = GW(k)

An orientation for a vector bundle V → X is an isomorphism ρ : det−1 V
∼−→

ωX ⊗ L⊗2 for some invertible sheaf L. Given an orientation on a vector bundle
V of rank n = dimkX, we have ˜degk(e(V )) ∈ GW(k) defined by applying the
composition

C̃H
n
(X,det−1 V )

ρ∗−→ C̃H
n
(X,ωX⊗L⊗2) ∼= C̃H

n
(X,ωX)

pX∗−−→ C̃H
0
(Spec k) = GW(k).

to e(V ).
The surjection KMW

∗ → KM∗ extends to a surjection KMW
∗ (L)→ KM∗ , giving the

map

C̃H
n
(X,L)→ CHn(X)

In another direction, the isomorphisms KMW
n (L)→W(L) for n < 0 are compatible

with multiplication by η, ×η : KMW
n (L)→ KMW

n−1 (L), so extends to a map

×ηN : KMW
n (L)→W(L), N >> 0

giving the map

C̃H
n
(X,L)→ Hn(X,W(L))

One a the functorialities for Hn(X,W(L)) similar to those for the twisted Chow-
Witt groups, and the two comparison maps

CHn(X)← C̃H
n
(X,L)→ Hn(X,W(L))

are compatible with f∗ and f∗. For the case of the degree maps, we have the
commutative diagram

CHn(X)

degk

��

C̃H
n
(X,ωX/k)oo //

˜degk

��

Hn(X,W(ωX/k))

¯degk

��

Z GW(k)
rankoo π // W (k)

for X smooth and proper of dimension n over k, with

¯degk = pX∗ : Hn(X,W(omegaX/k))→ H0(Spec k,W) = W (k)

and with π : GW(k)→W (k) the quotient map.
Noting that an element of x ∈ GW(k) is determined by rank(x) ∈ Z and π(x) ∈

W (k), it is often easier to work with the somewhat simpler Witt sheaf cohomology
if one is mainly interested in “quadratic part” of enumerative invariants. Here are
some examples.

Quadratic Bézout theorem The global part is very simple

Proposition 2.4. Let V → X be a vector bundle of odd rank r. Then eW(V ) ∈
Hr(X,W(det−1 V )) is zero.
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The Euler class is multiplicative with respect to direct sums (or exact sequences),
so

eW(⊕jLj) = 0

for line bundles Lj . However, for the quadratic Bézout theorem, one also needs
the quadratic analog of the intersection multiplicities. This can be supplied by the
Euler class with support and the purity theorem.

Let V → X be a rank r vector bundle, s : X → V a section and Z ⊂ X a closed
subset containing the locus s = 0. Then e(V ) := s∗s0∗(1X) ∈ Hr(X,KMW

r (det−1 V ))
lifts canonically to the Euler class with support eZ(V, s) ∈ Hr

Z(X,KMW
r (det−1 V )).

The purity theorem is the following

Theorem 2.5. Suppose i : Z → X is the inclusion of a smooth subvariety Z of a
smooth variety X of codimension c, and let L be an invertible sheaf on X. Then
the pushforward i∗ : Hp−c(Z,KMW

q−c (i∗L ⊗ ωi) → Hp(X,KMW
q (L)) factors through

an isomorphism

i∗ : Hp−c(Z,KMW
q−c (i∗L ⊗ ωi)

∼−→ Hp
Z(X,KMW

q (L))

via the forget the support map Hp
Z(X,KMW

q (L))→ Hp(X,KMW
q (L)).

