Modeling *p*-adic Whittaker Functions

Whittaker functions

- F a locally compact field
- G a split reductive group over F
- B positive Borel subgroup
- T maximal torus
- U unipotent radical of B = TU
- ψ nondegenerate character of U

Example:
$$G = \operatorname{GL}_n$$

$$U = \left\{ \begin{pmatrix} 1 & u_{12} & \cdots & u_{n-1,n} \\ & 1 & & u_{n-2,n} \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix} \right\}$$

$$\psi(u) = \psi_0(u_{12} + u_{23} + \cdots)$$

$$\psi_0: F \longrightarrow \mathbb{C} \text{ a nontriv char.}$$

Theorem. (Gelfand-Graev, Shalika, Piatetski-Shapiro) The representation $\operatorname{Ind}_U^G(\psi)$ is multiplicity-free.

A Whittaker model of an irreducible representation (π, V) is a space of functions \mathcal{W}_{π} on G that satisfy

$$W(ug) = \psi(u)W(g), \qquad u \in U,$$

that is closed under right translation:

$$W \in \mathcal{W}_{\pi} \quad \Rightarrow \quad \rho(g)W \in W_{\pi}, \qquad \qquad \rho(g)W(x) = W(xg)$$

and such that $\mathcal{W}_{\pi} \cong V$ as *G*-modules. The content of the theorem is that **the** Whittaker model (if it exists) is unique.

Principal Series representations

Let χ be a character of T_F . Extend χ to B_F (Borel subgroup) and induce:

$$V(\chi) = \{ f : G_F \longrightarrow \mathbb{C} | f(bg) = (\delta^{1/2}\chi)(b) f(g) \}$$

 $(\delta = \text{modular character of } B_F)$

 G_F acts by right translation:

 $\pi(g)f(x) = f(xg)$

- $V(\chi)$ is usually irreducible.
- If $w \in W$ (Weyl group) $V(\chi)$ and $V(^w\chi)$ are **isomorphic** (if irreducible).

Suppose F is nonarchimedean, $\mathfrak{o} =$ integers in F. Let $K = G(\mathfrak{o})$, max'l compact.

• Given any representation (π, V) , let $V^K =$ space of K-fixed vectors.

Proposition 1. If (π, V) is irreducible $\dim(V^K) \leq 1$.

The irreducible representation is **spherical** if dim $(V^K) = 1$. If χ is a character of T_F , χ is **unramified** if $\chi(T_{\mathfrak{o}}) = 1$.

Proposition. If χ is unramified $V(\chi)$ is spherical.

(If $V(\chi)$ is reducible, it has a unique spherical quotient.)

The L-group

Given a group G there is a group \hat{G} whose root data are dual to G.

- G a split reductive group
- T maximal split torus in G
- Φ root system of G
- P weight lattice in G
- \hat{T} maximal split torus in \hat{G}
- \hat{G} the L-group
- \hat{G} root system of \hat{G}
- P^{\vee} the weight lattice in \hat{G}

Assume that the ground field F is nonarchimedean local.

- $\hat{T}(\mathbb{C}) \cong$ group of characters of $T_F/T_{\mathfrak{o}} \quad \boldsymbol{z} \in \hat{T}(\mathbb{C}) \quad \longleftrightarrow \quad \chi_{\boldsymbol{z}} \in X(T_F/T_{\mathfrak{o}})$ • $T_F/T_{\mathfrak{o}} \cong$ coweight lattice $P^{\vee} \quad \lambda \in P^{\vee} \quad \longleftrightarrow \quad t_{\lambda^{\vee}} \in T_F$
- $I_F/I_0 \equiv \text{coweight lattice } F$ (if G is of adjoint type, otherwise $\subseteq P^{\vee}$.)
- Dominant $\lambda \in P^{\vee}$ parametrize $\lambda \in P^{\vee} \longleftrightarrow \xi_{\lambda}$, irreducible irreducible characters of $\hat{G}(\mathbb{C})$ (dominant) $\hat{G}(\mathbb{C})$

If $\boldsymbol{z} \in \hat{T}(\mathbb{C})$, we may consider the induced representation $V(\chi_{\boldsymbol{z}})$.

