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ODE TO THE P LAPLACIAN

I used to be in love with the Laplacian so worked hard to please
her with beautiful theorems. However she often scorned me for
the likes of Björn Dahlberg, Gene Fabes, Carlos Kenig, and
Thomas Wolff. Gradually I became interested in her sister the p
Laplacian, 1 < p <∞,p 6= 2. I did not find her as pretty as the
Laplacian and she was often difficult to handle because of her
nonlinearity. However over many years I took a shine to her and
eventually developed an understanding of her disposition. Today
she is my girl and the Laplacian pales in comparison to her.
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Introduction

To begin, let Ω ⊂ Rn,n ≥ 2, be a bounded domain (i.e., a connected
open set) and p fixed, 1 < p <∞. Let N be an open neighborhood of
∂Ω and suppose that u is p harmonic in Ω ∩ N. That is,
u ∈ W 1,p(Ω ∩ N) and ∫

|∇u|p−2〈∇u,∇θ〉dx = 0 (1)

whenever θ ∈ C∞
0 (Ω ∩ N). Here ∇u is the gradient of u. Note that if u

had continuous second partials in Ω ∩ N and ∇u 6= 0 in Ω ∩ N, then (1)
would imply that u is a classical solution to the p Laplace equation in
Ω ∩ N :

∇ ·
(
|∇u|p−2∇u

)
= 0,

where ∇· denotes the divergence of u.
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If u is positive on Ω ∩ N with boundary value zero on ∂Ω, in the W 1,p

Sobolev sense, one can extend u to a function in W 1,p(N) by setting
u ≡ 0 on N \ Ω. Then there exists
(see Heinonen, Kilpelainen, Martio, Nonlinear Potential Theory of
Degenerate Elliptic Equations, ch 17, Dover Publications, 2006), a
unique positive Borel measure µ on Rn with support ⊂ ∂Ω, for which∫

|∇u|p−2〈∇u,∇φ〉dx = −
∫
φdµ (2)

whenever φ ∈ C∞
0 (N). In fact if ∂Ω, |∇u|, are smooth

dµ = |∇u|p−1dHn−1 on ∂Ω,

where Hk denotes k dimensional Hausdorff measure in Rn. If p = 2
and u is the Green’s function with pole at x0 ∈ Ω, then µ = ω(·, x0) is
harmonic measure with respect to x0 ∈ Ω.
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Green’s functions can be defined for the p Laplacian when 1 < p <∞,
but are not very useful due to the nonlinearity of the p Laplacian when
p 6= 2. Instead we often study the measure associated with a p
capacitary function, say u, in Ω \ B̄(x0, r), where
B(x0, r) = {y : |y − x0| < r} and B(x0,4r) ⊂ Ω. That is, u is p harmonic
in Ω \ B̄(x0, r) with continuous boundary values, u ≡ 1 on ∂B(x0, r) and
u ≡ 0 on ∂Ω.
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Remark 1. µ as in (2) is different from the so called p harmonic
measure introduced by Martio, which in fact is not a measure (see J.
Llorente, J. Manfredi, J.M. Wu,
‘ p Harmonic Measure Is Not additive on Null Sets,’ Ann. Sc. Norm.
Super. Pisa Cl. Sci (5) 4 (2005), no. 2, 357-373).
Define the Hausdorff dimension of µ by

H-dim µ = inf{k : there exists E Borel ⊂ ∂Ω
with Hk (E) = 0 and µ(E) = µ(∂Ω)}.

Remark 2. Today we discuss for a fixed p,1 < p <∞, what is known
about H-dim µ when µ corresponds to a positive p harmonic function u
in Ω ∩ N with boundary value 0 in the W 1,p Sobolev sense. It turns out
that H-dim µ is independent of u as above. Thus we often refer to
H-dim µ as the dimension of p harmonic measure in Ω.
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For p = 2 and harmonic measure, Carleson in
On the support of harmonic measure for sets of Cantor type, Ann.
Acad. Sci. Fenn. 10 (1985), 113 - 123.
used ideas from ergodic theory andboundary Harnack inequalities for
harmonic functions to deduce H-dim ω = 1 when Ω is a ‘snowflake’
type domain and H-dim ω ≤ 1 when Ω is the complement of a self
similar Cantor set. He was also the first to recognize the importance of∫

∂Ωn

|∇gn| log |∇gn|dH1

(gn is Green’s function for Ωn with pole at zero and (Ωn) is an
increasing sequence of domains whose union is Ω).
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p Harmonic Measure in Quasi-Circles

Inspired by Carleson’s work, Björn Bennewitz, and I, managed to
obtain the following results in
On the Dimension of p Harmonic Measure (with Björn Bennewitz),
Ann. Acad. Sci. Fenn. 30 (2005), 459-505.

Theorem A.
Fix p,1 < p <∞, and let u > 0 be p harmonic in Ω ∩ N ⊂ R2 with
u = 0 continuously on ∂Ω. If ∂Ω is a snowflake and 1 < p < 2, then
H-dim µ > 1 while if 2 < p <∞, then H-dim µ < 1.

