Descartes' rule of signs.

Martín Avendaño

March 2, 2010

1 Introduction.

2 Descartes' rule of signs is exact!

3 Some questions.

Descartes' rule of signs is easy.

Let $f=\sum_{i=0}^{d} a_{i} x^{i} \in \mathbb{R}[x]$ be a non-zero polynomial of degree d.

- $R(f)$ is the number of positive roots of f counted with multiplicities.
- $S(f)$ is the number of changes of signs in the sequence of coefficients of f, ignoring the zeros.

> Theorem (Descartes (1637) - Gauss (1828))
> $R(f) \leq S(f)$ and $S(f)-R(f)$ is even.

Descartes' rule of signs is correct.

Proven by Gauss (1828), Albert (1943), Wang (2004), ...
The proofs are based on:

Lemma

$S((x-1) f(x)) \geq S(f)+1$.

Lemma

- $a_{0} a_{d}>0 \Longrightarrow S(f)$ and $R(f)$ are both even.
- $a_{0} a_{d}<0 \Longrightarrow S(f)$ and $R(f)$ are both odd.

Descartes' rule of signs is sharp.

■ If $f=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right) \in \mathbb{R}[x]$ where $r_{i}>0 \forall i$, then $S(f)=R(f)=n$.

- [Grabiner (1999)] For any sequence of signs (no zeros), there exists a non-zero $f \in \mathbb{R}[x]$ with coefficients of the given signs and $S(f)=R(f)$.

Descartes' rule of signs is inexact.

- If $f=x^{2}+b x+c \in \mathbb{R}[x]$ where $b<0$ and $c>b^{2} / 4$, then $S(f)=2$ and $R(f)=0$.
- [Anderson, Jackson, Sitharam (1998)] For any sequence of signs or zeros with n changes of signs and an even integer k such that $0 \leq k \leq n$, there exists a non-zero $f \in \mathbb{R}[x]$ with coefficients of the given signs and $R(f)=n-k$.

Descartes' rule of signs is almost exact.

■ [Poincare (1888)] There exists $g \in \mathbb{R}[x]$, that depends on f, such that $R(f)=S(f g)$.

- [Polya (1928)] If f has no positive roots, then there exists $n \in \mathbb{N}_{0}$ such that $S\left((x+1)^{n} f(x)\right)=0$.
■ [Powers, Reznick (2007)] If f has no positive roots and

$$
n>\binom{d}{2} \frac{\max _{0 \leq i \leq d}\left\{a_{i} /\binom{d}{i}\right\}}{\min _{\lambda \in[0,1]}\left\{(1-\lambda)^{d} f\left(\frac{\lambda}{1-\lambda}\right)\right\}}-d
$$

then $S\left((x+1)^{n} f(x)\right)=0$.

Descartes' rule of signs is exact!

Theorem (Avendano (2009))

For any non-zero $f \in \mathbb{R}[x]$, the sequence $S\left((x+1)^{n} f(x)\right)$ is monotone decreasing and it stabilizes at $R(f)$.

Intuitive proof I

Recall that $f=a_{d} x^{d}+\cdots+a_{1} x+a_{0}$.
■ Then $(x+1)^{n} f(x)=c_{n}^{n+d} x^{n+d}+\cdots+c_{n}^{1} x+c_{n}^{0}$ where

$$
c_{n}^{k}=\sum_{i=0}^{d} a_{i}\binom{n}{k-i}
$$

- Encode the (signs of the) coefficients c_{n}^{k} in the piecewise constant functions $g_{n}:[0,1) \rightarrow \mathbb{R}$ given by

$$
g_{n}(\lambda)=\binom{n+d}{[\lambda(n+d+1)]}^{-1} c_{n}^{[\lambda(n+d+1)]}
$$

$■ \operatorname{sgn}\left(c_{n}^{k}\right)=\operatorname{sgn}\left(g_{n}(k /(n+d+1))\right)$.

Example I

Consider the polynomial

$$
\begin{aligned}
f & =(x-2)(x-7)\left(9 x^{6}-x^{5}+2 x^{4}-4 x^{3}+2 x^{2}+4 x+1\right) \\
& =9 x^{8}-82 x^{7}+137 x^{6}-36 x^{5}+66 x^{4}-70 x^{3}-7 x^{2}+47 x+14 .
\end{aligned}
$$

Figure: Functions $g_{0}(\lambda), g_{1}(\lambda)$ and $g_{5}(\lambda)$ compared with $g(\lambda)$.

