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Assimilation of observations, as it is known in meteorology, originated from the need of defining

initial conditions (ICs) for numerical weather prediction. Difficulties progressively arose

! Need for defining ICs with appropriate spatial scales ! ‘structure functions‘ (now

incorporated in background error covariance matrices)

! Need for defining ICs in approximate geostrophic balance ! ‘initialization’ (now also

incorporated, at least partially, in background error covariance matrices; lecture 2 by P.

Lynch)

! Realization that meteorological forecasts are very sensitive to initial conditions (Lorenz,

1963).

! Realization that useful information was present in recent forecast ! use of a background,

to be defined with associated uncertainty (word assimilation was coined in 1967-68)

! Use of satellite observations, which are

- distributed continuously in time

- indirect ! need for some form of ‘inversion’
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December 2007: Satellite data volumes used:

around 18 millions per day
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S. Louvel, Doctoral Dissertation, 1999
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Physical laws governing the flow

! Conservation of mass

D!/Dt + ! divU  =  0

! Conservation of energy

De/Dt - (p/!2) D!/Dt =  Q

! Conservation of momentum

DU/Dt + (1/!) gradp - g + 2 " "U =  F

! Equation of state

 f(p, !, e) =  0 (p/! = rT, e = CvT)

! Conservation of mass of secondary components (water in  the atmosphere, salt
in the ocean, chemical species, …)

Dq/Dt + q divU  = S

Physical laws available in practice in the form of a discretized (and necessarily

imperfect) numerical model
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European Centre for Medium-range Weather Forecasts

(ECMWF, Reading, UK)

Horizontal spherical harmonics triangular truncation T1279

(horizontal resolution ! 16 kilometres)

91 levels on the vertical (0 - 80 km)

Dimension of state vector n ! 1.5 109

Timestep  =  10 minutes
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Purpose of assimilation : reconstruct as accurately as possible the state of the

atmospheric or oceanic flow, using all available appropriate information. The latter

essentially consists of

! The observations proper, which vary in nature, resolution and accuracy, and

are distributed more or less regularly in space and time.

! The physical laws governing the evolution of the flow, available in practice in

the form of a discretized, and necessarily approximate, numerical model.

! ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle

latitudes. Although they basically are necessary consequences of the physical

laws which govern the flow, these properties can usefully be explicitly

introduced in the assimilation process.
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Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

• solid Earth geophysics

• plasma physics

• ‘nondestructive’ probing

• navigation (spacecraft, aircraft, ….)

• …

Solution most often (if not always) based on bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.
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Difficulties specific to assimilation of meteorological and
oceanographical observations!:

- Very large numerical dimensions (n " 107-109 parameters to
be estimated, p " 2.107 observations per 24-hour period).
Difficulty aggravated in Numerical Weather Prediction by the
need for the forecast to be ready in time.

- Non-trivial underlying dynamics.
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Both observations and ‘model’ are affected with some uncertainty ! uncertainty on the

estimate.

For some reason, uncertainty is conveniently described by probability distributions

(don’t know too well why, but it works) (lecture by C. Bishop to-night)

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system,

knowing everything we know (unambiguously defined if a prior probability distribution is defined; see

Tarantola, 2005).
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Bayesian Estimation

Determine conditional probability distribution of the state of the system,
given the probability distribution of the uncertainty on the data

z1 = x + #1  #1 = ! [0, s1]

 density function p1(#) # exp[ - (#2)/2s1]

z2 = x + #2  #2 = ! [0, s2]

 density function p2(#) # exp[ - (#2)/2s2]

$ #1 and #2 mutually independent

What is the conditional probability P(x = $ | z1, z2) that x be equal to
some value $ ?
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z1 = x + #1 density function p1(#) # exp[ - (#2)/2s1
2]

z2 = x + #2  density function p2(#) # exp[ - (#2)/2s2
2]

x = $   %  #1 = z1-$  and #2 = z2 -$

$ P(x = $ | z1, z2) #  p1(z1-$) p2(z2 -$)

        #  exp[ - ($ -xa)2/2s]

where 1/s = 1/s1 + 1/s2 , x
a = s (z1/s1

 + z2/s2)

Conditional probability distribution of x, given z1 and z2 :! [xa, s]

s < (s1, s2) independent of z1 and z2
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z1 = x + #1

z2 = x + #2

Same as before, but #1 and #2 are now distributed according to exponential law with
parameter a, i. e.

p (#) # exp[-|# |/a]   ;    Var(#) = 2a2

Conditional probability density function is now uniform over interval [z1, z2],

exponential with parameter a/2 outside that interval

E(x | z1, z2)  = (z1+z2)/2

Var(x | z1, z2) = a2 (2&3/3 + &2 + & +1/2) / (1 + 2&), with & =  %z1-z2%/(2a)

Increases from a2/2 to & as & increases from 0 to &. Can be larger than variance 2a2

of original errors (probability 0.08)

(Entropy -'plnp always decreases in bayesian estimation)
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Bayesian estimation

State vector x, belonging to state space S (dimS = n), to be estimated.

