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As far as we can can tell, there will always be significant uncertainty on the future
state of the atmosphere. How does that uncertainty evolve in time ? For instance, how fast
does it increase ?

Deterministic dynamical system. State vector x = (x, x,, ..., xN)T. Evolves in time according
to equation

dx
—=F(x,t
% (x,1)
or, componentwise
b ) i=12,...N
dt



Probability Density Function (PDF) p(x,) for state vector. Evolves in time
according to equation

P+ div(pF)=0
ot

or

which expresses conservation of probability in the flow F. Itis
fundamentally the same equation as the ‘continuity’ equation, which
expresses conservation of mass in physical motion. It is called in the
present context the Liouville equation.



If evolution is discretized in time, viz.,
X+ = G (xb)
where k is a time index, then PDF evolves according to
p(xX*1 k+1) = det(DG,(x¥)) p(x*, k)

where DG, is the Jacobian of the mapping G,.



If basic evolution equation contains a stochastic term, viz.,

)+
dt

where the noise 17(x.,f) is random, unbiased, white in time, with covariance matrix

Qlj(x’t) =F [nl(x’t) 77] (x’t)]

the PDF evolves according to the so-called Fokker-Planck equation,

i F) 1
E P —EM [pQ,]

(aka the second Kolmogorov equation in the Russian literature)



In case the noise 1s not white 1n time, or 1s not additive, no
simple equation describes the temporal evolution of the PDF,
but that evolution 1s unambiguously defined.

Ensemble Prediction, in which one (or several) numerical
models for the evolution of the flow are integrated for
different 1nitial or lateral boundary conditions and noise
realizations, provides an affordable approximation for
approximately solving the Liouville or Fokker-Planck
equation for the PDF of the state of the atmospheric flow.
Temporal dependence in the noise can easily be introduced in
EPSs, provided it 1s explicitly quantified.



Operational Ensemble Meteorological Prediction was initiated in 1992 by
the National Centers for Environmental Prediction (NCEP, USA) and the
European Centre for Medium-range Weather Forecasts (ECMWF).

As of now, 10 meteorological centres are producing daily global
operational ensemble predictions. Most of these predictions (about 200)
are stored on the THORPEX Interactive Grand Global Ensemble
(TIGGE) database, accessible at the address http://tigge.ecmwf.int/. In
addition, a number of other centres are running regional Ensemble
Prediction Systems (EPSs).

Three systems (those of ECMWEF, of the Meteorological Service of
Canada and of the UK Meteorological Office) include perturbations
intended at representing the effects of model errors. The other systems
evolve all ensemble elements with the same deterministic model (this may
not be true any more as of July 2011).



Simple example (D. Richardson)

If temperature goes below freezing, road traffic 1s disrupted.
Cost L.

Preventive action (gritting the road) i1s possible at cost C (<
L).

Forecast 1s uncertain. Is 1s appropriate to take preventive
action, or not ?



Two options

- Take no action. If freezing occurs with frequency p, long term expected

loss pL

- Take action. Cost C

Conclusion. Take action iff anticipated probability of occurrence of
freezing

p > C/L
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That however requires that

- the anticipated probability of occurrence 1s reliable, in the
precise sense that freezing occurs with frequency p in the
circumstances when it 1s anticipated to occur with probability

P.

- the conditions are such that the time required for achieving
the expected minimization of loss 1s in a sense short enough
(shorter for instance than the time over which the prediction
system will significantly evolve).
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What can one expect from ensemble predictions ?

- Increase confidence in prediction of high impact weather ?
- Put bounds on future state of the flow ?

- Predict ‘scenarii’ ?

- Produce more accurate (deterministic) forecasts, for instance by taking the average
of the ensemble ?

All those possible goals are actually included in the broader goal of predicting
probabilities of occurrence (for events), or more generally probability distributions
(for variables such as temperature or rainfall, or even for whole meteorological
fields).
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Point of view taken here

Purpose of probabilistic prediction is to describe our
uncertainty on the future state of the atmosphere

Question

How 1s 1t possible to objectively (and, if possible,
quantitatively) evaluate whether that purpose has
been achieved ? In particular, how 1is i1t possible to
objectively compare the performance of two
different probabilistic prediction methods ?
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In the following, we discuss evaluation of ensemble
prediction systems. But most of the methods that will
be presented could be used to evaluate any system for
probabilistic prediction. And all can also be used for

evaluation of ensemble assimilation systems, such as
EnKF.
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Difficulties

The predicted object (a probability distribution) and the observed object (a
point observation) are not of the same nature. How can they be compared ?

The predicted object is not better known afterwards than it was beforehand.

The predicted object, which is meant to describe our uncertainty on the
future state of the atmosphere, has actually no objective existence.