Example:

$$G = \operatorname{GL}_n \quad P = \mathbb{Z}^n$$

 $\hat{G} = \operatorname{GL}_n \quad P^{\vee} = \mathbb{Z}^n$
Example:
 $G = \operatorname{Sp}_{2r} \quad P = \mathbb{Z}^r$
 $\hat{G} = \operatorname{SO}_{2r+1} \quad P^{\vee} = \mathbb{Z}^r$

Duality

Recap:(Semisimple)(spherical)Conjugacy classes of $\hat{G}(\mathbb{C})$ correspond to irreps of G(F)
(Semisimple)(finite-dimensional)Conjugacy classes of G(F) correspond to irreps of $\hat{G}(\mathbb{C})$
(Not bijectively: $t_{\lambda^{\vee}}$ is only determined up to multiplication by a unit.)

•
$$\boldsymbol{z} \in \hat{T}(\mathbb{C}) \quad \longleftrightarrow \quad \chi_{\boldsymbol{z}} \in X(T_F/T_{\mathfrak{o}})$$

L-group torus element

- $\boldsymbol{z} \in \hat{T}(\mathbb{C})$
- $\boldsymbol{z}' = {}^{w}\boldsymbol{z} \ (w \in W)$
- $\lambda \in P^{\vee}$ (Coweight)
- $\lambda \in P^{\vee}$ (Dominant weight)

$$\rightarrow V(\chi_{\boldsymbol{z}}) = \operatorname{Ind}(\delta^{1/2}\chi_{\boldsymbol{z}})$$
(If irreducible - usually)
$$\rightarrow V(\chi_{\boldsymbol{z}}) \cong V(\chi_{\boldsymbol{z}'})$$

$$\longleftrightarrow t_{\lambda^{\vee}} \in T_F/T_{\mathfrak{o}}$$

$$\longleftrightarrow \quad \xi_{\lambda} \quad \text{irr char of } \hat{G}(\mathbb{C})$$

L-group elements index unramified chars of T_F and by induction, irreps of G_F . Conjugate \boldsymbol{z} index isomorphic $V(\chi)$. Elements of $T_F/T_{\mathfrak{o}}$ are indexed by coweights; dominant coweights index irreps of $\hat{G}(\mathbb{C})$. Each conjugacy class contains a unique coset $t_{\lambda^{\vee}} \mod T_{\mathfrak{o}}$ with λ^{\vee} dominant.

Casselman-Shalika Formula

Let $\boldsymbol{z} \in \hat{T}(\mathbb{C})$. Let $W_{\boldsymbol{z}}^{\circ}$ be the spherical vector in the Whittaker model of $V(\chi_{\boldsymbol{z}})$. Langlands conjectured that the values of $W_{\boldsymbol{z}}^{\circ}$ are the values of irreducible characters of \hat{G} . This was proved by Shintani, S. Kato, Casselman and Shalika and is referred to as the **Casselman-Shalika formula**.

Theorem. We have

$$W_{\boldsymbol{z}}^{\circ}(t_{\lambda^{\vee}}) = \begin{cases} \operatorname{const} \times \delta^{1/2}(t_{\lambda^{\vee}})\chi_{\lambda}(\boldsymbol{z}) & \text{if } \lambda^{\vee} \text{ is dominant,} \\ 0 & \text{otherwise} \end{cases}$$

In a natural normalization the constant is $\prod_{\alpha \in \Phi^+} (1 - q^{-1} \boldsymbol{z}^{\alpha})$. More precisely, we may define $W_{\boldsymbol{z}}^{\circ}$ as an integral, thus:

$$W^{\circ}_{\boldsymbol{z}}(g) = \int_{U_F} f^{\circ}(w_0 u g) \psi(u)^{-1} du, \qquad w_0 = \text{long } W \text{ element},$$

where $f^{\circ}(bk) = \delta^{1/2}\chi(b), b \in B_F, k \in K$. Then $\operatorname{const} = \prod_{\alpha \in \Phi^+} (1 - q^{-1}\boldsymbol{z}^{\alpha}).$

Why Seek Other Models?

