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CHAMBER CONES AND SIMPLE
HOMOTOPIES FOR JUST REAL ROOTS OUTLINE

Let’s see how chamber cones can be used to deal

with real solutions of polynomial equations.

Specifically...

• Estimating their number...

•Deciding their existence...

•Approximating their coordinates...

We begin by discussing approximation first...
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SMALE’S 17th PROBLEM (2000)

“Can a solution of n complex polynomial

equations in n unknowns be found approximately,

on the average, in polynomial time with a

uniform algorithm?”
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HEDGING YOUR BETS...

“Can a solution of n complex polynomial

equations in n unknowns be found approximately,

on the average, in polynomial time with a

uniform algorithm?”
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SMALE’S 17th PROBLEM (2000)

“Can a solution of n complex polynomial

equations in n unknowns be found approximately,

on the average, in polynomial time with a

uniform algorithm?”

...major recent progress Beltran and Pardo [FoCM

2007, JAMS 2008] and Bürgisser and Cucker [STOC

2010].
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EXAMPLE

[Beltran, Pardo, 2008] =⇒ given a random∗

n × n system of degree d polynomials, on

average, you can find a “good” start point for

Newton’s method, with probability 99.9%, using just

O
(

d3n7
(

d+n
e

)3 min{d,n}
log2 d

)

arithmetic operations.

...in spite of dn complex solutions with probability

1, and the existence of systems with arbitrarily bad

numerical conditioning...

c©J. Maurice Rojas

MO!∗ ...via the usual U(n + 1)-invariant measure...

“SPARSADELIC” SMALE’S 17th

Sparsity and real (and ppp-adic) solutions have been

ignored so far in Smale’s 17th Problem, so let us

consider the following new complement...
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MAIN CONJECTURE

1. A real solution of a random (feasible) real

n × n polynomial system can be found

approximately, on the average, in polynomial time

in the sparse encoding, with a uniform

algorithm.

2. In particular, one can count exactly the

number of positive roots, with high probability, in

polynomial time.
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UNIVARIATE BINOMIALS

If you let c1, c2 be i.i.d. real Gaussians, then for c1 + c2x
d
1...

• There are ≤2 isolated real roots...

• You can count exactly the number positive roots in
constant time...

• You can find an approximate real root within O(log d)
arithmetic operations on average. (See, e.g., [Ye, ’94]
and then estimate some integrals...)
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UNIVARIATE TRINOMIALS

If you let c1, c2, c3 be independent real Gaussians∗ then for
c1 + c2x

d
1 + c3x

D
1 ...

• There are ≤4 isolated real roots...

• You can count exactly the number positive roots within
(log(c1) + log(c2) + log(c3) + log(D))O(1) bit operations
[Bihan, Rojas, Stella, 2010].

• You can find an approximate real root within O(log D)
arithmetic operations on average [Faria, Popov, Rojas,
2010].
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HERE’S HOW...
You can decide whether 1 − cx196418 + x317811 has 0, 1, or 2
positive roots, just by checking whether
196418196418121393121393c317811 − 317811317811 is <0, =0, or >0.

c>0 small c>0 BIG
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HERE’S HOW...
You can decide whether 1 − cx196418 + x317811 has 0, 1, or 2
positive roots, just by checking whether
196418196418121393121393c317811 − 317811317811 is <0, =0, or >0.

c>0 small c>0 BIG

c=0 c≈1.944526275...

{1+xD
1 }

Lower Binomials
{1−cxd

1,−cxd
1 +xD

1 }
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THEOREM 1

[Bihan-Rojas-Stella] Fix n. Then for any “honest”

n-variate (n + 2)-nomial f , one can decide

Z+(f )
?
=∅ in P.

Note: All earlier algorithms (even much more

general results of Basu, Gabrielov, and Zell) yield

singly exponential time at best. Our use of Diophan-

tine Approximation appears to be unavoidable and

leads to interesting connections to the abc-Conjecture.
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n-VARIATE (n + k)-NOMIALS?

Obstruction:

THEOREM 2 [Bihan-Rojas-Stella] Fix any ε.

Then deciding Z+(f )
?
= ∅ for general n-variate

(n + nε)-nomials f (with n∈N part of the input)

is NP-hard.

...but there is a way out!

Chamber Cones and Randomization...
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2 × 2 TRINOMIAL SYSTEMS

Consider x82
1 + 31

50x
41
2 − x2

x82
2 + 55x41

1 − x1

This system has exactly 822 − 1 = 6723 roots in

C
2; and exactly 1 (resp. 2, 2, 0) roots in R

2
+ (resp.