As a consequence, validation of ensemble prediction can only be statistical.
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What are the attributes which make a good Ensemble Prediction System ?

Reliability
(it rains 40% of the times I predict 40% probability for rain)

- Statistical agreement between predicted probability and observed
frequency for all events and all probabilities
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Reliability diagramme, NCEP, event T¢,, > T. - 4C, 2-day range,
Northern Atlantic Ocean, December 1998 - February 1999



Reliability of TC strike probability
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More generally

- Consider a probability law F. Let F*(F) be the conditional frequency distribution
of the observed reality, given that F has been predicted. Reliability is the condition
that

F(F)=F for any F

Measured by reliability component of Brier and Brier-like scores, rank histograms,
Reduced Centred Random Variable, ...
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More generally, for a given scalar variable, Reduced Centred Random Variable
(RCRYV, Candille et al., 2006)

§— 1

g

S =

where & is verifying observation, and u and o are respectively the expectation and
the standard deviation of the predicted probability distribution.

Over a large number of realizations of a reliable probabilistic prediction system

E(s)=0 ,  E(s?)=1
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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Rank Histograms

For some scalar variable x, N ensemble values, assumed to be N independent realizations of

the same probability distribution, ranked in increasing order

X < Xy <...< Xy

Define N+1 intervals.

If verifying observation Sis an N+l1st independent realization of the same probability
distribution, it must be statistically undistinguishable from the x;‘s. In particular, must be

uniformly distributed among the N+1 intervals defined by the x;°s.
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Rank histograms, Tgs,, Northern Atlantic, winter 1998-99
Top panels: ECMWF, bottom panels: NCEP (from Candille, Doctoral Dissertation, 2003)



If observations show that F*(F) # F for some F, then a posteriori
calibration

F = F*(F)

renders system reliable. Lack of reliability, under the hypothesis of
stationarity of statistics, can be corrected to the same degree it can
be diagnosed.
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Second attribute

0

‘Resolution’ (also called ‘sharpness’)

Reliably predicted probabilities F«(F) are distinctly different from
climatology. Resolution measures real intrinsic value of prediction system,
i. e., what remains when system has been made reliable by a posteriori
calibration.

Measured by resolution component of Brier and Brier-like scores, ROC
curve area, information content, ...
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It is the conjunction of reliability and resolution that makes the
value of a probabilistic prediction system. Provided a large enough
validation sample is available, each of these qualities can be
objectively and quantitatively measured by a number of different,
not exactly equivalent, scores.
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Brier Score (Brier, 1950), relative to binary event F

FB=E[p-p,)]

where p is predicted probability of occurrence, p, = 1 or 0 depending on whether Z has been
observed to occur or not, and E denotes average over all realizations of the prediction system.

Decomposes into

Z=El(p-p)* - Elp’-p)] + pl-p,)
where p_ = E(p,) = E(p’) is observed frequency of occurrence of Z

First term E[(p-p’)?] measures reliability.

Second term E[(p’-p.)?] measures dispersion of a posteriori calibrated probabilities p’. The
larger that dispersion, the more discriminating, or resolving, and the more useful, the prediction
system. That term measures the resolution of the system.

Third term, called uncertainty term, depends only on event Z. not on performance of prediction
system.

Remark. All the above remains valid if p , takes values different from O or 1.
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Brier Skill Score

A system which always predicts climatological frequency of occurrence p,. (fully
reliable, but no resolution) has Brier score p (1-p,)

Bee=1-B/p.(1-p,)

(positively oriented)

and components

Z))re[E El(p-p ,)2]/190(1'[90)

Z))reSE 1 - E[(p,'pc)z] /pc(l'pc)

(negatively oriented)
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Properness of Score

Forecaster whose performance is evaluated by Brier score. Class of situations C’in which, to

the best of forecaster’s knowledge, event Z'is going to occur with frequency p* (E {0) = p°).
What must forecaster predict in those situations ?

Assume forecaster predicts probability p

(p-0)>=(p-p’)> +2 (p-p")(p’-0) + (p*-0)

If forecaster is correct in his belief, middle term on right hand side will cancel on taking
conditional expectation E ~ There will remain

Edp-o0yl=(p-p) +EA@p’-0)]

Second term on right hand side is independent of p, while first one vanishes for p=p’. The
objective interest of forecaster is to be honest, and to predict what is to his best knowledge
the probability of occurrence of Z. Brier score is proper (see also papers by J. Brocker).
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Ranked Probability Score (RPS)

Sum of Brier scores for events X > &, for a number of prespecified thresholds &,. Introduces
proximity to the thresholds in the score.