The Casselman-Shalika formula is the complete story for the spherical Whittaker function. Why look any further?

- The constant $\prod_{\alpha \in \Phi^+} (1 q^{-1} \boldsymbol{z}^{\alpha})$ is a deformation of Weyl's denominator. So we seek a deformation of the Weyl character formula.
- The study of such deformations leads us to crystal bases and statistical (ice-type) models.
- Furthermore such models work for **metaplectic Whittaker functions** where the Casselman-Shalika formula does not apply.

Suppose that $F \supset \mu_n$ (the *n*-th roots of unity). Weil, Kubota and Matsumoto defined a **metaplectic cover** which is a central extension

$$1 \longrightarrow \mu_n \longrightarrow \tilde{G}(F) \longrightarrow G(F) \longrightarrow 1.$$

The cover splits over U(F) so one may still consider Whittaker models.

• Uniqueness of Whittaker models fails. Still spherical Whittaker functions have expressions in terms of crystal or ice models.

Deformations of the Weyl Character formula

A deformations of the Weyl character formula was found by **Tokuyama** (1988). Others considered deformations of the Weyl denominator.

- Kuperberg, Okada, Simpson, Hamel and King.
- Beineke, Brubaker, Bump, Chinta, Friedberg, Frechette, Gunnells, Ivanov, Tabony.

There are different ways of writing Tokuyama's formula.

• Sum over strict Gelfand-Tsetlin patterns (original paper).

• Sum over crystal
$$\mathcal{B}_{\lambda+\rho}$$
. $\left(\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha\right)$

• Six-vertex model.

The last two approaches are subtly different suggesting different tools.

Weyl Characters

Let \mathcal{G} be a complex Lie group. Note: Eventually \mathcal{G} will be $\hat{G}(\mathbb{C})$ so Φ will become Φ^{\vee} (coroots) and P will become P^{\vee} coweights.

- Let $\lambda \in P$ be dominant. Let ξ_{λ} be the irr character of highest weight λ .
- Decompose ξ_{λ} into a sum of weights with multiplicities.

Example: $G = \operatorname{GL}_3(\mathbb{C}), P = \mathbb{Z}^3$. $\lambda = (3, 1, 0)$ Elements of P

shaded area	Positive Weyl Chamber (dominant weights)
•	Weights with multiplicity 1
0	Weights with multiplicity 2

Observe that the "weight diagram" is invariant under W (which is the group generated by the reflections in the two hyperplanes bounding the positive Weyl chamber).

Root operators

Let \mathcal{G} be a complex Lie group. Let P be the weights (char's of max'l torus \mathcal{T}). Note: Eventually \mathcal{G} will be $\hat{G}(\mathbb{C})$ so Φ will become Φ^{\vee} (coroots) and P will become P^{\vee} coweights.

• Φ	—	The root system	A positive root is called simple
• Φ^+		The positive roots	if it cannot be decomposed as a
• $\Sigma = \{\alpha_1, \cdots, \alpha_r\}$	_	The simple roots	sum of other positive roots.
• V		A \mathcal{G} -module	
• $\mu \in P$	_	a weight of \mathcal{G} .	We have $V = \bigoplus V(u)$
• $V(\mu)$		The weight space	we have $v = \bigoplus_{n \in D} v(\mu)$
			$\mu \!\in\! P$