Theorem B.
Let p,u, µ be as in Theorem A. If ∂Ω is a self similar Cantor set and
2 < p <∞, then H-dim µ < 1.
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Theorem C.
Let p,u, µ be as in Theorem A. If ∂Ω is a k quasicircle, then
H-dim µ ≤ 1 for 2 < p <∞, while H-dim µ ≥ 1 for 1 < p < 2.

p Harmonic Measure in Simply Connected Domains

Let

γ(r) = r exp
(

a
√

log1/r log log 1/r
)

when 0 < r < 1/100,

and let Hγ denote Hausdorff measure defined with respect to γ.
Recently in
p Harmonic Measure in Simply Connected Domains (with Pietro Poggi
Corradini and Kaj Nyström), to appear Annals of the Institute Fourier,
Grenoble.

we have proved the following theorem.
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Theorem D
Fix p,1 < p <∞, and let u > 0 be p harmonic in Ω ∩ N, where Ω is
simply connected, ∂Ω is compact, and N is a neighborhood of ∂Ω.
Suppose u has continuous boundary value 0 on ∂Ω and let µ be the
measure associated with u as in (2).

(a) If a = a(p) < −1 is negative enough and p > 2, then
µ is concentrated on a set of Hγ finite measure.

(b) If a = a(p) > 1 is large enough and 1 < p < 2, then µ
is absolutely continuous with respect to Hγ measure.
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We note that Makarov proved for harmonic measure (i.e, p = 2) in
Distortion of boundary sets under conformal mapping, Proc. London
Math. Soc. 51 (1985), 369-384, the stronger theorem:

Theorem E
Let ω be harmonic measure with respect to a point in the simply
connected domain Ω. Then

(a) ω is concentrated on a set of σ finite H1 measure

(b) ω is absolutely continuous with respect to H γ̂ measure
defined relative to γ̂(r) = r exp[A

√
log 1/r log log log 1/r ]

for A sufficiently large.

John Lewis (Univ Kentucky) Where We Are At With p Harmonic Measure
Analysis and Boundary Value Problems on Real and Complex Domains Banff International Research Station, July 25-30 11

/ 49



The best known value of A in the definition of γ̂ appears to be

A = 6
√√

24−3
5 due to H. Hedenmalm and I. Kayamov in,

On the Makarov law of the iterated logarithm, Proc. Amer. Math. Soc.
135 (2007), no. 7, 2235-2248.

Basic Ingredients in the Proof of Theorems A-D
To outline the proofs of Theorems A− D we switch to complex
notation. So z = x + iy , or x1 + ix2, B(z, ρ) = {w : |w − z| < ρ}, and
d(E ,F ) denotes the distance between the sets E ,F . Since all
measures associated with p harmonic functions in Theorems A - E
have the same dimension and since the p Laplacian is invariant under
translations, dilations, and rotations, we assume as we may that
B̄(0,1) ⊂ Ω,d(0, ∂Ω) = 4, and that u is the p capacitary function for
D = Ω \ B̄(0,1). Thus u ≡ 1 on ∂B(0,1),u ≡ 0 on ∂Ω and u is p
harmonic in D.
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Fact A. u is real analytic in D,∇u 6= 0 in D, and uz = (1/2)(ux − iuy ),
is k = k(p) quasi-regular in D. Consequently, log |∇u| is a weak
solution to a divergence form PDE for which a Harnack inequality
holds. That is, if h ≥ 0 is a weak solution to this PDE in B(ζ, r) ⊂ D,
then max

B(ζ,r/2)
h ≤ c̃ min

B(ζ,r/2)
h, where c̃ = c̃(p).2

Next we note that if ζ = ux1 ,ux2 , or u, then for z = x1 + ix2 ∈ D,

Lζ =
2∑

i,j=1

∂

∂xi
[ bij(z)ζxj (z) ] = 0, (3)

Here
bij(z) = |∇u|p−4[(p − 2)uxi uxj + δij |∇u|2](z), (4)

for 1 ≤ i , j ≤ 2, and δij is the Kronecker δ. Observe that
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if ξ = ξ1 + iξ2, then

min{p − 1,1}|ξ|2 |∇u(z)|p−2 ≤
2∑

i,k=1

bik (z) ξiξk

≤ max{1,p − 1}|∇u(z)|p−2 |ξ|2 .

(5)

Also it turns out that v = log |∇u| satisfies for p 6= 2,1 < p <∞, that

Lv
p − 2

≈
2∑

i,j=1

|∇u|p−4(uxi xj )
2 (6)

in D where ≈ means the two quantities are bounded above and below
by constants depending on p. Thus Lv ≥ 0 for p > 2 and Lv ≤ 0 for
1 < p < 2. Note that if

c−1u(z)/d(z, ∂Ω) ≤ |∇u(z)| ≤ cu(z)/d(z, ∂Ω), (7)

for some constant c and z near ∂Ω. then Harnack’s inequality for u and
(5) imply that (bik (z)) are locally uniformly elliptic in Ω.
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The righthand inequality in (7) can be proved using Fact A. However
the lefthand inequality in (7) for simply connected domains, appears
nontrivial, and is the main new result in Theorem E. That is, armed
with (7) in the simply connected case, we were able to follow closely
the proof of Theorem C. Note that if p = 2 and u is the Green’s
function with pole at 0, then (7) is an easy consequence of the area
theorem for univalent functions.