Data vector z, belonging to data space D (dimD = m), available.

 z = F(x, #)  (1)

where # is a random element representing the uncertainty on the

data (or, more precisely, on the link between the data and the

unknown state vector).

For example

z = 'x + #
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Probability that x = $ for given!$ ?

x = $    !   z = F($, #)

P(x = $ | z) = P[z = F($, #)] / '$’ P[z = F($’, #)]

Unambiguously defined iff, for any #, there is at most one x such that!(1) is
verified.

(   data contain information, either directly or indirectly, on any component of x.
Determinacy condition.
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Bayesian estimation is however impossible in its general theoretical form
in meteorological or oceanographical practice because

• It is impossible to explicitly describe a probability distribution in a space
with dimension even as low as n " 103, not to speak of the dimension  n "
107-9 of present Numerical Weather Prediction models.

• Probability distribution of errors on data very poorly known (model errors
in particular).
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One has to restrict oneself to a much more modest goal. Two

approaches exist at present

! Obtain some ‘central’ estimate of the conditional probability

distribution (expectation, mode, …), plus some estimate of the

corresponding spread (standard deviations and a number of

correlations).

! Produce an ensemble of estimates which are meant to sample the

conditional probability distribution (dimension N " O(10-100)).
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Proportion of resources devoted to assimilation in

Numerical Weather Prediction has steadily increased over

time.

At present at ECMWF, the cost of 24 hours of assimilation

is half the global cost of the 10-day forecast (i. e.,

including the ensemble forecast).
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Random vector x = (x1, x2, …, x
n
)T = (x

i
) (e. g. pressure, temperature, abundance of given chemical

compound at n grid-points of a numerical model)

! Expectation E(x) ) [E(xi)] ;    centred vector    x’  ) x - E(x)

! Covariance  matrix

E(x’x’T) = [E(xi’xj’)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear relationship holds between the
xi’‘ s with probability 1).

! Two random vectors

x = (x1, x2, …, xn)T

y = (y1, y2, …, yp)
T

E(x’y’T) = E(xi’yj’)

        dimension nxp
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Random function (($) (field of pressure, temperature, abundance of given chemical compound, … ; $ is now spatial

and/or temporal coordinate)

! Expectation E[(($)]  ; (’($) ) (($) - E[(($)]

! Variance      Var[(($)] = E{[(’($)]2}

! Covariance function

($1, $2) 
*  C(($1, $2)  

)  E[(’($1) (’($2)]

! Correlation function

Cor(($1, $2)  
)  E[(’($1) (’($2)] / {Var[(($1)] Var[(($2)]}

1/2

$    
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After N. Gustafsson



After N. Gustafsson
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After N. Gustafsson
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Optimal Interpolation

Random field (($)

Observation network $1, $2, …, $p

For one particular realization of the field, observations

yj = (($j) + )j   ,  j = 1, …, p        ,                making up vector y = (yj)

Estimate x = (($) at given point $, in the form

 xa = * + +j +j yj  = * + +Ty , where + = (+j)

* and the +j’s being determined so as to minimize the expected quadratic estimation error

E[(x-xa)2]
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Optimal Interpolation (continued 1)

Solution

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)] 

i. e., + = [E(y’y’T)]-1 E(x’y’)

       * = E(x) - +TE(y)

Estimate is unbiased  E(x-xa) = 0

Minimized quadratic estimation error

E[(x-xa)2] = E(x’2) - E(x’y’T) [E(y’y’T)]-1 E(y’x’)

Estimation made in terms of deviations from expectations x’ and y’.
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Optimal Interpolation (continued 2)

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]

 yj = (($j) + )j

E(yj’yk’) = E[((’($j) + )j’)((’($k) + )k’)]