If $X \in \text{Lie}(\mathcal{G})$ then X acts on V. Let $\alpha \in \Phi$ and $X_{\alpha} \in \text{Lie}(\mathcal{G})$ be in the one-dimensional root eigenspace. Then

$$X_{\alpha}: V(\mu) \longrightarrow V(\mu + \alpha).$$

We choose $E_i = X_{\alpha_i}$ and $F_i = X_{-\alpha_i}$ to be the Chevalley generators. Then

$$E_i: V(\mu) \longrightarrow V(\mu + \alpha_i), \qquad F_i: V(\mu) \longrightarrow V(\mu - \alpha_i).$$

Crystals

A **(Kashiwara) crystal** is a combinatorial substitute for $V(\mu)$. The crystal \mathcal{B}_{λ} of highest weight λ is a set with cardinality dim $(V(\mu))$.

- It is equipped with a **weight map** wt: $\mathcal{B}_{\lambda} \longrightarrow P$.
- The number of \mathcal{B}_{λ} with weight μ is $m(\mu) = \dim V(\mu)$
- **Root operators** $E_i, F_i: \mathcal{B}_{\lambda} \longrightarrow \mathcal{B}_{\lambda} \cup \{0\}$ are defined.
- If $E_i(v) = w \neq 0$ then $F_i(w) = v$ and $wt(v) = wt(w) + \alpha_i$.

Following Kashiwara and Nakashima, if $\Phi = A_r$ the elements of \mathcal{B}_{λ} are **semistandard Young tableaux** of shape λ in the alphabet $\{1, 2, 3, \dots, r\}$. These are fillings of the Young diagram with shape λ by elements of the alphabet with weakly increasing rows and strictly increasing columns, like this:

Example: GL₃

Here is the crystal with highest weight $\lambda = (3, 1, 0)$. Compare it with the weight diagram (above) for $V(\lambda)$.

Kashiwara: elements of \mathcal{B}_{λ} are labeled by tableaux of shape λ in $\{1, 2, 3\}$.

If $F_i(v) = w$ and $E_i(w) = v$ we draw an arrow $v \xrightarrow{i} w$.

We have drawn the crystal so that the elements of equal weight overlap.

Tokuyama functions

By a **Tokuyama function** on the crystal $\mathcal{B}_{\lambda+\rho}$ we mean a function

$$G: \mathcal{B}_{\lambda+\rho} \times \mathbb{C} \longrightarrow \mathbb{C}$$

such that $\sum_{v \in \mathcal{B}_{\lambda+\rho}} G(v,t) \boldsymbol{z}^{\mathrm{wt}(v)} = \left[\prod_{\alpha \in \Phi^+} (1+t\boldsymbol{z}^{\alpha})\right] \xi_{\lambda}(\boldsymbol{z}).$

- If t = -1 the formula should reduce to the Weyl character formula.
- If t = 0, then G(v, t) should vanish unless v is in the image of a map $\mathcal{B}_{\lambda} \longrightarrow \mathcal{B}_{\lambda+\rho}$, and the formula should reduce to $\xi_{\lambda}(z) = \sum_{v \in \mathcal{B}_{\lambda}} z^{\mathrm{wt}(v)}$.
- If $t = -q^{-1}$ the formula should give the Casselman-Shalika formula (with deformed Weyl denominator.)
- There are also **metaplectic Tokuyama functions**. These produce not characters but **metaplectic Whittaker functions**.
- "Natural" Tokuyama functions can be given in many cases, beginning with Tokuyama (1988). The Tokuyama function is not unique. Using results of McNamara one gets **one Tokuyama function for each reduced word** decomposing the long Weyl group element into simple reflections.

Statistical Models

Solvable lattice models in statistical mechanics are 2-dimensional systems in which the partition function can be evaluated explicitly. The first example was the Ising model, solved by Onsager (1944). The six-vertex model is an important example.