Proof of Theorem A

To outline the proof of Theorem A suppose Ωn,n = 1,2, . . . , is a
sequence of approximating domains and for large n let un be the p
capacitary function for Dn = Ωn \ B̄(0,1).
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Then one first proves:

Lemma 1. For fixed p,1 < p <∞,

η = lim
n→∞

n−1
∫

∂Ωn

|∇un|p−1 log |∇un|dH1 z

exists. If η > 0 then H-dim µ < 1 while if η < 0, then H-dim µ > 1.2

To prove Lemma 1 we followed Carleson. Thus we proved a boundary
Harnack inequality for the ratio of two positive p harmonic functions
vanishing on ∂Ω which then enabled us to employ ergodic theorems of
Birkhoff and Shannon, Mcmillan, Breiman, to eventually get Lemma 1.
2

To prove Theorem A let un,Ωn be as in Lemma 1. Using Fact A applied
to un and (3) - (5) one deduces that if vn = log |∇un|, then∫

Dn

(un Lvn−vn Lun) dA = (p−1)

∫
∂Ωn

|∇un|p−1 log |∇un|dH1z + O(1).

(8)
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In view of the estimate for Lv in (6) one concludes from Lemma 1 that
it suffices to show

lim inf
n→∞

 n−1
∫

Dn

un |∇un|p−4
∑
i,j=1

(un)
2
xi xj

dA

 > 0. (9)

To prove (9) we showed the existence of c ≥ 1 and λ ∈ (0,1) such that
if z ∈ Ωn \ B(0,2) and d(z, ∂Ωn) ≥ 3−n, then

c
∫

Dn∩B(z,λd(z,∂Ωn))
un|∇un|p−4

2∑
i,j=1

(un)
2
yi yj

dA ≥ µn(B(z,2d(z, ∂Ωn))

(10)
where c depends on p and the k quasi-conformality of Ω. Covering
{3−m−1 ≤ d(z, ∂Ωn) ≤ 3−m} by balls and summing over 1 ≤ m ≤ n− 1
in (10) we obtain first (9) and then Theorem A. 2
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Proof of Theorem C

To prove Theorem C for quasi circles let w(x) = max(v − c,0) when
1 < p < 2 and w(x) = max(−v − c,0) when p > 2. Here c is chosen
so large that |v | ≤ c on B(0,2). Following Makarov we used Green’s
theorem, the coarea formula, (6), and (7) to prove that

Lemma 2. Let m be a nonnegative integer . There exists
c+ = c+(k ,p) ≥ 1 such that for 0 < t < 1,∫

{z:u(z)=t}
|∇u|p−1 w2m dH1z ≤ cm+1

+ m! [log(2/t)]m . 2

Dividing the above by (2c+)m m! [log(2/t)]m and summing we obtained
for 0 < t < 1 that∫

{z:u(z)=t}
|∇u|p−1 exp

[
w2

2c+ log(2/t)

]
dH1z ≤ 2 c+. (11)

Using (11) and weak type estimates it follows that if
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λ(t) =
√

4 c+ log(2/t)
√

log(− log t) for 0 < t < e−2,

F (t) = {z : u(z) = t and w(z) ≥ λ(t)}

then ∫
F (t)

|∇u|p−1 dH1z ≤ 2c+

log2(1/t)
(12)

Finally (12) combined with measure theoretic arguments and the
inequality

c−1 rp−2 µ[B(w , r/2)] ≤ max
B(w ,r)

up−1

≤ c rp−2 µ[B(w ,2r)] whenever w ∈ ∂Ω, 0 < r ≤ r0,
(13)

yield Theorem C. 2
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Proof of Theorem D

As mentioned earlier the major obstacle to proving Theorem E over
Theorem C was that we could not prove the fundamental inequality in
(6). That is, in our simply connected paper we prove

Theorem F
If u is the p capacitary function for D, then there exists c = c(p) ≥ 1,
such that

c|∇u|(z) ≥ u(z)

d(z, ∂Ω)
whenever z ∈ D.

To prove Theorem F we assume, as we may, that ∂Ω is a Jordan
curve, since otherwise we can approximate Ω in the Hausdorff
distance sense by Jordan domains and use the fact that the constant
in Theorem F depends only on p to eventually get this theorem for Ω.
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We also write ρ(·, ·) for the hyperbolic distance function in Ω.