R− × R+, R
2
−, R+ × R−)...

realroot applied to the x-eliminant on Maple 13

dies, so how do we find certifiable information about

the real roots quickly?
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A-DISCRIMINANTS?

Consider x82
1 + ax41

2 − x2

x82
2 + bx41

1 − x1

The underlying discriminant variety could give valuable information,
but defining polynomial has coefficients of over 6000 digits (and likely
thousands of such coefficients).

Nevertheless, the Horn-Kapranov Uniformization gives us a one-
line parametrization!:

ϕ(λ, t) := [λ1, λ2]

[

−40 6723 −6683 −3280 0 3280
−40 163 −123 −80 80 0

]

⊙
(

1,
t
41

2

t82
1

, t2

t82
1

,
t
82

2
t3

t82
1

, t3

t41
1

, t3

t81
1

)
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2 × 2 TRINOMIAL SYSTEMS
Slice of Nabla

A
(R) plotted on log paper, for the family

 x[82 0 0]+c
2
x[0 41 0]+x[0 1 0]+x[0 82 1]+c

5
x[41 0 1]+x[1 0 1]

Now consider
Log|ZR(∆A(1, a, 1, 1, b, 1))|...

i.e., the contour
of Amoeba(∆A(1, a, 1, 1, b, 1))
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Now consider
Log|ZR(∆A(1, a, 1, 1, b, 1))|...

INNER/OUTER CHAMBERS
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2 × 2 TRINOMIAL SYSTEMS
Slice of Nabla

A
(R) plotted on log paper, for the family

 x[82 0 0]+c
2
x[0 41 0]+x[0 1 0]+x[0 82 1]+c

5
x[41 0 1]+x[1 0 1]

Consider x82
1 + 31

50x
41
2 − x2

x82
2 + 55x41

1 − x1
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Consider x82
1 + 31

50x
41
2 − x2

x82
2 + 55x41

1 − x1

Liftings via − log |coeff|

(in the limit)

c©J. Maurice Rojas



Consider x82
1 + 31

50x
41
2 − x2

x82
2 + 55x41

1 − x1

x82
1 − x2

x82
2 − x1

A lower binomial system...
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Consider x82
1 + 31

50x
41
2 − x2

x82
2 + 55x41

1 − x1

Lower binomial systems...

x82
1 − x2

x82
2 − x1

1 R
2
+

|x
82
1 + 31

50
x41

2

55x41
1 − x1

0 R
2
+

|x
82
1 + 31

50
x41

2

x82
2 + 55x41

1

0 R
2
+
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Use x82
1 + 31

50 t1 x41
2 − x2

x82
2 + 55 t−8 x41

1 − x1

...starting from (1, 1)

Simpler homotopy!

x82
1 − x2

x82
2 − x1

1 R
2
+

|x
82
1 + 31

50
x41

2

55x41
1 − x1

0 R
2
+

|x
82
1 + 31

50
x41

2

x82
2 + 55x41

1

0 R
2
+

c©J. Maurice Rojas

Use x82
1 + 31

50 t1 x41
2 − x2

x82
2 + 55 t−8 x41

1 − x1

...starting from (1, 1)

Simpler homotopy!

x82
1 − x2

x82
2 − x1

1 R
2
+

|x
82
1 + 31

50
x41

2

55x41
1 − x1

0 R
2
+

|x
82
1 + 31

50
x41

2

x82
2 + 55x41

1

0 R
2
+

...but how do you know where you are?!
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CHAMBER CONES
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LARGER EXAMPLE

Consider x6 + αy3 + 1
y14 + βx3y8 + xy8 + γx133...

...what would the chambers and cones look like?

./movie2
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THEOREM 3
[Pébay, Rojas, Rusek, Thompson, 2010] Fix n and let A=
{ai}⊂Z

n have cardinality m. Then, in time polynomial in
the sparse encoding, we can determine the unique chamber
cone containing f(x)=

∑

m

i=1 cix
ai, or obtain a true declara-

tion that f lies in ≥2 chamber cones.

Geometrically, chamber cone membership is like LP redun-
dancy, but applied to an oriented hyperplane arrangement.
One then proceeds via a careful application of an interior-
point of [Vavasis & Ye, 1996] and Baker’s Theorem...
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THEOREM 3
[Pébay, Rojas, Rusek, Thompson, 2010] Fix n... Then, in
time polynomial in the sparse encoding, we can determine
the unique chamber cone...

Corollary. For fixed n, real feasibility for “most” n-variate
(n + k)-nomials lies in NP!

...p-adic analogue now in progress [Avendaño, Ibrahim,
Rojas, Rusek, 2010].
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♥♥♥ Thank you for listening!

Please see...

www.math.tamu.edu/~rojas

for on-line papers and further information.


