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Design Mathematical Methods and Algorithms to Model and Analyze the Anatomy
 Statistics of organ shapes across subjects in species, populations, diseases… 

 Mean shape
 Shape variability (Covariance)

 Model organ development across time (heart-beat, growth, ageing, ages…)
 Predictive (vs descriptive) models of evolution

 Correlation with clinical variables

Computational Anatomy



Longitudinal deformation analysis in AD
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How to transport longitudinal deformation across subjects?
What are the convenient mathematical settings?  
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Roadmap

Statistics on shapes: the Riemannian setting

The Stationary Velocity Fields (SVF) framework

Modeling longitudinal evolution in AD

Conclusion and challenges
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Riemannian geometry is a powerful structure to 
build consistent statistical computing algorithms

Shape spaces & directional statistics
 [Kendall StatSci 89, Small 96, Dryden & Mardia 98]

Numerical integration, dynamical systems & optimization
 [Helmke & Moore 1994, Hairer et al 2002]
 Matrix Lie groups [Owren BIT 2000, Mahony JGO 2002]
 Optimization on Matrix Manifolds [Absil, Mahony, Sepulchre, 2008] 

Information geometry (statistical manifolds)
 [Amari 1990 & 2000, Kass & Vos 1997]
 [Oller & Corcuera Ann. Stat. 1995, Battacharya & Patrangenaru, Ann. Stat. 2003 & 2005]

Statistics for image analysis
 Rigid body transformations [Pennec PhD96]
 General Riemannian manifolds [Pennec JMIV98, NSIP99, JMIV06]
 PGA for M-Reps [Fletcher IPMI03, TMI04]
 Planar curves [Klassen & Srivastava PAMI 2003]

Geometric computing
 Subdivision scheme [Rahman,…Donoho, Schroder SIAM MMS 2005]

Présentateur
Commentaires de présentation
Mettre a jour les refs
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The geometric framework: Riemannian Manifolds
Riemannian metric :

 Dot product on tangent space 
 Speed, length of a curve
 Distance and geodesics

 Closed form for simple metrics/manifolds
 Optimization for more complex 

Operator Euclidean space Riemannian manifold

Subtraction
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Distance
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Unfolding (Logx), folding (Expx)
 Vector -> Bipoint (no more equivalent class)

Exponential map (Normal coord. syst.) :
 Geodesic shooting: Expx(v) = γ(x,v)(1)
 Log: find vector to shoot right (geodesic completeness!)
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First statistical tools: moments
Probability measures

 Metric -> Volume form                         dM(x)
 Intrinsic probability density functions   dP(z) = p(z).dM(z)

Expectation of a function from M into R 
 Variance :

 Information :

Fréchet / Karcher mean: minimize the variance

 Optimum: exponential barycenter

 Gauss-Newton Geodesic marching

Covariance (tPCA) and higher orders
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Shapes: forms & deformations
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Riemannian Shape space setting
 Forms live in a shape space with a Riemannian metric
 Use Frechet/Karcher mean, covariance, Tangent PCA

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
 Observation = “random” deformation of a reference template 
 Deterministic template = anatomical invariants [Atlas ~ mean]
 Random deformations = geometrical variability [Covariance matrix]
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Riemannian metrics on diffeomorphisms
Space of deformations

 Transformation y=φ(x)
 Curves in transformation spaces: φ(x,t)
 Tangent vector = speed vector field 

Right invariant metric 
 Eulerian scheme 
 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms [Miller, 

Trouve, Younes, Dupuis 1998 – 2009]

Geodesics determined by optimization of a time-varying vector field
 Distance

 Geodesics characterized by initial momentum
 Point supported objects (Currents, e.g. curves, surface): finite 

dimensional parameterization with Dirac currents

 Images: more difficult implementation [Beg IJCV 2005, Niethammer 09]
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Statistics on which deformations feature?

Space of “initial momentum” [Quantity of motion instead of speed]
 [Vaillant et al., NeuroImage, 04, Durrleman et al, MICCAI’07]
 Based on right-invariant metrics on diffeos [Trouvé, Younes et al.]
 No more finite dimensional parameterization with images 
 Computationally intensive for images

Global statistics on displacement field or B-spline parameters
 [Rueckert et al., TMI, 03], [Charpiat et al., ICCV’05],[P. Fillard, stats on sulcal lines] 
 Simple vector statistics, but inconsistency with group properties

Local statistics on local deformation (mechanical properties)
 Gradient of transformation, strain tensor
 Riemannian elasticity [Pennec, MICCAI’05, MFCA’06] 
 TBM [N. Lepore & C. Brun, MICCAI’06 & 07, ISBI’08, Neuroimage09]

An alternative: “log-Euclidean” statistics on diffeomorphisms?
 [Arsigny, MICCAI’07]
 [Bossa, MICCAI’07, Vercauteren MICCAI’07, Ashburner NeuroImage 2007]
 Mathematical problems but efficient numerical methods!
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Roadmap

Statistics on shapes: the Riemannian setting

The Stationary Velocity Fields (SVF) framework

Modeling longitudinal evolution in AD

Conclusion and challenges
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The SVF framework for  Diffeomorphisms
Framework of [Arsigny et al., MICCAI 06]

 Use one-parameter subgroups

Exponential of a smooth vector field is a diffeomorphism
 u is a smooth stationary velocity field
 Exponential: solution at time 1 of ODE ∂x(t) / ∂t = u( x(t) )

•exp

Stationary velocity field Diffeomorphism

X. Pennec - Geometry for Anatomy W. Banff 2011-08-31
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Efficient numerical methods
 Take advantage of algebraic properties of exp and log.

 exp(t.V) is a one-parameter subgroup.