Lemma 3. There is a constant c = c(p) ≥ 1 such that for any point
z1 ∈ D \ B(0,2), there exists z? ∈ D \ B(0,2) with u(z?) = u(z1)/2 and
ρ(z1, z?) ≤ c. 2

Assuming Lemma 3 one gets Theorem F from the following argument.
Let Γ be the hyperbolic geodesic connecting z1 to z∗ and suppose that
Γ ⊂ D. From properties of ρ one sees for some c = c(p) that

H1(Γ) ≤ cd(z1, ∂Ω) and d(Γ, ∂Ω) ≥ c−1d(z1, ∂Ω). (14)

Thus
1
2

u(z1) ≤ u(z1)− u(z?) ≤
∫

Γ
|∇u(z)||dz|

≤ cH1(Γ) max
Γ

|∇u| ≤ cd(z1, ∂Ω) max
Γ

|∇u|.
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So for some ζ ∈ Γ and c∗ = c∗(p) ≥ 1,

c?|∇u(ζ)| ≥ u(z1)

d(z1, ∂Ω)
. (15)

Also from (14), we deduce the existence of Whitney balls {B(wj , rj},
with wj ∈ Γ, rj ≈ d(z1, ∂Ω), connecting ζ to z1.

Using this deduction, the righthand inequality in (7), and Harnack’s
inequality applied to u we find
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|∇u(z)| ≤ cu(z1)/d(z1, ∂Ω) when z ∈
⋃

j

B(wj , rj) . (16)

From (15), (16), we see that if c = c(p) is large enough and

h(z) = log
(

c u(z1)

d(z1, ∂Ω) |∇u(z)|

)
for z ∈

⋃
j

B(wi , ri)

then h > 0 in ∪iB(wi , ri) and h(ζ) ≤ c. From Fact A we see that
Harnack’s inequality can be applied to h in successive balls of the form
B(wi , ri/2). Doing this we obtain h(z1) ≤ c′ where c′ = c′(p). Clearly,
this inequality implies Theorem F.

We note that if ∂Ω is a quasicircle one can choose z∗ to be a point on
the line segment connecting z1 to w ∈ ∂Ω where |w − z1| = d(z1, ∂Ω)
The proof uses Hölder continuity of u near ∂Ω and the fact that for
some c = c(p, k), cu(z1) ≥ max

B(z1,2d(z1,∂Ω))
u.
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This inequality need not hold in a Jordan domain and so we have to
give a more complicated argument to get Lemma 3. To this end, we
construct a Jordan arc
σ : (−1,1)→D with σ(0) = z1, σ(±1) = lim

t→±1
σ(t) ∈ ∂Ω, and

σ(1) 6= σ(−1). Moreover, for some c = c(p),

(α) H1(σ) ≤ cd(z1, ∂Ω)

(β) u ≤ cu(z1) on σ.
(17)

Let Ω1 be the component of Ω \ σ not containing B(0,1). Then we also
require that there is a point w0 on ∂Ω ∩ ∂Ω1 with

|wo − z1| ≤ cd(z1, ∂Ω) and d(w0, σ) ≥ c−1d(z1, ∂Ω). (18)

Finally we shall show the existence of a Lipschitz curve τ : (0,1)→Ω1
with τ(0) = z1, τ(1) = w0, satisfying the cigar condition:

min{H1(τ [0, t ]),H1(τ [t ,1])} ≤ ĉd(τ(t), ∂Ω), (19)
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for 0 < t < 1 and some absolute constant ĉ.

To get Lemma 3 from (17) - (19) let u1 = u in Ω1 and u1 ≡ 0 outside of
Ω1. From PDE estimates, (17) (β), and (18) one finds θ > 0, c <∞
such that

max
B(w0,t)

u1 ≤ cu(z1)

(
t

d(z1, ∂Ω)

)θ

for 0 < t < d(w0, σ). (20)

From (19), (20) we conclude the existence of z∗ with ρ(z1, z∗) ≤ c and
u(z∗) = 1/2, which is Lemma 3.
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The most difficult part of the construction of σ, τ is to prove (17) (β). To
briiefly outline this proof let f be the Riemann mapping function from
the upper half plane, H, onto Ω with f (i) = 0 and f (a) = z1, where
a = is for some s,0 < s < 1. In our paper we show the existence of
x1 ∈ [−s,−s/2], x2 ∈ [s/2, s] with the following property. Let ξ be the
curve consisting of the horizontal line segment joining x1 + is to x2 + is,
together with the vertical line segments joining xj to xj + is for j = 1,2.
Let Q̃(a) be the rectangle whose intersection with H is ξ. Then f (ξ) = σ
satisfies (17) (α). Moreover τ is the image of a curve λ, consisting of
horizontal and vertical line segments, joining a to a point x0.
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It remains to prove u ≤ cu(z1) on σ which is (17) (β). The proof is by
contradiction. Suppose u > Au(z1) on σ. We shall obtain a
contradiction if A = A(p) is suitably large. The argument is based on
the recurrence type scheme often attributed to Carleson - Domar in the
complex world and Caffarelli et al in the PDE world. Given the
rectangle Q̃(a) one chooses points bj,1 = xj + iδs, j = 1,2, on the
vertical sides of Q̃(a) with df (bj,k , ∂Ω) ≤ 1