To apply this to Bézout’s theorem, take our two curves C1, C2 defined by sections
Fi : P2 → OP2(di) and with C1 ∩ C2 = {p1, . . . , pr}. Let Z = {p1, . . . , pr}. The
section s := (F1, F2) of V := OP2(d1)⊕OP2(d2) gives the Euler class with support

eZ(V, s) ∈ H2
Z(P2,KMW

2 (OP2(−d1−d2)) ∼= ⊕jH0(pj ,GW(OP2(−d1−d2)⊗ω−1
P2 )⊗k(pj))

Now suppose that−d1−d2 is odd, and recall that ωP2 ∼= OP2(−3). Then GW(OP2(−d1−
d2)⊗ ω−1

P2 ) ∼= GW, and we have

eZ(V, s) =
∏
j

m̃(F1, F2, pj) ∈ ⊕jGW(pj)

defining the quadratic intersection multiplicity m̃(s1, s2, pj) ∈ GW(pj). Using the
functoriality of pushforward, and the fact that the pushforward for pj → Spec k is
the trace map Trk(pj)/k : GW(k(pj))→ GW(k), we find

˜degk(e(V )) =
∑
j

Trk(pj)/k(m̃(F1, F2, pj))

But since eW(V ) = 0, this says that π( ˜degk(e(V ))) = 0 inW (k), that is, ˜degk(e(V )) =
m ·H. Comparing with the classical Bézout theorem, we know that m = d1d2/2,
which is an integer, since exactly one of d1, d2 is even. This gives us the quadratic
Bézout theorem.

Theorem 2.6. Suppose we have plane curves C1, C2 ⊂ P2
k of degree d1, d2, with

no common components. Suppose in addition that d1 + d2 is odd Then∑
j

Trk(pj)/k(m̃(F1, F2, pj)) =
d1d2

2
·H

To round things out, it would be nice if we had a more explicit description of
the quadratic intersection multiplicity. This is given by a quadratic refinement of
the formula

m(C1, C2, p) = dimkOP2,p/(f1, f2)

where (f1, f2) are local defining equations for C1, C2 near an intersection point p.
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For this, we need to make clear how our (canonical) isomorphism ωP2 ∼= OP2(−3)
gives rise to the isomorphism GW(OP2(−d1 − d2)⊗ ω−1

P2 ) ∼= GW.
The isomorphism ωP2 ∼= OP2(−3) is given by choosing the global generator for

ωP2(3) to be the differential form

Ω := X0dX1dX2 −X1dX0dX2 +X2dX0dX1

so we have OP2(−3) ∼= ωP2 by sending a local section λ of OP2(−3) to to local
section λ ·Ω of ωP2 . This gives the isomorphism OP2(−d1−d2 +3) ∼= ω−1

P2 (−d1−d2)
similarly. Writing −d1 − d2 + 3 = 2m, we have the isomorphism

φ : OP2(m)⊗2 ∼−→ ω−1
P2 (−d1 − d2),

and a distinguished local section of ω−1
P2 (−d1 − d2) is a section of form φ(λ2) for λ

a local section of OP2(m).
Take p = pj for some j and let L = L(X0, X1, X2) be a linear form with L(p) 6= 0.

Choose local parameters t1, t2 generating mp ⊂ OP2,p such that

(Ld1+d2 · dt1 ∧ dt2)−1

is a distinguished local section of ω−1
P2 (−d1− d2) and let fi = Fi/L

di ∈ mp. Choose
aij ∈ OP2,p so that

fi = ai1t1 + ai2t2

and let e be the image of det(aij) in J := OP2,p/(f1, f2). J is a Artin local ring
with residue field k(p), so the surjection J → k(p) admits a (non-unique) splitting,
making J a finite dimensional k(p)-algebra.

Proposition 2.7 (Scheja-Storch, Kass-Wickelgren). 1. e is independent of the
choice of the aij and generates the socle of J as k(p)-vector space.

2. Let ` : J → k(p) be a k(p)-linear form with `(e) = 1. Then m̃(F1, F2, p) ∈
GW(k(p)) is represented by the quadratic form

qSS(x) := `(x2)

Example 2.8. The simplest case is when C1 and C2 intersect transversely at p and
p is a k-point, so J = k. In this case, the image of aij in J is just (∂fi/∂tj)(p), so
e is the determinant of the Jacobian matrix (∂fi/∂tj)(p), and qSS is the rank one
form 〈1/e〉 ∼ 〈e〉.

