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Introduction.

Descartes’ rule of signs is exact!

Some questions.
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Descartes’ rule of signs is easy.

Let f = Z,d:o a;x'" € R[x] be a non-zero polynomial of degree d.

m R(f) is the number of positive roots of f counted with
multiplicities.

m S(f) is the number of changes of signs in the sequence of
coefficients of f, ignoring the zeros.

Theorem (Descartes (1637) - Gauss (1828))
R(f) < S(f) and S(f) — R(f) is even.
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Descartes’ rule of signs is correct.

Proven by Gauss (1828), Albert (1943), Wang (2004), ...
The proofs are based on:

Lemma

S((x = 1)f(x)) > S(f) + 1.

® agay > 0 = S(f) and R(f) are both even.
B apag < 0 = S(f) and R(f) are both odd.

Martin Avendaiio Descartes’ rule of signs.



Descartes’ rule of signs is sharp.

miff=(x—r) - (x—ry) €R[x] where r; >0 Vi, then
S(f) = R(f) = n.

m [Grabiner (1999)] For any sequence of signs (no zeros), there
exists a non-zero f € R[x] with coefficients of the given signs

and S(f) = R(f).
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Descartes’ rule of signs is inexact.

m If f = x% + bx + ¢ € R[x] where b < 0 and ¢ > b?/4, then
S(f) =2and R(f) =0.

m [Anderson, Jackson, Sitharam (1998)] For any sequence of
signs or zeros with n changes of signs and an even integer k
such that 0 < k < n, there exists a non-zero f € R[x] with
coefficients of the given signs and R(f) = n — k.
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Descartes’ rule of signs is almost exact.

m [Poincare (1888)] There exists g € R[x], that depends on f,
such that R(f) = 5(fg).

m [Polya (1928)] If f has no positive roots, then there exists
n € Np such that S((x + 1)"f(x)) = 0.

m [Powers, Reznick (2007)] If f has no positive roots and

] d maxogigd{ai/(7)} -
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then S((x 4+ 1)"f(x)) = 0.
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Descartes’ rule of signs is exact!

Theorem (Avendano (2009))

For any non-zero f € R[x|, the sequence S((x + 1)"f(x)) is
monotone decreasing and it stabilizes at R(f).
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Intuitive proof |

Recall that f = agx? + -+ + a1x + ao.
m Then (x +1)"f(x) = cMTIx™9 4+ ... + clx + c2 where

d n
C,l,(:iZ(:)a,'(kI).

m Encode the (signs of the) coefficients c¥ in the piecewise
constant functions g, : [0,1) — R given by

B n+d - [A(n+d+1)]
&n(A) = <[)\(n +d+ 1)]) €n '

m sgn(ch) = sgn(gn(k/(n+ d +1))).
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Example |

Consider the polynomial

f=(x—2)(x—7)(9x® — x° +2x* —4x® 4 2x* + 4x + 1)
= 9x® — 82x" 4 137x% — 36x° + 66x* — 70x> — 7x* + 47x + 14.
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Figure: Functions go()), g1(A) and gs(\) compared with g(\).
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Example I
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Figure: Functions gio()), g25(\) and gigo(\) compared with g(A).
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Intuitive proof Il

m Show that the sequence of functions {g,}n>0 converge
uniformly to

g0 = -0 (125)

in the interval [0,1).

m Note that the homography A — 7 )\ is a bijection from [0, 1)
to [0,00). Its inverse is given by X AT

m For large enough n, the number of sign alternations in ¢ is

equal to the number of changes of signs of g()\), i.e. the
number of positive roots of f.
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What else?

m The n required to get S((x + 1)"f) = R(f) is usually (very)
large. An analysis of the optimal n is in progress.

m Can we change x + 1 by some other polynomial?
m For large enough n, the coefficients of (x + 1)"f(x) and the

values of f, after some normalization, almost coincide. Can
we use this for finding roots?

m The proof uses that a Binomial probability distribution can be
approximated well by a Poisson distribution. Also, we are
multiplying by powers of (x + 1). Is this technique related
with random walks?
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What is a Descartes’ rule of signs?

Let 9 be the set of sequences of real numbers indexed by the
non-negative integers, with finite support. We use this sequences
to encode the coefficients of polynomials in R[x].

I ——
Consider a function 5 : 9 — Ng such that:

S(D«a) < S(a)

S(a) > “positive regions in a’ + “negative regions in @’ — 1
for all a € M. Then S is a DRS, i.e. R(f) < 5(f) for all f € R[x].

Here * denotes convolution of sequences (or multiplication of
polynomials) and (I corresponds to the binomial 1 + x.
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Is there any other Descartes’ rule of signs?

Yes, sure!

Define 5(a) as the number of times the sequence changes from +
to — plus twice the number of changes from — to +. This gives a
DRS.

Want more?

For any sequence a € 9 define & € I by

Then the function 5 : 90 — Ny given by 5(a) = S(3) is a DRS.
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How to go to several variables?

Let M1, denote the set of two-dimensional sequences (indexed by
Np x Np) of real numbers with finite support. Consider a function
S : 9y, — Ny such that

S(#a) < 5(a)
B 5(E+a) < 5(a)
5(a) > “positive regions in a’ + “negative regions in a"
for all a € M. Then S gives a DRS in two variables, i.e. for any

non-zero f € R[x,y], it gives an upper bound for the number of
connected components of the complement of the zero set of f.
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Is there any DRS in two variables?

Yes, sure!

|
For any a € 9, define Q(a) = “positive regions in a’ + “negative
regions in a" and

5(a) = max Q(CTI" 2™ x a).

n,m>0

The function S is a DRS in two variables.
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Is there any DRS in two variables with a simple formula?
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