If observation errors )j are mutually uncorrelated, have common variance r, and are
uncorrelated with field (, then

 E(yj’yk’) = C(($j, $k) + r&jk

and

  E(x’yj’) = C(($, $j)
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Optimal Interpolation (continued 3)

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]

Vector

µ = (µ
j
) ) [E(y’y’T)]-1 [y - E(y)]

is independent of variable to be estimated

xa = E(x) + +
j
 µ

j  
E(x’y

j
’) 

(a($)
 
= E[(($)] + +

j
 µ

j  
E[(’($)

 
y

j
’]

          = E[(($)] + +
j
 µ

j  
C(($, $j

)

Correction made on background expectation is a linear combination of the p functions  E[(’($)
 
y

j
’].

E[(’($)
 
y

j
’] [ = C(($, $j

)
 
], considered as a function of estimation position $, is the representer

associated with observation y
j
.
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Optimal Interpolation (continued 4)

Univariate interpolation. Each physical field (e. g. temperature) determined from
observations of that field only.

Multivariate interpolation. Observations of different physical fields are used
simultaneously.  Requires specification of cross-covariances between various fields.

Cross-covariances between mass and velocity fields can simply be modelled on the
basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other) fields still a problem.
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After N. Gustafsson
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After A. Lorenc
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Optimal Interpolation (continued 5)

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]                        (1)
E[(x-xa)2] = E(x’2) - E(x’y’T) [E(y’y’T)]-1 E(y’x’)     (2

If n-vector x to be estimated (e. g. meteorological at all grid-points of numerical model)

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]     (3)

 P
a ) E[(x-xa)(x-xa)T] = E(x’x’T) - E(x’y’T) [E(y’y’T)]-1 E(y’x’T)    (4)

Eq. (3) says the same as eq. (1), but eq. (4) says more than eq. (2) in that it defines off-diagonal
entries of estimation error covariance matrix Pa.

If probability distributions are globally gaussian, eqs (3-4) achieve bayesian estimation, in the sense

that P(x | y) = ! [xa, Pa].
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Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS = n), to be estimated.

Available data in the form of

! A ‘background’ estimate (e. g. forecast from the past), belonging to state

space, with dimension n

xb  =  x  + #b

! An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y  =  Hx + )

H is known linear observation operator.

Assume probability distribution is known for  the couple (#b, )).

Assume E(#b) = 0, E()) = 0 (not restrictive)
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Best Linear Unbiased Estimate (continuation 1)

xb  =  x  + #b  (1)

y  =  Hx + )  (2)

A probability distribution being known for the couple (#b, )), eqs (1-2) define
probability distribution for the couple (x, y), with

E(x) = xb ,  x’ = x - E(x) = - #b

E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ) - H#b

d ) y - Hxb is called the innovation vector.
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Best Linear Unbiased Estimate (continuation 2)

E(x’y’T) = E[-#b()-H#b)T] = -E(#b)T) + E(#b#bT)HT

E(y’y’T) = E[()-H#b) ()-H#b)T] = HE(#b#bT)HT + E( T) - E()#bT) - E(#b)T)

Assume E(#b)T) = 0 (not mathematically restrictive)

and set E(#b#bT) ) Pb (also often denoted B), E())T) ) R
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Best Linear Unbiased Estimate (continuation 3)

Apply formulæ for Optimal Interpolation

xa = xb + Pb
 H

T
 [HPbHT + R]-1 (y - Hxb)

Pa = Pb
 - P

b
 H

T
 [HPbHT 

 + R]-1 HPb

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

Equivalent set of formulæ

xa = xb + Pa
 H

T
 R

-1 (y - Hxb)

[Pa]-1 = [Pb]-1
 + HT

 R
-1H

 Matrix K = Pb
 H

T
 [HPbHT + R]-1 = Pa

 H
T

 R
-1 is gain matrix.

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in

the sense that P(x | xb, y) = ! [xa, Pa].
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Best Linear Unbiased Estimate (continuation 4)

H can be any linear operator

Example : (scalar) satellite observation

x = (x1, …, x
n
)T  temperature profile

Observation y = +
i hi

x
i
 + ) = Hx + )  ,      H = (h1, …, h

n
)     ,      E()2) = r

Background xb = (x1
b, …, x

n
b)T ,     error covariance matrix Pb = (p

ij
b)

xa = xb + Pb
 
HT

 
[HPbHT + R]-1 (y - Hxb)

 [HPbHT + R]-1 (y - Hxb) = (y - +, h,x,
b) / (+

ij
h

i
h

j 
p

ij
b

 
+ r)-1 ) µ scalar !

