CHAMBER CONES AND SIMPLE
HOMOTOPIES FOR JUST REAL ROOT

J. Maurice Roj:
Texas A&M Univers

*Partially supported by NSF MCS grant DMS-0915245 and DOE ASCR grant DE-SC0002¢

SMALE’S 172t PROBLEM (2000)

“Can a solution of n complex polynomial
equations in n unknowns be found approximately,
on the average, 1w polynomial time with a

uniform algorithm?”
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OUTLINE

Let’s see how chamber cones can be used to deal
with real solutions of polynomial equations.
Specifically...

e Eistimating their number...
eDeciding their existence...
e Approximating their coordinates...

We begin by discussing approximation first...
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HEDGING YOUR BETS...

“Can a solution of n complex polynomial
equations in n unknowns be found approximately,
on the average,

uniform algorithm?”

i polynomial time with a
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SMALE’S 17t PROBLEM (2000)

“Can a solution of n compler polynomial
equations in n unknowns be found approximately,
on the average, in polynomial time with a
uniform algorithm?”

...major recent progress Beltran and Pardo [FoCM
2007, JAMS 2008] and Biirgisser and Cucker [STOC
2010].
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“SPARSADELIC” SMALE’S 17%

Sparsity and real (and p-adic) solutions have been
ignored so far in Smale’s 17th Problem, so let us
consider the following new complement...
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EXAMPLE

[Beltran, Pardo, 2008 == given a random*

n X n system of degree d polynomials, on

average, you can find a “good” start point for

Newton’s method, with probability 99.9%., using just
O(dn” ()™ 102 )

arithmetic operations.

...in spite of d" complex solutions with probability
1, and the existence of systems with arbitrarily bad
numerical conditioning...
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* ...via the usual U(n + 1)-invariant measure...

MAIN CONJECTURE

1. A real solution of a random (feasible) real
n X n  polynomial system can be found
approximately, on the average, in polynomial time
in the sparse encoding, with a uniform
algorithm.

2. In particular, one can count exactly the
number of positive roots, with high probability, in
polynomial time.
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UNIVARIATE BINOMIALS

If you let ¢1, ¢y be i.i.d. real Gaussians, then for ¢; + CQ:U‘f...
e There are <2 isolated real roots...

e You can count exactly the number positive roots in
constant time...

e You can find an approximate real root within O(log d)
arithmetic operations on average. (See, e.g., [Ye, 94|
and then estimate some integrals...)
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HERE’S HOW...

You can decide whether 1 — ¢z - 2317811 has 0, 1, or 2
positive roots, just by checking whether
19641819641812139312139 31781 _ 3178113181 i < (), =0, or >0.

c>0 small 0 BIG
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UNIVARIATE TRINOMIALS

If you let ¢, co, c3 be independent real Gaussians® then for

c1 + CQx‘f -+ 033:1D...

e There are <4 isolated real roots...

e You can count exactly the number positive roots within
(log(c1) + log(cz) 4 log(cs) 4 log(D))°™M bit operations
[Bihan, Rojas, Stella, 2010].

e You can find an approximate real root within O(log D)
arithmetic operations on average [Faria, Popov, Rojas,
2010].
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HERE’S HOW...
You can decide whether 1 — cx!'?0H8 4 231781 has 0, 1, or 2

positive roots, just by checking whether
196418196418121393121393 317811 _ 317811317811 §g < (), =0, or > 0.

c>0 small 0 BIG

D. Lower Binomial ° ;i. ' d * D
{1+a7} ‘fl—cxla_ml T }‘

=0 ¢~ 1.944526275...
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THEOREM 1

[Bihan-Rojas-Stella] Fixz n. Then for any “honest”
n-variate (n + 2)-nomial f, one can decide

Z.(f)=0 in P.

Note: All earlier algorithms (even much more
general results of Basu, Gabrielov, and Zell) yield
singly exponential time at best. Our use of Diophan-
tine Approximation appears to be unavoidable and
leads to interesting connections to the abc-Conjecture.
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2 x 2 TRINOMIAL SYSTEMS

Consider T + g—éxéﬂ — X9

r5? + 5521 — x4
This system has exactly 822 — 1 = 6723 roots in
C? and exactly 1 (resp. 2, 2, 0) roots in RZ (resp.
R.xR,, R R, xR_)...
realroot applied to the z-eliminant on Maple 13

dies, so how do we find certifiable information about
the real roots quickly?
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n-VARIATE (n + k)-NOMIALS?