- Solved by Lieb and Sutherland in the 1960's.
- Baxter developed the **star-triangle relation** or **Yang-Baxter equation** as a powerful tool.
- Hamel and King showed how characters (together with deformed Weyl denominators) are **partition functions** of systems of this type.
- Brubaker, Bump and Friedberg showed how to use the Yang-Baxter equation to investigate these models.
- Metaplectic Whittaker functions can also be represented as such partition functions.

Six-Vertex Model

We describe a statistico-physical system \mathfrak{S} . Take a square lattice of finite size.

To specify the system, we require some further data.

- Signs or spins \pm on the boundary edges are fixed.
- At each vertex v there are assigned six values $a_1(v)$, $a_2(v)$, $b_1(v)$, $b_2(v)$, $c_1(v)$, $c_2(v)$ which are also part of the data defining the system.

States

- A state \mathfrak{s} of the system \mathfrak{S} consists of an assignment of signs \pm to the interior edges.
- Recall that the signs of the boundary edges are fixed.

For example, here is a state of the system shown earlier.

We will also consider more general planar graphs in which some of the edges are rotated.

The Partition Function

Given a state of the system, every vertex v is assigned a value $\beta_{\mathfrak{s}}(v)$, its **Boltzmann weight**. This is either zero or one of the six values $a_1(v), a_2(v), b_1(v), b_2(v), c_1(v), c_2(v)$.

- If the weight does not appear in the table it is **zero**.
- Given the state \mathfrak{s} , the **Boltzmann weight** $\beta(\mathfrak{s}) = \prod \beta_{\mathfrak{s}}(v)$.
- The Partition function $Z(\mathfrak{S}) = \sum_{\text{states } \mathfrak{s}} \beta(\mathfrak{s}).$

Transfer Matrices

Let v be a vertex type with Boltzmann weights $a_i(v), b_i(v), c_i(v)$. Define

where $\alpha_i, \gamma_i \in \{\pm\}$. There are 2^n possibilities for $\alpha = (\alpha_1, \dots, \alpha_n)$, so we think of V_v as being a $2^n \times 2^n$ matrix, the **row transfer matrix** for v. Clearly

We may compute the partition function by multiplying transfer matrices!

Baxter

- Baxter: organize transfer matrices into commuting families.
- A maximal commuting family of operators is like a maximal torus.
- This leads to evaluation of the partition function.

Example: the Field-Free Case

Suppose $a_1(v) = a_2(v) = a(v), b_1(v) = b_2(v) = b(v), c_1(v) = c_2(v) = c(v)$. Let

$$\Delta(v) = \frac{a(v)^2 + b(v)^2 - c(v)^2}{2a(v)b(v)}.$$

Theorem. (Baxter) If $\Delta(v) = \Delta(w)$ then V_v and V_w commute.

Proof. Use the **Yang-Baxter equation.**

The Yang-Baxter Equation

Let v, w, r be three types of vertices, with Boltzmann weights $a_i(x), b_i(x), c_i(x)$ for $x \in \{v, w, r\}$. Then we write $[\![r, v, w]\!] = 0$ if for all $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_6 \in \{\pm\}$:

This means that summing over the three unlabeled edges gives the same result on both sides.

Lemma. (Baxter) If $\Delta(v) = \Delta(w) = \Delta$ there exists a third field-free vertex r with $\Delta(r) = \Delta$ such that $[\![r, v, w]\!] = 0$.

The R-matrix in action ...

To prove Baxter's commutativity in the field-free case, that $Z(\mathfrak{S})$,

is unchanged if v and w are interchanged, attach the **R-matrix** vertex r:

 \dots Yang-Baxter equation n times \dots

where \mathfrak{S}' is the system \mathfrak{S} with \boldsymbol{v} and \boldsymbol{w} interchanged. Since $a_1(r) = a_2(r)$ we may cancel them and get $Z(\mathfrak{S}) = Z(\mathfrak{S}')$.

That is, the transfer matrices V_v and V_w commute, as promised.