Continuous Ranked Probability Score (CRPS). The same, replacing sum over a finite

number of thresholds by an integral over all doamin of variation of variable under
consideration (measure wrt which integral is taken matters).
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Generalized Brier Scores

Set of binary events Z (may overlap or not, may be exhaustive or not). Any score of the form
= 271 —
B=2, 4El(pro)yl=2; a B

where the o;‘s are positive, and 2 is the Brier score for event Z. Examples : Ranked

l 1

Probability Score (RPS), Continuous Ranked Probability Score (CRPS). These are
respectively a finite sum and an infinite integral, over thresholds &, of Brier scores for the
events of the form x> £ where x is scalar variable.

Have a reliability-resolution decomposition (actually several; see Hersbach, 2000, Wea.
Forecasting, and Candille and Talagrand, 2005, QJRMS), and are proper.

The only scores that are defined as mean of an observation-minus-prediction difference, and
are proper ?
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Relative Operating Characteristics

Binary event Z. Contingency table

occurred not occurred

predicted A B
not predicted C D
‘Hits’
H=AlA+C)

a posteriori conditional probability that Zhad been predicted to occur, given it has occurred

‘False alarms’

F=B/B+D)

a posteriori conditional probability that Z had been predicted to occur, given it has not
occurred.

For an accurate system, H must be close to 1,and F to O . 40



Relative Operating Characteristics curve

Shows variations of H(s) as a function of F{(s), where, for each threshold 5,0 <s <1

- H(s) is @ posteriori conditional probability that predicted probability p was larger than s, given that Z
has occurred

- F(s) is a posteriori conditional probability that predicted probability p was larger than s, given that Z
has not occurred

ROC curve is globally invariant in a posteriori calibration p — p ‘. Area below curve is a measure of rersolution.
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Statistical performance of a probabilistic prediction system is entirely
determined by

- Relative frequency g(F) with which each probability law F' is predicted.
- Mapping F — F‘(F)

If system is reliable, then F‘(F) = F for any F, and statistical performance
of system is entirely determined by relative frequency g(F).
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Brier score for ensembles of size N (Talagrand et al., 1999)

1 1
By=B.+— [ p(- p)g(p)dp
0

where g(p) is the relative frequency with which the system predicts
probability p. The sharper the distribution of raw predicted probabilities,
the more rapid the saturation of the score.
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Simulations M = 100000 : E=(X < X im " O)
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G. Candille, 2009



Scores saturate for ensemble sizes N of the order of a
few tens. The higher the sharpness of the predicted
probabilities, the more rapid the saturation.

Question

Is there any point in taking larger values of N ?
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Questions

0 If we take, say, N = 200, which user will ever care whether the probability
for rain for to-morrow is 123/200 rather 124/200 ?

0 And even if a user cares, what is the size of the verifying sample that is
necessary for checking the reliability of a probability forecast of, say, //N
for a given event E?

Answer. Assume one 10-day forecast every day. £ must have occurred o
N/10 times, where o is of the order of a few units, before reliability can be
reliably assessed.

If event occurs ~ 4 times a year, you must wait 10 years for N = 100, and
50 years for N = 500 (a =4).

Conclusion. Known-to-be-reliable large-N probabilistic prediction of
(even moderately) rare events is simply impossible.
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Question

®

(ii)

(iii)

(iv)

Why do scores saturate for N = 30-50 ? Explanations that have been suggested

Saturation is determined by the number of unstable modes in the system. Situation
might be different with mesoscale ensemble prediction.

Validation sample is simply not large enough.

Scores have been implemented so far on probabilisic predictions of events or one-
dimensional variables (e. g., temperature at a given point). Situation might be
different for multivariate probability distributions (but then, problem with size of
verification sample).

Probability distributions (in the case of one-dimensional variables) are most often
unimodal. Situation might be different for multimodal probability distributions (as
produced for instance by multi-model ensembles).

In any case, problem of size of verifying sample will remain, even if it can be
mitigated to some extent by using reanalyses or reforecasts for validation.
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Is it possible to objectively validate multi-dimensional probabilistic predictions ?

Consider the case of prediction of 500-hPa winter geopotential over the Northern Atlantic
Ocean, (10-80W, 20-70N) over a 5x5-degree? grid =>165 gridpoints.

In order to validate probabilistic prediction, it is in principle necessary to partition predicted
probability distributions into classes, and to check reliability for each class.

Assume N = 5, and partitioning is done for each gridpoint on the basis of L = 2 thresholds.
Number of ways of positioning N values with respect to L thresholds. Binomial coefficient

N+ L
L
This is equal to 21 for N=5 and L =2 , which leads to

71165 ~ 10218

possible probability distributions.
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Is it possible to objectively validate multi-dimensional probabilistic
predictions (continuation) ?