2df (a, ∂Ω) and corresponding
boxes Q̃(bj,1), j = 1,2, similar to Q̃(a). These boxes in turn will each
spawn two more new boxes, and so on. Without loss of generality, we
focus on Q̃(b1,1).
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In this box we construct a polygonal path λ1,1 from b1,1 to some point
x0,1 ∈ I(b1,1). λ11 is defined relative to b1,1 in the same way that λ was
defined relative to a. If A is large enough, one can show there exists a
point far down on λ1,1 where U = u ◦ f = Au(z1). Using (20) with w0, τ
replaced by f (x0,1), f (λ1,1), we then get U > A2u(z1) on ∂Q(b1,1).
Continuing in this manner we get a sequence of points, tending to a
point on H, on which U tends to ∞. Since u ≡ 0 on ∂Ω we have
reached a contradiction.
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2.5. p Harmonic Measure in Space

The above title is the name of a joint paper with B. Bennewitz, Kaj
Nystrom and Andy Vogel, which should soon be on my webpage.
First we state some positive results and after that discuss some
examples. In order to state our results, we need a definition.

Definition A. Let Ω ⊂ Rn be a domain and 0 < r ≤ r0. Then Ω and ∂Ω
are said to be (δ, r0), Reifenberg flat provided that whenever w ∈ ∂Ω,
there exists a hyperplane, P = P(w , r), containing w such that

(a) Ψ(∂Ω ∩ B(w , r),P ∩ B(w , r)) ≤ δr

(b) {x ∈ Ω ∩ B(w , r) : d(x , ∂Ω) ≥ 2δr} ⊂ one component of Rn \ P.
2

In Definition A, Ψ(E ,F ) denotes the Hausdorff distance between the
sets E and F defined by

Ψ(E ,F ) = max(sup{d(y ,E) : y ∈ F}, sup{d(y ,F ) : y ∈ E}).
We note that snowflakes in two dimensions and Wolff snowflakes in
higher dimensions are Reifenberg flat. We prove
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Theorem G
Let Ω ⊂ Rn,n ≥ 3, be a (δ, r0) Reifenberg flat domain, w ∈ ∂Ω, and p
fixed, n ≤ p <∞. Let u > 0 be p harmonic in Ω with u = 0
continuously on ∂Ω. Let µ be the measure associated with u as in (2).
There exists, δ̂ = δ̂(p,n) > 0, such that if 0 < δ ≤ δ̂, then µ is
concentrated on a set of σ finite Hn−1 measure.

Proof of Theorem G

To prove Theorem G define L relative to u as in (3), (4). That is,

Lζ =
n∑

i,j=1

∂

∂xi
[ bij(z)ζxj (z) ]

bij(z) = |∇u|p−4[(p − 2)uxi uxj + δij |∇u|2](z),

and |ξ|2 |∇u(z)|p−2 ≈
n∑

i,j=1

bij(z) ξiξj

whenever ξ = (ξ1, . . . , ξn) ∈ Rn.
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Fact B: If v = log |∇u|, then Lv ≥ 0 in Ω when p ≥ n.

We also need,

Lemma 4. Let Ω be (δ, r0) Reifenberg flat, 1 < p <∞, and u > 0, a p
harmonic function in Ω with u ≡ 0 on ∂Ω. Then there exists,
δ0 > 0, c1 ≥ 1, depending only on p,n, such that if 0 < δ ≤ δ0 and
x ∈ Ω, then u ∈ C∞(Ω) and

(a) c−1
1 |∇u(x)| ≤ u(x)/d(x , ∂Ω) ≤ c1|∇u(x)|, x ∈ Ω,

(b) |∇u|p−2 extends to an A2 weight on Rn with constant ≤ c1.

From Lemma 4 we see that (bij(x)) as defined above are locally
uniformly elliptic in Ω with ellipticity constants given in terms of an A2
weight on Rn. Armed with Fact B and Lemma 4 we can now essentially
repeat an argument of Makarov who used Plessner’s Theorem to
prove (a) in Theorem E.
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Moreover, the main step in proving Plessner’s theorem is to show that
if G is an open set with G ⊂ B(0,1), ∂G is locally Lipschitz, and
H1(∂G ∩ ∂B(0,1)) > 0, then the harmonic measure of ∂G ∩ ∂B(0,1)
with respect to some point in G is positive. In our situation we show,
that if G ⊂ Ω is an NTA domain (in the sense of Jerion - Kenig), then

µ(∂G ∩ ∂Ω) > 0 −→ ω(∂G ∩ ∂Ω) > 0. (21)

Here ω is elliptic measure defined with respect to a point in G and the
operator L
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To prove (21) we use results from

E. Fabes, C. Kenig, and R. Serapioni, The Local Regularity of
Solutions to Degenerate Elliptic Equations, Comm. Partial Differential
Equations, 7 (1982), no. 1, 77 - 116.