Parametrized Yang-Baxter Equation

Let $\Delta \in \mathbb{C}$ be fixed and let \mathbf{R}_{Δ} be the set of field-free Boltzmann weights

$$a_1 = a_2 = a$$
, $b_1 = b_2 = b$, $c_1 = c_2 = c$, $\frac{a^2 + b^2 - c^2}{2ab} = \Delta$. Recall:

Lemma. (Baxter) If $\Delta(v) = \Delta(w) = \Delta$ there exists a third field-free vertex r with $\Delta(r) = \Delta$ such that $[\![r, v, w]\!] = 0$.

We have actually a **parametrized Yang-Baxter equation**.

Theorem. (Baxter) There is a map
$$R: \mathbb{C}^{\times} \longrightarrow R_{\Delta}$$
 such that
 $\llbracket R(t), R(tu), R(u) \rrbracket = 0.$ So $r = R(t), v = R(tu), w = R(u).$

Discard the field free assumption and impose **free Fermionic condition**. Let:

$$\mathbf{R}_{\rm ff} = \{ v | a_1(v) a_2(v) + b_1(v) b_2(v) - c_1(v) c_2(v) = 0 \}.$$

Lemma. (BBF) There is a map $R: \operatorname{GL}_1(\mathbb{C}) \times \operatorname{GL}_2(\mathbb{C}) \longrightarrow \mathbf{R}_{\mathrm{ff}}$ such that $\llbracket R(t), R(tu), R(u) \rrbracket = 0.$

The Yang-Baxter Commutator

Let $V = \mathbb{C}^2$ with basis + and -. Given $T \in \text{End}(V \otimes V)$ let $T(\varepsilon_i \otimes \varepsilon_j) = \sum_{k,l} T_{ij}^{kl} \cdot \varepsilon_k \otimes \varepsilon_l \qquad (\varepsilon_i \in \{\pm\}).$ We interpret the coefficients T_{ij}^{kl} as a Boltzmann weight of $\overbrace{\epsilon_1}^{\epsilon_2}$ With respect to basis $+ \otimes +$, $+ \otimes -$, $- \otimes +$, $- \otimes -$ of $V \otimes V$ the vertex v is the linear transformation with matrix $\begin{pmatrix} a_1(v) & & \\ & b_1(v) & c_1(v) & \\ & c_2(v) & b_2(v) & \\ & & & a_2(v) \end{pmatrix}.$ If $T \in \text{End}(V \otimes V)$ let $T_{ij} \in \text{End}(V \otimes V \otimes V)$ be T acting on the *i*-th and *j*-th

components and I_V acts on the k-th component $(k \neq i, j)$. The **Yang-Baxter** commutator is

$$\llbracket A, B, C \rrbracket = A_{12} B_{13} C_{23} - C_{23} B_{13} A_{12}.$$

Quantum Groups

With this framework many (Faddeev, Kulish, Sklyanin, Kirillov, Reshetikhin, Takhtadjan, Jimbo, Miwa, Drinfeld, ...) sought an explanation for the Yang-Baxter equation. This led to the invention of Quantum groups.

The explanation for Baxter's parametrized YBE

 $\llbracket R(t), R(tu), R(u) \rrbracket = 0$

is that V(t) is a module for the Hopf algebra $H = U_q(\mathfrak{sl}_2)$ (completed) and there is an element $R \in H \otimes H$ that induces an endomorphism $V(t) \otimes V(u)$ for every pair of modules. The quantum group H is a **quasitriangular Hopf algebra** which means that R satisfies conditions implying the Yang-Baxter equation.

Question 1: Give a similar treatment of the Free fermionic case.

Question 2: Extend the free Fermionic story to the eight vertex model.