Exercise Assume that at p, using coordinates (x, y) and a certain L gives a distin-
guished local section of ω−1

P2 (−d1 − d2) at p, and that fi = Fi/L
di . Compute the

quadratic intersection multiplicity at p = (0, 0) ∈ Spec k[x, y] for the given (f1, f2)

a. (f1, f2) = (x, 3y)

b. (f1, f2) = (x, y2)

c. (f1, f2) = (y − x2, y2 − x3)

d. (f1, f2) = (yx2, y2 − x3).

Lines on a hypersurface

As for the Chow group, one can compute the quadratic count of th enumber of
lines on a hyupersurface X ⊂ Pn of appropriate degree d by computing the degree
of the Euler class of Symd(E∨2 ), where E2 → Gr(2, n + 1) is the tautological rank
2 subbundle of the trivial rank n+ 1 bundle. Since dimkGr(2, n+ 1) = 2n− 2 and
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Symd(E∨2 ) has rank d+ 1, the condition on d is d = 2n− 3. In this case Symd(E∨2 )
has even rank 2n, so one has the possibility of a non-zero Euler class. We need to
check the orientation condition.

One has the Euler sequence for Gr(2, n+ 1):

0→ E2 ⊗ E∨2 → On+1
Gr(2,n+1) ⊗ E

∨
2 → TGr(2,n+1) → 0

detE∨2 = OGr(2,n+1)(1) with respect to the Plücker embedding, and detE2⊗E∨2 is
trivial, so we have

detTGr(2,n+1) = OGr(2,n+1)(n+ 1), ωGr(2,n+1) = OGr(2,n+1)(−n− 1)

We can compute det Symd(E∨2 ) by using the splitting principle again: If E∨2 =
M1 ⊕M2, then

Symd(E∨2 ) = ⊕di=0M
⊗d−i
1 ⊗M⊗i2

so

det Symd(E∨2 ) = (M1 ⊗M2)
∑d

i=1 i = OGr(2,n+1)(
d(d+ 1)

2
)

Since d = 2n− 1, this is OGr(2,n+1)((2n− 3)(n− 1)) and so

det−1 Symd(E∨2 ) ∼= ωGr(2,n+1) ⊗OGr(2,n+1)((n− 1)2 + 1)⊗2

which gives the orientation condition. We thus have

eW(Symd(E∨2 )) ∈ H2n−2(Gr(2, n+ 1),W(det−1 Symd(E∨2 )))

∼= H2n−2(Gr(2, n+ 1),W(ωGr(2,n+1)))

so we have
˜degk(eW(Symd(E∨2 ))) ∈W (k).

To compute this, we use the following general result

Theorem 2.9. Let V → X be a rank 2 vector bundle. Then for d odd

eW(SymdV ) = d!!e(V )d+1/2 ∈ Hd+1(X,W(det−1 SymdV ))

Here d!! = d · (d− 2) · · · 3 · 1.
In our case, we have

eW(Symd(E∨2 )) = d!!eW(E∨2 )n−1 ∈ H2n−2(Gr(2, n+ 1),W(OGr(2,n+1)(n− 1)))

Wendt has computed the intersection ring of H∗(Gr(2, n+ 1),W(∗)) and shows
that

˜degk(eW(E∨2 )n−1) = 〈1〉 ∈W (k)

so
˜degk(eW(Symd(E∨2 ))) = d!! · 〈1〉 ∈W (k).

If we let N1(n) = degk(c2n−2(Sym2n−3(E∨2 ))) ∈ Z, then we have the full qua-
dratic degree

˜degk(eCW (Symd(E∨2 ))) = d!! · 〈1〉+
N1(n)− d!!

2
·H ∈ GW(k)

For the case of the cubic surface in P3, we have

˜degk(eCW (Sym3(E∨2 ))) = 3 · 〈1〉+ 12 ·H ∈ GW(k)

This recovers the first such computation, by Kass-Wickelgren, who used a more
explicit computation of the Euler class via the quadratic local multiplicities.
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Quadratic Gauß-Bonnet and the quadratic Riemann-Hurwitz formula

Theorem 2.10. Let X be smooth and proper over a field k. Then

χ(X/k) = ˜degk(eCW (TX/k)) ∈ GW(k)

and the image π(χ(X/k)) of χ(X/k) in W (k) is given by

π(χ(X/k)) = ˜degk(eW(TX/k)) ∈W (k)

Note: This says in particular that χ(X/k) = m ·H for some integer m if dimkX
is odd.