E. Fabes, D. Jerison, and C. Kenig, Boundary Behavior of Solutions to
Degenerate Elliptic Equations. Conference on harmonic analysis in
honor of Antonio Zygmund, Vol I, II Chicago, Ill, 1981, 577-589,
Wadsworth Math. Ser, Wadsworth Belmont CA, 1983.

E. Fabes, D. Jerison, and C. Kenig, The Wiener Test for Degenerate
Elliptic Equations, Ann. Inst. Fourier (Grenoble) 32 (1982), 151-182.

B. Dahlberg, D. Jerison, and C. Kenig, Area integral estimates for
elliptic differential operators with nonsmooth coefficients, Ark. Mat. 22
(1984), no. 1, 97–108.

John Lewis (Univ Kentucky) Where We Are At With p Harmonic Measure
Analysis and Boundary Value Problems on Real and Complex Domains Banff International Research Station, July 25-30 33

/ 49



Wolff Snowflakes

T. Wolff in
Counterexamples with harmonic gradients in R3, Essays in honor of
Elias M. Stein, Princeton Mathematical Series 42 (1995), 321-384.
used Carleson’s ideas and brilliant ideas of his own to study the
dimension of harmonic measure, ω, with respect to a point in domains
bounded by ‘Wolff snowflakes’ ⊂ R3. He constructed snowflakes for
which H-dim ω > 2 and snowflakes for which H-dim ω < 2. Verchota,
Vogel, and Lewis in
Wolff Snowflakes, Pacific J. Math. 218 (2005), no.1, 139-166
used Wolff’s method to construct a Wolff snowflake for which the
harmonic measures on both sides of the snowflake were both of
H-dim < n − 1 and also a snowflake for which the harmonic measures
on both sides were of H-dim > n − 1.
Because of the above paper my original idea, when Bjorn Bennewitz
became my student (about five years ago), was to use Wolff’s method
to construct snowflakes for which the dimension of p harmonic
measure could be estimated.
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This turned out to be difficult as his proof made important use of
boundary Harnack inequalities. Only recently in a series of papers,
mostly written with Kaj Nyström (listed later), we have developed the
technology to make Wolff’s method work.
Next we briefly describe the construction of Wolff snowflakes. Let
Ω0 = {(x ′, xn) : x ′ ∈ Rn−1, xn > 0} be the upper half space and let

Q(1) = {x ′ ∈ Rn−1 : 1
2 ≤ xi ≤ 1

2 for 1 ≤ i ≤ n − 1}.

Let φ : Rn−1 → R, be a piecewise linear function with
supp φ ⊂ {x ′ : |x ′| < 1/2} and ‖∇φ‖∞ ≤ θ0 (small). For fixed N0 large
and N ≥ N0, set ψ(x ′) = N−1φ(Nx ′). Let

Ω̂ = {x : xn > ψ(x)}, ∂ = {x ∈ Rn : x ′ ∈ Q(1), xn = ψ(x ′)}.

We say that Ω̂ is obtained from Ω0 by adding a blip along Q(1). By
construction, ∂ consists of a finite number of faces.
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Divide each face into Whitney n − 1 cubes, whose side length is
proportional to the distance from the nearest edge. We now add a blip
to each of these Whitney cubes and in so doing get a domain Ω1. More
specifically, we map Q(1) onto each Whitney cube by a conformal
affine mapping (i.e, a composition of a rotation, translation, dilation).
Then T (∂) is the boundary of the new blip. Each of the countable
number of blips thus obtained inherits a natural subdivision into
Whitney cubes. We then add a blip to each of the new Whitney cubes,
which results in Ω2. Continuing by induction we get (Ωm)∞1 . One can
show that if N is large enough, then Ωm→Ω∞ in the Hausdorff distance
sense. We call Ω∞ a Wolff snowflake.
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For fixed p,1 < p <∞,p 6= 2, let u∞ = u∞(·,p) be the positive p
harmonic function in Ω∞ with continuous boundary value zero and
|xn − u∞(x)|→0 uniformly as |x |→∞. Let µ∞ be the p harmonic
measure associated with u∞ and let µ′∞ be the restriction of µ∞ to
(Q(1)× [−1,1]) ∩ ∂Ω∞.

Theorem H.
Let Ω∞,u∞, µ∞, be as above. If p ≥ n ≥ 3, and θ0,N−1

0 are small
enough, then H-dim µ′∞ < n − 1. If 2 < p < n, there is an Ω∞, for
which H-dim µ′∞ < n − 1 while if 1 < p < 2 there is an Ω∞ with
H-dim µ′∞ > n − 1.