Schur Polynomials

- Hamel and King extended Tokuyama's deformation for Cartan Type A_r by giving a generalized deformation. They also treated Cartan Type C_r .
- Brubaker, Bump and Friedberg found two families of deformations, one of which is Hamel and King's. These are called **Gamma ice** and **Delta ice**.
- They gave proofs based on the Yang-Baxter equation.
- Fix a partition $\lambda = (\lambda_1, \dots, \lambda_n)$.
- Let $z_1, \dots, z_n \in \mathbb{C}^{\times}$ be spectral parameters.
- Let $t_1, \dots, t_n \in \mathbb{C}$ be deformation parameters.

The character $\xi_{\lambda}(z)$ is the **Schur polynomial** $s_{\lambda}(z)$.

There are two statistical systems $\mathfrak{S}^{\Gamma}_{\lambda}$ and $\mathfrak{S}^{\Delta}_{\lambda}$ with

$$Z(\mathfrak{S}^{\Gamma}_{\lambda}) = \prod_{i < j} (t_i z_j + z_i) s_{\lambda}(z_1, \cdots, z_n), \qquad Z(\mathfrak{S}^{\Delta}_{\lambda}) = \prod_{i < j} (t_j z_j + z_i) s_{\lambda}(z_1, \cdots, z_n).$$

Gamma Ice

Label columns $0, 1, 2, \cdots$ from right to left, rows $1, 2, 3, \cdots, n$ top to bottom.

Use these weights in the *i*-th row:

$\oplus_{\stackrel{\bullet}{\bullet}}^{\bigoplus_i} \oplus$	$\overset{\bigoplus_{i}}{\ominus} \overset{\bigoplus_{i}}{\ominus}$	$\oplus_{i \to -}^{i \to -} \oplus$	$\overset{\bigoplus_{i}}{\ominus} \overset{\bigoplus}{\ominus}$	$\oplus_{i \to i} \oplus$	$\oplus_{\stackrel{\bullet}{\bullet}}^{\stackrel{\bullet}{\to}} \oplus$
$a_1(i)$	$a_2(i)$	$b_1(i)$	$b_2(i)$	$c_1(i)$	$c_2(i)$
1	z_i	\overline{t}_i	z_i	$z_i(t_i+1)$	1

+ on left and bottom boundary edges,- on right boundary edges.

On top edges in $\rho + \lambda$ put -, On remaining top edges put +.

Theorem: $Z(\mathfrak{S}_{\lambda}^{\Gamma}) =$ $\prod_{i < j} (t_i z_j + z_i) s_{\lambda}(z_1, \dots, z_n).$ Example: $\lambda = (2, 1, 0, 0)$ $\lambda + \rho = (5, 3, 1, 0)$

Tokuyama Function

Recall that a **Tokuyama function** is a map $G: \mathcal{B}_{\lambda+\rho} \times \mathbb{C} \longrightarrow \mathbb{C}$ such that

$$\left[\prod_{\alpha \in \Phi^+} (1+t\boldsymbol{z}^{\alpha})\right] \xi_{\lambda}(\boldsymbol{z}) = \sum_{v \in \mathcal{B}_{\lambda+\rho}} G(v,t) \boldsymbol{z}^{\mathrm{wt}(v)}.$$

- There are different Tokuyama functions (one for every reduced decomposition of the long Weyl group element) but we discuss a particular one.
- This Tokuyama function has another description using an embedding of Berenstein, Zelevinsky, Lusztig, Littelmann (**BZL**) of $\mathcal{B}_{\lambda+\rho}$ into cones.

We will describe an injection

$$c: \{ \text{states of } \mathfrak{S}_{\lambda}^{\Gamma} \} \longrightarrow \mathcal{B}_{\lambda+\rho}.$$

When all $t_i = t$

$$\beta(\mathbf{s}) = G(v, t) \mathbf{z}^{\mathrm{wt}(v)}, \qquad v = c(\mathbf{s}),$$

and G(v, t) = 0 if v is not in the image of c. Thus the **nonzero** terms in the crystal description coincide with the states of the ice.