We will say a bit about the proof in Lecture 3. A consequence is a quadratic
version of the Riemann-Hurwitz formula

Theorem 2.11. Let f : X → C be a morphism of a smooth proper k-scheme X
of dimension n to a smooth projective curve C. Suppose that the induced section
df : OX → ΩX ⊗ f∗ω−1

C has isolated zeros p1, . . . , pr with quadratic multiplicities
m̃i ∈ W (k(pi)). If n is odd, we suppose in addition that ωC ∼= L⊗2 for some
invertible sheaf on C. Then

π(χ(X/k)) =
∑
i

Trk(pi)/km̃i ∈W (k).

Since det(ΩX ⊗ f∗ω−1
C ) = ωX ⊗ f∗ω−nC , our assumption that ωC ∼= L⊗2 if n is

odd says that we have the orientation condition needed to define the local quadratic
multiplicities

m̃i := eWpi (ΩX⊗f∗ω−1
C , df) ∈ Hn

pi(X,W(ωX⊗f∗ω−nC )) ∼= Hn
pi(X,W(ωX)) ∼= W (k(pi))

The proof follows the same idea as for the classical case: one computes ˜degke
W(ΩX/k⊗

f∗ω−1
C/k) as

∑
i Trk(pi)/km̃i and then uses

Proposition 2.12. Let V be a rank r vector bundle on a smooth k-scheme X and
let L be a line bundle on X. If r is odd, we suppose that L ∼= M⊗2 for some line
bundle M . Then

eW(V ⊗ L) = eW(V ) ∈ H2r(X,W(det−1 V )) ∼= H2r(X,W(det−1(V ⊗ L)))

One also has an explicit formula for the m̃i using the quadratic form on the local
Jacobian rings

J(df)pi = OX,pi/(. . . , ∂f/∂ti, . . .)
with respect to suitably chosen coordinates t1, . . . , tn at pi. In fact, take p = pi a
point with df = 0. Let q = f(p) and let t ∈ mq ⊂ OC,q be a local parameter. Let
x1, . . . , xn ∈ mp ⊂ OX,p be local parameters. If n is odd, we let ρ : L⊗2 → ωC be
the chosen “orientation” and we assume that the local generator dt of ωC,q is of the
form ρ(λ2) for λ a local generator of L near q. Let g = f∗(t) ∈ mp, giving the partial
derivatives ∂g/ detxi, i = 1, . . . , n. Let J(f, p) = OX,p/(∂g/ detx1, . . . , ∂g/detxn)
and choose elements aij ∈ OX,p with

∂g/ detxi =

n∑
j=1

aijxj

Let eSS ∈ J(f, p) be the image of det(aij). The fact that df has an isolated zero at
p implies that J(f, p) is an Artin k-algebra, so contains the residue field k(p). Let
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` : J(f, p) → k(p) be a k(p) linear map with `(eSS) = 1 and define the quadratic
form qSSf,p on J(f, p) with values in k(p) by

qSSf,p(x) = `(x2)

Then the local Euler class m̃CW
i := eCWpi (ΩX ⊗ f∗ω−1

C , df) ∈ GW(k(p)) is repre-

sented by qSSf,p.

Exercises
1. Suppose X and C are both smooth curves and f : X → C a finite cover. Take
p ∈ X and suppose we have local parameters x at p and t at q := f(p) such that
f∗(t) = uxn for u ∈ O×X,p a unit. Suppose that n is prime to the characteristic
and that dt satisfies the appropriate orientation condition. Compute the quadratic
multiplicity eCWpi (ΩX ⊗ f∗ω−1

C , df) ∈ GW(k(p)).
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