CHAMBER CONES AND SIMPLE
 HOMOTOPIES FOR JUST REAL ROOT

SMALE'S 17 ${ }^{\text {th }}$ PROBLEM (2000)
"Can a solution of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?"

OUTLINE

Let's see how chamber cones can be used to deal with real solutions of polynomial equations. Specifically...

- Estimating their number...
\bullet Deciding their existence.
- Approximating their coordinates...

We begin by discussing approximation first...

(C)J. Maurice Rojas

HEDGING YOUR BETS...

"Can $\underline{\mathbf{a}}$ solution of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?"

SMALE'S 17 ${ }^{\text {th }}$ PROBLEM (2000)

"Can a solution of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?"
...major recent progress Beltran and Pardo [FoCM 2007, JAMS 2008] and Bürgisser and Cucker [STOC 2010].

EXAMPLE

[Beltran, Pardo, 2008] \Longrightarrow given a random* $n \times n$ system of degree d polynomials, on average, you can find a "good" start point for Newton's method, with probability 99.9%, using just $O\left(d^{3} n^{7}\left(\frac{d+n}{e}\right)^{3 \min \{d, n\}} \log ^{2} d\right)$
arithmetic operations.
...in spite of d^{n} complex solutions with probability 1 , and the existence of systems with arbitrarily bad numerical conditioning...

(c)J. Maurice Rojas

MAIN CONJECTURE

1. A real solution of a random (feasible) real $n \times n$ polynomial system can be found approximately, on the average, in polynomial time in the sparse encoding, with a uniform algorithm.
2. In particular, one can count exactly the number of positive roots, with high probability, in polynomial time.

UNIVARIATE BINOMIALS

If you let c_{1}, c_{2} be i.i.d. real Gaussians, then for $c_{1}+c_{2} x_{1}^{d} \ldots$

- There are ≤ 2 isolated real roots...
- You can count exactly the number positive roots in constant time...
- You can find an approximate real root within $O(\log d)$ arithmetic operations on average. (See, e.g., [Ye, '94] and then estimate some integrals...)

UNIVARIATE TRINOMIALS

If you let c_{1}, c_{2}, c_{3} be independent real Gaussians* then for $c_{1}+c_{2} x_{1}^{d}+c_{3} x_{1}^{D} \ldots$

- There are ≤ 4 isolated real roots...
- You can count exactly the number positive roots within $\left(\log \left(c_{1}\right)+\log \left(c_{2}\right)+\log \left(c_{3}\right)+\log (D)\right)^{O(1)}$ bit operations [Bihan, Rojas, Stella, 2010].
- You can find an approximate real root within $O(\log D)$ arithmetic operations on average [Faria, Popov, Rojas, 2010].

© J. Maurice Rojas

HERE'S HOW...

You can decide whether $1-c x^{196418}+x^{317811}$ has 0,1 , or 2 positive roots, just by checking whether $196418^{196418} 121393^{121393} c^{317811}-317811^{317811}$ is $<0,=0$, or >0.

THEOREM 1

[Bihan-Rojas-Stella] Fix n. Then for any "honest" n-variate $(n+2)$-nomial f, one can decide $Z_{+}(f) \stackrel{?}{=} \emptyset$ in \mathbf{P}.

Note: All earlier algorithms (even much more general results of Basu, Gabrielov, and Zell) yield singly exponential time at best. Our use of Diophantine Approximation appears to be unavoidable and leads to interesting connections to the $a b c$-Conjecture.

n-VARIATE $(n+k)$-NOMIALS?

Obstruction:
THEOREM 2 [Bihan-Rojas-Stella] Fix any ε. Then deciding $Z_{+}(f) \stackrel{?}{=} \emptyset$ for general n-variate ($n+n^{\varepsilon}$)-nomials f (with $n \in \mathbb{N}$ part of the input) is NP-hard.
...but there is a way out!
Chamber Cones and Randomization...

(C)J. Maurice Rojas

\mathcal{A}-DISCRIMINANTS?

Consider

$$
\begin{gathered}
x_{1}^{82}+a x_{2}^{41}-x_{2} \\
x_{2}^{82}+b x_{1}^{41}-x_{1}
\end{gathered}
$$

The underlying discriminant variety could give valuable information, but defining polynomial has coefficients of over 6000 digits (and likely thousands of such coefficients).

Nevertheless, the Horn-Kapranov Uniformization gives us a oneline parametrization!:
$\varphi(\lambda, t):=\left[\lambda_{1}, \lambda_{2}\right]\left[\begin{array}{cccccc}-40 & 6723 & -6683 & -3280 & 0 & 3280 \\ -40 & 163 & -123 & -80 & 80 & 0\end{array}\right] \odot\left(1, \frac{t_{2}^{41}}{t_{1}^{82}}, \frac{t_{2}}{t_{1}^{82}}, \frac{t_{2}^{82} t_{3}}{t_{1}^{82}}, \frac{t_{3}}{t_{1}^{41}}, \frac{t_{3}}{t_{1}^{81}}\right)$

Slice of $\mathrm{Nabla}_{A}(\mathrm{R})$ plotted on log paper, for the family
$[82001$

Now consider

INNER/OUTER CHAMBERS

Now consider
$\log \left|Z_{\mathbb{R}}\left(\Delta_{\mathcal{A}}(1, a, 1,1, b, 1)\right)\right|$

© J. Maurice Rojas

...but how do you know where you are?!

CHAMBER CONES

© J. Maurice Rojas

THEOREM 3

[Pébay, Rojas, Rusek, Thompson, 2010] Fix n and let $\mathcal{A}=$ $\left\{a_{i}\right\} \subset \mathbb{Z}^{n}$ have cardinality m. Then, in time polynomial in the sparse encoding, we can determine the unique chamber cone containing $f(x)=\sum_{i=1}^{m} c_{i} x^{a_{i}}$, or obtain a true declaration that f lies in ≥ 2 chamber cones.

Geometrically, chamber cone membership is like LP redundancy, but applied to an oriented hyperplane arrangement. One then proceeds via a careful application of an interiorpoint of [Vavasis \& Ye, 1996] and Baker's Theorem...

LARGER EXAMPLE

Consider

$$
\begin{aligned}
& x^{6}+\alpha y^{3}+1 \\
& y^{14}+\beta x^{3} y^{8}+x y^{8}+\gamma x^{133} \ldots
\end{aligned}
$$

...what would the chambers and cones look like?

```
./movie2
```


© J. Maurice Rojas

THEOREM 3

[Pébay, Rojas, Rusek, Thompson, 2010] Fix n... Then, in time polynomial in the sparse encoding, we can determine the unique chamber cone...

Corollary. For fixed n, real feasibility for "most" n-variate $(n+k)$-nomials lies in NP!
...p-adic analogue now in progress [Avendaño, Ibrahim, Rojas, Rusek, 2010].

Please see...
www.math.tamu.edu/~rojas
for on-line papers and further information.