21165 = 102!8 possible probability distributions.

To be put in balance with number of available realizations of the
prediction system. Let us assume 150 realizations can be obtained
every winter. After 3 years (by which time system will have started
evolving), this gives the ridiculously small number of 450
realizations.
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Is it possible to objectively validate multi-dimensional probabilistic
predictions (continuation) ?

For a more moderate example, consider long-range (e. g., monthly or
seasonal) probabilistic prediction of weather regimes (still for the winter
Northern Atlantic). Vautard (1990) has identified four different weather
regimes, with lifetimes of between one and two weeks. The probabilistic
prediction is then for a four-outcome event. With N = 5-sized ensembles,
this gives 56 possible distributions of probabilities.

In view of the lifetimes of the regimes, there is no point in making more
than one forecast per week. That would make 60 forecasts over a 3-year
period. Hardly sufficient for accurate validation.
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Conclusion on ensemble size

Objective scores saturate in the range N = 30-50
because 1t 1s possible in practice to evaluate only
probabilisic predictions of events or of one-dimensional
variables. Evaluating probabilistic predictions of multi-
dimensional variables would require validating samples
of 1naccessible size.
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Best Linear Unbiased Estimate

State vector x, belonging to state space S (dim.S'= n), to be estimated.
Available data in the form of

= A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xb=x+8
= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+¢

Assume E(E?) =0, E(e) =0, E(EPe") = 0 (not mathematically restrictive)
and set E(PCPT) = PP (also often denoted B), E(e€™) = R
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Best Linear Unbiased Estimate (continuation 1)

If error (&', €7)T gaussian, then P(x | x°, y) = 7\(Lx“, P4]. with

or equivalently

x¢=x+ PPHY [HP’H" + R]"! (y - Hx")
Pe = Pb_ Pb HT [HPPHT + R]"! HP?

x¢=xP+ P*H'R! (y - Hx?)
(P4 =[PP + HTR'H

Y



Best Linear Unbiased Estimate (continuation 2)

Lump x” and y into

z=Ix+C
b b
with Z=(x _x+;)
v=Hx+¢
I/ c?
d =" =
ot o) e[l
P’ 0
Set S=E(ECY) = 0 R)
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Then
xt=(ITS) TSy
Pi= (TS

Conversely, if data of the form

z=TIx+ ¢, &~ N0, S1,
then P(x|z)= Q\(an, P4

provided rankI = n (the data vector z contains information on every
component of the state vector x)
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This provides a ready recipe for obtaining a sample of conditional
probability distribution P(x | z)

- Perturb data vector according to the error probability distribution

72— 7 =2+, &~ N]0,5]

- Do analysis
Xa= (TS ' TSy

x’@ is distributed according to P(x | z) = Q\(Lx", P4
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Question. To which extent does this result hold true in case of non-

gaussianity and /or non-linearity ?
M. Jardak (2011)

Kuramoto-Sivashinsky equation

U+ uu +u, .+ u =0

XXXX

with periodic conditions in x.
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Ensemble variational assimilation has been implemented in linearized
i. e., equation linearized in the vicinity of one nonlinear solution) and
nonlinear cases.

There is no test of bayesianity (and there cannot be). But bayesianity
implies reliability, as defined above, and non-reliability therefore
implies non-bayesianity.
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Probability of exceeding 25mm/48hrs, Forecast date: 18.10.2007, lead time: 3-5days
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Pappenberger et al., 2008, Geophys. Res. Lett.
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There is often a significant correlation between the predicted probability for intense
precipitation and the observed amount of precipitation, so that the former can be
used as a deterministic predictor of the latter.

Why is it so (it need not be) ? And how to exploit that fact in practice ?
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Conclusions

Reliability and resolution (sharpness) are the attributes that make the
quality of a probabilistic prediction system (my opinion at least ...) .
These are routinely measured in weather forecasting by a number of
scores, each of which has its own particular significance. Other scores may
be useful.

Strong limitations exist as to what can be achieved in practice by ensemble
weather prediction. It is not clear whether there can be any gain in using
ensemble sizes beyond N = 30-50. And, even if there is, the unavoidably
(relatively) small size of the verifying sample will often make it
impossible to objectively evaluate the gain.

Much work remains to be done as to the optimal use of available resources
for probabilistic weather prediction.
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Conclusions (2)

Present situation is somewhat hybrid, the predicted ensemble being a kind of
auxiliary to a statistically more accurate higher resolution forecast. This is actually
cause of confusion, when the high resolution forecast disagrees from a large subset
of the ensemble.

Must we tend to a situation where the output of prediction (and assimilation too)
will be a probability distribution ?

68