Example II

Figure: Functions $g_{10}(\lambda), g_{25}(\lambda)$ and $g_{100}(\lambda)$ compared with $g(\lambda)$.

Intuitive proof II

- Show that the sequence of functions $\left\{g_{n}\right\}_{n \geq 0}$ converge uniformly to

$$
g(\lambda)=(1-\lambda)^{d} f\left(\frac{\lambda}{1-\lambda}\right)
$$

in the interval $[0,1)$.
■ Note that the homography $\lambda \mapsto \frac{\lambda}{1-\lambda}$ is a bijection from $[0,1)$ to $[0, \infty)$. Its inverse is given by $x \mapsto \frac{x}{x+1}$.

- For large enough n, the number of sign alternations in c_{n}^{k} is equal to the number of changes of signs of $g(\lambda)$, i.e. the number of positive roots of f.

What else?

- The n required to get $S\left((x+1)^{n} f\right)=R(f)$ is usually (very) large. An analysis of the optimal n is in progress.
- Can we change $x+1$ by some other polynomial?
- For large enough n, the coefficients of $(x+1)^{n} f(x)$ and the values of f, after some normalization, almost coincide. Can we use this for finding roots?
- The proof uses that a Binomial probability distribution can be approximated well by a Poisson distribution. Also, we are multiplying by powers of $(x+1)$. Is this technique related with random walks?

What is a Descartes' rule of signs?

Let \mathfrak{M} be the set of sequences of real numbers indexed by the non-negative integers, with finite support. We use this sequences to encode the coefficients of polynomials in $\mathbb{R}[x]$.

Consider a function $\hat{S}: \mathfrak{M} \rightarrow \mathbb{N}_{0}$ such that:
$1 \hat{S}(\square * a) \leq \hat{S}(a)$
$2 \hat{S}(a) \geq$ "positive regions in $a^{\prime \prime}+$ "negative regions in $a "-1$ for all $a \in \mathfrak{M}$. Then \hat{S} is a DRS, i.e. $R(f) \leq \hat{S}(f)$ for all $f \in \mathbb{R}[x]$.

Here $*$ denotes convolution of sequences (or multiplication of polynomials) and \square corresponds to the binomial $1+x$.

Is there any other Descartes' rule of signs?

Yes, sure!

Define $\hat{S}(a)$ as the number of times the sequence changes from + to - plus twice the number of changes from - to + . This gives a DRS.

Want more?

For any sequence $a \in \mathfrak{M}$ define $\hat{a} \in \mathfrak{M}$ by

$$
\hat{a}_{n}=\sum_{i=n}^{\infty} a_{i}\binom{i}{n}(-1)^{i-n} .
$$

Then the function $\hat{S}: \mathfrak{M} \rightarrow \mathbb{N}_{0}$ given by $\hat{S}(a)=S(\hat{a})$ is a DRS.

How to go to several variables?

Let \mathfrak{M}_{2} denote the set of two-dimensional sequences (indexed by $\mathbb{N}_{0} \times \mathbb{N}_{0}$) of real numbers with finite support. Consider a function $\hat{S}: \mathfrak{M}_{2} \rightarrow \mathbb{N}_{0}$ such that
$1 \hat{S}(\square * a) \leq \hat{S}(a)$
$2 \hat{S}(\square * a) \leq \hat{S}(a)$
3 $\hat{S}(a) \geq$ "positive regions in a " + "negative regions in a " for all $a \in \mathfrak{M}_{2}$. Then \hat{S} gives a DRS in two variables, i.e. for any non-zero $f \in \mathbb{R}[x, y]$, it gives an upper bound for the number of connected components of the complement of the zero set of f.

Is there any DRS in two variables?

Yes, sure!

For any $a \in \mathfrak{M}_{2}$ define $Q(a)=$ "positive regions in $a "+$ "negative regions in a" and

$$
\hat{S}(a)=\max _{n, m \geq 0} Q\left(\square \square^{n} * \square^{m} * a\right) .
$$

The function \hat{S} is a DRS in two variables.

Is there any DRS in two variables with a simple formula?