To outline Wolff’s proof and also our proof for 1 < p < n, let
Ω̂(ε) = {(x ′, xn) : xn > εθ̂(x ′), x ′ ∈ Rn−1} where θ̂ is infinitely
differentiable with support in {x ′ : |x ′| < 1/2}. For fixed p,1 < p <∞,
let û = û(·, ε), be the unique p-harmonic function in Ω̂ with pole at ∞
defined by û ≡ 0 on ∂Ω̂ and |xn − û(x)|→0 uniformly as |x |→∞, x ∈ Ω̂.
Furthermore, let
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I = I(ε) =

∫
∂Ω̂(ε)

|∇û(·, ε)|p−1 log |∇û(·, ε)|dHn−1.

We prove existence and uniqueness of û and also existence and
infinite differentiability of I(ε) with respect to ε. In fact we obtain

I(0) = 0, I′(0) = 0, I′′(0) =
p − 2
p − 1

∫
Rn−1

|∇′θ̂|2 dHn−1,

where ∇′ denotes the gradient in the variables x ′ ∈ Rn−1. From
Taylor’s theorem it follows that I(ε) > 0 for p > 2 while I(ε) < 0 when
1 < p < 2, provided 0 < ε ≤ ε0 and ε0 = ε0(p,n, θ̂) is small enough.
We then show that we can approximate εθ̂ by a piecewise linear
function, φ = φ(·, ε) in such a way that the following is true.
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Let Ω̃ = {x ∈ Rn : xn > φ(x ′), x ′ ∈ Rn−1} and let ũ be the
corresponding positive p harmonic function in Ω̃ with continuous
boundary value 0 and xn − ũ(x)→0 uniformly as |x |→∞. Then

Ĩ =

∫
∂Ω̃

|∇ũ|p−1 log |∇ũ|dHn−1 has the same sign as I(ε).

Next we construct a Wolff snowflake Ω∞, as above, relative to
Ω̂ = {(x ′, xn) : xn > ψ(x ′), x ′ ∈ Rn−1}. Let Ω∞,u∞, µ∞, µ′∞, be the
corresponding domain, p harmonic function, measure, and restriction
of the measure, as defined above Theorem H.

Theorem I.
There exists θ0 ∈ (0,1),N0 large, depending on p,n, such that if
‖∇φ‖∞ ≤ θ0,N ≥ N0, and Ĩ > 0, then H-dim µ′∞ < n − 1 while if Ĩ < 0,
then H-dim µ′∞ > n − 1.
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From Theorem I and the above discussion we conclude for given
p,1 < p < 2, that there exist Wolff snowflakes for which
H-dim µ′∞ > n − 1 while if 2 < p < n, there exist snowflakes for which
H-dim µ′∞ < n − 1. If p ≥ n, then we can use the fact log |∇ũ| is a
subsolution to the PDE listed earlier (with u replace by ũ) in order to
show that Ĩ > 0 for any Lipschitz function φ with compact support in
{x ′ : |x ′| < 1/2}. Thus for p ≥ n one must always get using the Wolff
method that H-dim µ′∞ < n − 1. Theorems G,H and I seem to indicate
that the analogue of Theorem D should hold for sufficiently flat
Reifenberg domains in space. However the situation is much more
interesting as we show in Theorem J. To avoid confusion, for fixed
p,1 < p <∞, we write µ∞(·,p), µ′∞(·,p), for the above measures.

Theorem J.
There is a Wolff snowflake for which µ′∞(·,p), p in an open interval
containing 2, and µ′∞(·,2) both have H-dim either > n − 1 or < n − 1.
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Open Problems for p Harmonic Measure

Note. In problems 1) - 8) the surrounding space is R2.

1) Can Theorem D for simply connected domains be generalized to:

(a) µ is concentrated on a set of σ finite H1 measure
whenever p > 2.

(b) If a = a(p) > 1 is large enough and 1 < p < 2, then µ
is absolutely continuous with respect to H γ̂ measure
where γ̂ is defined in Theorem E
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2) Is H-dim µ concentrated on a set of σ finite H1 measure when p > 2
and Ω is any planar domain.

For harmonic measure this result is due to P. Jones and T. Wolff:
Hausdorff dimension of harmonic measures in the plane, Acta Math.
161 (1988), 131-144. and T. Wolff in
Plane harmonic measures live on sets of σ finite length, Ark. Mat. 31
(1993), no. 1, 137-172.

3) What is the exact value of H-dim µ for a given p when ∂Ω is the Van
Koch snowflake and p 6= 2?

4) For a given p, what is the supremum (p < 2) or infimum (p > 2) of
H-dim µ taken over the class of quasi-circles and/or simply connected
domains?.

5) Is H-dim µ continuous and/or decreasing as a function of p when ∂Ω
is the Van Koch snowflake?

Regarding this question, the proof of Theorem A gives that
H-dim µ = 1 + O(|p − 2|) as p→2 for a snowflake domain.
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6) Are the p harmonic measures defined on each side of a snowflake
mutually singular? The answer is yes when p = 2 as shown by C.
Bishop, L. Carleson, J. Garnett, and P. Jones, in Harmonic Measures
Supported on Curves, Pacific J. Math. 138 (1989), 233-236. One can
ask a similar question for Wolff snowflakes in space. In this setting the
answer is not known even for harmonic functions, although Kenig,
Toro, and Preiss in Boundary structure and size in terms of interior
and exterior hamonic measures in higher dimensions, J. Amer. Math.
ww (2009), no. 3, 771-796
have made progress on this problem.

