Descartes' rule of signs.

Martín Avendaño

March 2, 2010

2 Descartes' rule of signs is exact!

3 Some questions.

Let $f = \sum_{i=0}^{d} a_i x^i \in \mathbb{R}[x]$ be a non-zero polynomial of degree d.

- R(f) is the number of positive roots of f counted with multiplicities.
- S(f) is the number of changes of signs in the sequence of coefficients of f, ignoring the zeros.

Theorem (Descartes (1637) - Gauss (1828))

 $R(f) \leq S(f)$ and S(f) - R(f) is even.

Proven by Gauss (1828), Albert (1943), Wang (2004), \dots The proofs are based on:

Lemma

 $S((x-1)f(x)) \ge S(f) + 1.$

Lemma

- $a_0a_d > 0 \implies S(f)$ and R(f) are both even.
- $a_0a_d < 0 \implies S(f)$ and R(f) are both odd.

- If $f = (x r_1) \cdots (x r_n) \in \mathbb{R}[x]$ where $r_i > 0 \ \forall i$, then S(f) = R(f) = n.
- [Grabiner (1999)] For any sequence of signs (no zeros), there exists a non-zero $f \in \mathbb{R}[x]$ with coefficients of the given signs and S(f) = R(f).

- If $f = x^2 + bx + c \in \mathbb{R}[x]$ where b < 0 and $c > b^2/4$, then S(f) = 2 and R(f) = 0.
- [Anderson, Jackson, Sitharam (1998)] For any sequence of signs or zeros with n changes of signs and an even integer k such that 0 ≤ k ≤ n, there exists a non-zero f ∈ ℝ[x] with coefficients of the given signs and R(f) = n k.

Descartes' rule of signs is almost exact.

- [Poincare (1888)] There exists g ∈ ℝ[x], that depends on f, such that R(f) = S(fg).
- [Polya (1928)] If f has no positive roots, then there exists $n \in \mathbb{N}_0$ such that $S((x+1)^n f(x)) = 0$.
- [Powers, Reznick (2007)] If f has no positive roots and

$$n > \binom{d}{2} \frac{\max_{0 \le i \le d} \{a_i / \binom{d}{i}\}}{\min_{\lambda \in [0,1]} \{(1-\lambda)^d f\left(\frac{\lambda}{1-\lambda}\right)\}} - d$$

then $S((x+1)^n f(x)) = 0.$

Theorem (Avendano (2009))

For any non-zero $f \in \mathbb{R}[x]$, the sequence $S((x+1)^n f(x))$ is monotone decreasing and it stabilizes at R(f).

Intuitive proof I

Recall that
$$f = a_d x^d + \dots + a_1 x + a_0$$
.
Then $(x + 1)^n f(x) = c_n^{n+d} x^{n+d} + \dots + c_n^1 x + c_n^0$ where

$$c_n^k = \sum_{i=0}^d a_i \binom{n}{k-i}.$$

■ Encode the (signs of the) coefficients c^k_n in the piecewise constant functions g_n : [0, 1) → ℝ given by

$$g_n(\lambda) = \binom{n+d}{[\lambda(n+d+1)]}^{-1} c_n^{[\lambda(n+d+1)]}.$$

• $\operatorname{sgn}(c_n^k) = \operatorname{sgn}(g_n(k/(n+d+1))).$

Example I

Consider the polynomial

$$f = (x-2)(x-7)(9x^6 - x^5 + 2x^4 - 4x^3 + 2x^2 + 4x + 1)$$

= 9x⁸ - 82x⁷ + 137x⁶ - 36x⁵ + 66x⁴ - 70x³ - 7x² + 47x + 14.

Figure: Functions $g_0(\lambda)$, $g_1(\lambda)$ and $g_5(\lambda)$ compared with $g(\lambda)$.

Example II

Figure: Functions $g_{10}(\lambda)$, $g_{25}(\lambda)$ and $g_{100}(\lambda)$ compared with $g(\lambda)$.

■ Show that the sequence of functions {*g_n*}_{*n*≥0} converge uniformly to

$$g(\lambda) = (1-\lambda)^d f\left(rac{\lambda}{1-\lambda}
ight)$$

in the interval [0, 1).

- Note that the homography $\lambda \mapsto \frac{\lambda}{1-\lambda}$ is a bijection from [0, 1) to $[0, \infty)$. Its inverse is given by $x \mapsto \frac{x}{x+1}$.
- For large enough n, the number of sign alternations in c^k_n is equal to the number of changes of signs of g(λ), i.e. the number of positive roots of f.

- The *n* required to get $S((x + 1)^n f) = R(f)$ is usually (very) large. An analysis of the optimal *n* is in progress.
- Can we change x + 1 by some other polynomial?
- For large enough n, the coefficients of (x + 1)ⁿ f(x) and the values of f, after some normalization, almost coincide. Can we use this for finding roots?
- The proof uses that a Binomial probability distribution can be approximated well by a Poisson distribution. Also, we are multiplying by powers of (x + 1). Is this technique related with random walks?

Let \mathfrak{M} be the set of sequences of real numbers indexed by the non-negative integers, with finite support. We use this sequences to encode the coefficients of polynomials in $\mathbb{R}[x]$.

Consider a function $\hat{S} : \mathfrak{M} \to \mathbb{N}_0$ such that: 1 $\hat{S}(\square * a) \leq \hat{S}(a)$ 2 $\hat{S}(a) \geq$ "positive regions in a" + "negative regions in a" - 1 for all $a \in \mathfrak{M}$. Then \hat{S} is a DRS, i.e. $R(f) \leq \hat{S}(f)$ for all $f \in \mathbb{R}[x]$.

Here * denotes convolution of sequences (or multiplication of polynomials) and \Box corresponds to the binomial 1 + x.

Is there any other Descartes' rule of signs?

Yes, sure!

Define $\hat{S}(a)$ as the number of times the sequence changes from + to - plus twice the number of changes from - to +. This gives a DRS.

Want more?

For any sequence $a \in \mathfrak{M}$ define $\hat{a} \in \mathfrak{M}$ by

$$\hat{a}_n = \sum_{i=n}^{\infty} a_i {i \choose n} (-1)^{i-n}.$$

Then the function $\hat{S} : \mathfrak{M} \to \mathbb{N}_0$ given by $\hat{S}(a) = S(\hat{a})$ is a DRS.

Let \mathfrak{M}_2 denote the set of two-dimensional sequences (indexed by $\mathbb{N}_0 \times \mathbb{N}_0$) of real numbers with finite support. Consider a function $\hat{S} : \mathfrak{M}_2 \to \mathbb{N}_0$ such that

1
$$\hat{S}(\square * a) \leq \hat{S}(a)$$

$$\hat{S}(\square * a) \leq \hat{S}(a)$$

3 $\hat{S}(a) \ge$ "positive regions in a" + "negative regions in a" for all $a \in \mathfrak{M}_2$. Then \hat{S} gives a DRS in two variables, i.e. for any non-zero $f \in \mathbb{R}[x, y]$, it gives an upper bound for the number of connected components of the complement of the zero set of f.

Yes, sure!

For any $a \in \mathfrak{M}_2$ define Q(a) = "positive regions in a" + "negative regions in a" and

$$\hat{S}(a) = \max_{n,m\geq 0} Q(\Box\Box^n * \Box^m * a).$$

The function \hat{S} is a DRS in two variables.

Is there any DRS in two variables with a simple formula?