Obstruction:
THEOREM 2 [Bihan-Rojas-Stella] Fiz any e.

Then deciding Z.(f) Ly for general n-variate
(n + n°)-nomials f (with n €N part of the input)
15 NP-hard.

...but there is a way out!

Chamber Cones and Randomization...
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A-DISCRIMINANTS?

82 41
77+ axry — X9

82 41
x5* + bayt — x;

Consider

The underlying discriminant variety could give valuable information,
but defining polynomial has coefficients of over 6000 digits (and likely
thousands of such coefficients).

Nevertheless, the Horn-Kapranov Uniformization gives us a one-
line parametrization!:

10 673 6683 <380 0 B0 /e o s i o
PO =0kl gy i s s } (1 )
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Slice of Nabl%ﬁfR) plotted on log paper, for the family
182001, CZX[ 10],,[010],,[0821], C5X[41 01],,[101]

Now consider
LOg‘ZR<AA<1, a, 17 17 ba 1))‘

|

i.e., |the contour
of Amoeba(Ay4(1,a,1,1,b,1))
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Slice of Nable&(R) plotted on log paper, for the family
8200], CzX[ 10],,[010],,[0821] +C5X[41 01],,[101]

Consider z* + %x%l — X9

252 + 5521t — 1y
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INNER/OUTER CHAMBERS

Now consider
Log‘ZR(A.A(]-a a, 17 ]-7 b7 1))|
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Liftings via — log |coeff|

in the limit
Consider 1? + 223" — 5 R ( )
252 + 5l — 1y

KLV
] o
[ W o
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Consider 1% + 225" — 5

252 + 5521t — 1y

A lower binomial system..
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82 | 31 [41].41
Use 7" + 55 [Lxy — @9
252 + 55t Bt — 1y

...starting from (1, 1)

Simpler homotopy!

82 82 4 31,41|.82 | 31,41
77— Tp |X77 A 55T | X7 55T,
82 41 82 41
x5° — xy |9dx] — w1 |25° + DO
2 2 2
1 RZ 0 RZ 0 R%
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Lower binomial systems...

*

: 31 82 82 | 31,.41],.82 | 31 .41
Consider z}* + S5 x3' — xy R LY Wy | TyT T 55T | X1 T 5oy

82 41 82 41
r5° — a1 |90 — X1 |25 + DD

82 41
r5° + dbxT — 1y
’ ! 1R2 ' OR2 0 R2
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Simpler homotopy!

*

1 82 82 31,.41|,.82 31,41
USG:B?—F% tll"%l—l“g R TT — Ty | X7+ 5% | T+ 5570

82 41 82 41
5% —xy |90 — 71 257 + O]
2

1 R%

282 + 55t St — 4

...starting from (1, 1)

ORZ. ' OR2

...but how do you know where you are?!
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CHAMBER CONES LARGER EXAMPLE

Consider 20 oyt 41

...what would the chambers and cones look like?

X ./movie2

T\
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THEOREM 3 THEOREM 3
[Pébay, Rojas, Rusek, Thompson, 2010] Fiz n and let A= [Pébay, Rojas, Rusek, Thompson, 2010] Fizx n... Then, in
{a;} CZ" have cardinality m. Then, in time polynomial in time polynomial in the sparse encoding, we can determine
the sparse encoding, we can determine the unique chamber the unique chamber cone...

cone containing f(x)=>"", ¢;x%, or obtain a true declara-

tion that f lies in >2 chamber cones Corollary. For fized n, real feasibility for “most” n-variate

(n + k)-nomials lies in NP/
Geometrically, chamber cone membership is like LP redun-
dancy, but applied to an oriented hyperplane arrangement.
One then proceeds via a careful application of an interior-
point of [Vavasis & Ye, 1996] and Baker’s Theorem...

...p-adic analogue now in progress [Avendano, Ibrahim,
Rojas, Rusek, 2010].
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. Thank you for listening!

Please see...
www.math.tamu.edu/"rojas
for on-line papers and further information.