7) Is it always true for 1 < p <∞ that H-dim µ < Hausdorff dimension
of ∂Ω when ∂Ω is a snowflake or a self similar Cantor set? The anwer
is yes when p = 2 for the snowflake as shown by R. Kaufman and J.M.
Wu in, On the Snowflake Domain, Ark. Mat. 23 (1985), 177-183.
The answer is also yes for self similar Cantor sets when p = 2. This
question and continuity questions for H-dim ω on certain four cornered
Cantor sets are answered by Batakis in
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Harmonic Measure of Some Cantor Type Sets, Ann. Acad. Sci. Fenn.
21 (1996), no 2, 255-270.

A Continuity Property of the Dimension of Harmonic Measure Under
Perturbations, Ann. Inst. H. Poincaré Probab. Statist., 36 (1): 87-107,
2000.

Continuity of the Dimension of the Harmonic Measure of Some Cantor
Sets Under Perturbations, Annales de l’ Institut Fourier, 56, no. 6
(2006), 1617-1631.

8) We noted in Remark 2 that H-dim µ was independent of the choice
of u vanishing on ∂Ω. However in more general scenarios we do not
know whether H-dim µ is independent of u. For example, suppose
x0 ∈ ∂Ω and u > 0 is p harmonic in Ω ∩ B(x0, r) with u = 0 on
∂Ω ∩ B(x0, r) in the W 1,p sense. If ∂Ω ∩ B(x0, r) has positive p
capacity, then there exists a measure µ satisfying (2.1) with
φ ∈ C∞

0 (N) replaced by φ ∈ C∞
0 (B(x0, r)). Is H-dim µ|B(x0,r/2)

independent of u? If Ω is simply connected and p = 2, then I believe
the answer to this question is yes.

John Lewis (Univ Kentucky) Where We Are At With p Harmonic Measure
Analysis and Boundary Value Problems on Real and Complex Domains Banff International Research Station, July 25-30 44

/ 49



In general this problem appears to be linked with boundary Harnack
inequalities.

9) Is it true for p ≥ n that H-dim µ ≤ 1 whenever Ω ⊂ Rn? If not is there
a more general class of domains than Reifenberg flat domains (see
Theorem I) for which this inequality holds? Compare with problem 2.

10) What can be said about the dimension of p harmonic measure
when Ω ⊂ Rn and 1 < p < n (see Theorems G, H).

11) What can be said for the dimension of p harmonic measure,
p > log 4/ log 3, or even harmonic measure in Ω = R3 \ J where J is
the Van Koch snowflake?

12) The existence of a measure µ, corresponding to a weak solution u
with vanishing boundary values, as in (2), exists for a large class of
divergence form partial differential equations. What can be said about
analogues of Theorems A− E ,G − J, for the measures corresponding
to these solutions? What can be said about analogues of problems 1) -
11)?
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Papers involving Boundary Harnack
Inequalities for p Harmonic Functions

Boundary Behavior for p Harmonic Functions in Lipschitz and Starlike
Lipschitz Ring Domains, (with Kaj Nyström) Ann. Sc. École Norm.
Sup. (4) 40 (2007), no. 4, 765-813.

Boundary Behaviour and the Martin Boundary Problem for p
Harmonic Functions in Lipschitz Domains (with Kaj Nyström), to
appear Annals of Mathematics.

Boundary Behavior of p Harmonic Functions in Domains Beyond
Lipschitz Domains (with Kaj Nyström), Advances in the Calculus of
Variations, 1 (2008), 1 - 38.

Boundary Harnack Inequalities for Operators of p Laplace Type in
Reifenberg Flat Domains, (with Kaj Nyström and Niklas Lundström),
Proceedings of Symposia in Pure Mathematics 79 (2008), 229-266.
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Regularity and Free Boundary Regularity for the p Laplacian in
Lipschitz and C1 Domains (with Kaj Nyström), Ann. Acad. Sci. Fenn.
33 (2008), 1 - 26.

Regularity of Lipschitz Free Boundaries in Two Phase Problems for the
p Laplace Operator (with Kaj Nyström), to appear Advances in
Mathematics.

Regularity of Flat Free Boundaries in Two Phase Problems for the p
Laplace Operator (with Kaj Nyström), submitted.
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Thanks for Your Attention !!!
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Thanks for not Snoring !!!

John Lewis (Univ Kentucky) Where We Are At With p Harmonic Measure
Analysis and Boundary Value Problems on Real and Complex Domains Banff International Research Station, July 25-30 49

/ 49


	p Harmonic Measure in Two Dimensions
	 p Harmonic Measure in Space
	Open Problems for p Harmonic Measure