$ ,  Pb = pb In  xi
a  = xi

b 
 + pb hi µ

$ ,  Pb = diag(pii
b) xi

a  = xi
b 

 + pii
b hi µ

       ,  General case
 

x
i
a  = x

i
b 

 
+ +

j 
p

ij
b h

j 
µ 

Each level i is corrected, not only because of its own contribution to the observation, but because of the contribution of
the other levels to which its background error is correlated.
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Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral

truncation T21, unit m. After F. Bouttier)
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to point

located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.

Contour interval 0.1. After F. Bouttier.
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How to introduce temporal dimension and, in particular, temporal evolution
of uncertainty on the state of the system ?

From an algorithmic point of view, two approaches (which can both be derived
from the theory of the BLUE)

Variational Assimilation

• Assimilating model is globally adjusted to observations distributed over observation
period. Achieved by minimization of an appropriate objective function measuring misfit
between data and sequence of model states to be estimated (lecture by P. Gauthier).

Sequential Assimilation

• Assimilating model is integrated over period of time over which observations are
available. Whenever model time reaches an instant at which observations are available,
state predicted by the model is updated with new observations (Kalman Filter, lecture
by I. Szunyogh).
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Exact bayesian estimation ?

Particle filters

Predicted ensemble at time t : {xb
n
, n = 1, …, N },  each element with its own weight

(probability) P(xb
n
)

Observation vector at same time : y = Hx + )

Bayes’ formula

P(xb
n
|y) - P(y|xb

n
) P(xb

n
)

Defines updating of weights
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Bayes’ formula

P(xb
n|y) - P(y|xb

n) P(xb
n)

Defines updating of weights; particles are not modified. Asymptotically converges to bayesian

pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.



52
C. Snyder,

http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/Snyder.pdf
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Problem originates in the ‘curse of dimensionality’ Large dimension

pdf’s are very diffuse, so that very few particles (if any) are present

in areas where conditional probability  (‘likelihood’) P(y|x) is large.

Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability

of filter requires the size of ensembles to increase exponentially with

space dimension.
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Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev., 4089-4114)

Resampling. Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by the updated
weights. Give same weight to all particles. Particles are not modified, but particles with
low weights are likely to be eliminated, while particles with large weights are likely to be
drawn repeatedly. For multiple particles, add noise, either from the start, or in the form of
‘model noise’ in ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as residual
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wn are multiplied by
ensemble dimension N. Then p copies of each particle n are taken, where p is the integer
part of Nwn. Remaining particles, if needed, are taken randomly from the resulting
distribution.
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Importance Sampling.

Use a proposal density that is closer to the new observations than the
density defined by the predicted particles (for instance the density
defined by EnKF, after the latter has used the new observations).
Independence between observations is then lost in the computation of
likelihood P(y|x) (or is it not ?)

In particular, Guided Sequential Importance Sampling (van Leeuwen,
2002). Idea : use observations performed at time k to resample ensemble
at some timestep anterior to k, or ‘nudge’ integration between times k-1
and k towards observation at time k.
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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Conclusions (partial)

Assimilation, which originated from the need of defining initial conditions for numerical weather
forecasts, has progressively extended to many diverse applications

• Oceanography

• Atmospheric chemistry (both troposphere and stratosphere)

• Oceanic biogeochemistry

• Ground hydrology

• Terrestrial biosphere and vegetation cover

• Glaciology

• Magnetism (both planetary and stellar)

• Plate tectonics

• Planetary atmospheres (Mars, …)

• Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)

• Identification of source of tracers

• Parameter identification

• A priori evaluation of anticipated new instruments

• Definition of observing systems (Observing Systems Simulation Experiments)

• Validation of models

• Sensitivity studies (adjoints)

• …
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Assimilation is related to

• Estimation theory

• Probability theory

• Atmospheric and oceanic dynamics

• Atmospheric and oceanic predictability

• Instrumental physics

• Optimisation theory

• Control theory

• Algorithmics and computer science

• …
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A few of the (many) remaining problems :

! Observability (data are noisy, system is chaotic !)

! More accurate identification and quantification of errors affecting
data particularly the assimilating model (will always require
independent hypotheses)

! Assimilation of images

! Particle Filters may define the way to fully bayesian assimilation
algorithms

! …