A subtle shift of viewpoint

The **nonzero** terms in the crystal description coincide with the states of the statistical model. So we might think that the two descriptions are identical. However there is a **subtle shift of viewpoint** between the two pictures.

- The image of c is (in some sense) most but not all of $\mathcal{B}_{\lambda+\rho}$.
- The tool sets are **different** in the two pictures **since** *c* **is not bijective**.
- The image of c is not stable under the Schützenberger involution of $\mathcal{B}_{\lambda+\rho}$, so that involution has no significance in the statistical picture.
- But the Yang-Baxter equation is not available in the crystal picture.
- An aggravating fact about the crystal picture is that the terms in the sum are **usually invariant** under the Schützenberger involution, yet there are some **on the boundary of the BZL polytopes** that are **not invariant** under the involution. Using the involution to understand the sums leads one to **group these exceptional terms together in packets** resulting in **COMBINATORIAL DIFFICULTIES**.
- These are surmountable but the Yang-Baxter equation is a welcome alternative.

Associate a Gelfand-Tsetlin pattern with a State

• Identify states with **strict Gelfand-Tsetlin Patterns**.

A **Gelfand-Tsetlin Pattern** is a triangular array of partitions of descending length whose rows interleave.

For each row, write down the column numbers of vertices in the above 3 configurations (having a - above the vertex). **Example:**

The pattern is **strict** meaning each row is strictly decreasing.

Associate a tableaux with that Gelfand-Tsetlin P.

Striking all n's, then all n-1's, etc. from a tableau gives a sequence of shapes.

 $\{5, 2, 1, 0\} \qquad \{4, 2, 1\} \qquad \{3, 2\} \qquad \{2\}$

Taking those shapes and arranging them gives a Gelfand-Tsetlin pattern:

Thus

- States correspond to strict Gelfand-Tstelin patterns with top row $\lambda + \rho$.
- Gelfand-Tsetlin patterns biject with tableaux with shape $\lambda + \rho$.
- Not all patterns are strict so the map c is an injection but not a bijection.

Metaplectic Ice

- For Type A and **arbitrary** metaplectic covers, there are ice models.
- Key facts amount to **commutativity of transfer matrices**.
- Still the Yang-Baxter equation remains elusive for Type A.

But there is a model for the Whittaker function on the metaplectic double cover of $Sp_4(F)$ where the Yang-Baxter equation plays a significant role.

Use Delta ice on **Blue rows** Use Gamma ice on **Red rows** For the "cap vertices" use the **metaplectic weights**:

(for the i-th pair of rows)

Related Nonmetaplectic Work

- Related to **U-Turn Ice** and **Alternating sign matrices** of Kuperberg, Okada and Hamel and King.
- Those models are related to work of Beineke, Brubaker and Frechette on crystal models for Type C (nonmetaplectic).
- Thesis of Dmitriy Ivanov introduces **Yang-Baxter equation** in such models introducing a novel **caduceus relation** which we will discuss.

The Caduceus

The so-called

bears a noted resemblance to the fabled "staff of Hermes"

We have attached a **caduceus braid** preparing to prove a functional equation with respect to the **first simple reflection in the Weyl group**.

- The caduceus braid first appeared in the thesis of D. Ivanov.
- This multiplies $Z(\mathfrak{S})$ by $(tz_j + z_i^{-1})(z_i + tz_j)(tz_i^{-1} + z_j^{-1})(tz_i + z_j^{-1})$.
- Using the Yang-Baxter equation, the caduceus moves to the right.

The Caduceus Identity

Lemma. For any $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ we have

where the constant is $(tz_i + z_j^{-1})(tz_i + z_j)(tz_i^{-1} + z_j^{-1})(tz_j + z_i^{-1})$, independent of the ε_i .

- Discarding the caduceus this way shows how the partition function changes under the interchange of spectral parameters.
- We are aware of caduceus identities for three different sets of cap weights. (The archetype is in Ivanov's thesis.)