→ Direct generalization of numerical matrix algorithms.

Efficient parametric diffeomorphisms
 Computing the deformation: Scaling and squaring 

recursive use of exp(v)=exp(v/2) o exp(v/2)
[Arsigny MICCAI 2006]

 Updating the deformation parameters: 
BCH formula [Bossa MICCAI 2007]
exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … )
 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms
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Symmetric log-demons [Vercauteren MICCAI 08]

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
 Parameterize the deformation by SVFs 
 Time varying (LDDMM) replaced by stationary vector fields
 Efficient scaling and squaring methods to integrate autonomous ODEs

Log-demons with SVFs

 Efficient optimization with BCH formula
 Inverse consistent with symmetric forces
 Open-source ITK implementation

 Very fast 
 http://hdl.handle.net/10380/3060 
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Similarity

Measures how much the 
two images differ

Coupling

Couples the correspondences 
with the smooth deformation

Regularisation

Ensures 
deformation 
smoothness

[ T Vercauteren, et al.. Symmetric 
Log-Domain Diffeomorphic
Registration: A Demons-based 
Approach, MICCAI 2008 ]
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The SVF framework for  Diffeomorphisms
Can we justify that?  [Pennec & Lorenzi, MFCA11]

 Drop the metric, use connection to define geodesics
 Canonical symmetric Cartan Connection: unique symmetric left AND right 

invariant linear connection on a Lie group
 Null torsion, Curvature 

What we gain  
 Geodesics are left (and right) translations of one-parameter subgroups
 Invariance by left and right translations + inversion
 Efficiency (PDEs -> ODEs)

What we loose
 No compatible metric for non compact non abelian groups
 Geodesic completeness but no Hopf-Rinow theorem 

 There is not always a smooth geodesic joining two points (e.g. SL2, no pb for GLn)

 Infinite dimensions: exponential might not be locally diffeomorphic
 Known examples on Diff(S1) but with

In practice
 Reachable diffeos seem to be sufficient to describe anatomical deformations

∞ → +∞→k
H kφ
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Generalizing the statistical setting to 
affine connection spaces?

Intuition: from Euclidean to affine spaces (but with curvature)
Mean value

 Fréchet / Karcher means not usable (no distance)
 Can be defined through exponential barycenters
 Existence? Uniqueness? OK for convex affine manifolds with semi-local 

convex geometry [Arnaudon & Li, Ann. Prob. 33-4, 2005]
 Algorithm to compute the mean: fixed point iteration (stability?)
 Cannonical symmetric Cartan connection:

Bi-invariant mean on Lie groups [Arsigny Preprint 2006 + PhD 2006]

Covariance matrix & higher order moments
 Cannot be defined as Σij = E( <x|ei><x|ej>) (no dot product)
 Σij = E( xi.xj) can be defined in any specific basis (but depends on it)
 PCA has no meaning: change it to ICA?
 Anyway, the distribution is more important than the distance [Anuj yesterday]
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Longitudinal structural damage in AD

18

baseline 2 years follow-up

Ventricle’s expansionHippocampal atrophyWidespread cortical thinning
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Modeling longitudinal atrophy in AD from images
 From patient specific evolution to population trend

(parallel transport of deformation trajectories) 
 Inter-subject and longitudinal deformations are of different nature

and might require different deformation spaces/metrics
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PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)

Patient A

Patient B

? ?Template



Parallel transport of deformations

Encode longitudinal deformation by its initial tangent (co-) vector
 Momentum (LDDMM) / SVF

Parallel transport 
 (small) longitudinal deformation vector
 along the large inter-subject normalization deformation

Existing methods
 Vector reorientation with Jacobian of inter-subject deformation
 Conjugate action on deformations (Rao et al. 2006)
 Resampling of scalar maps (Bossa et al, 2010)
 LDDMM setting: parallel transport along geodesics via Jacobi fields 

[Younes et al. 2008]

Intra and inter-subject deformations/metrics are of different nature 
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Parallel transport along arbitrary curves
Infinitesimal parallel transport = connection

∇γ’(X) : TMTM

A numerical scheme to integrate for symmetric connections: 
Schild’s Ladder [Elhers et al, 1972]
 Build geodesic parallelogrammoid
 Iterate along the curve 
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]



Efficient Schild’s Ladder with SVFs

Numerical scheme
 Direct computation:

 Using the BCH:
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]



Synthetic experiments (Consistency)
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Vector 
transport

Scalar 
transport

Scalar summary 

Scalar summary

(Jacobian det, logJacobian det, …)

Vector measure Scalar measure



Synthetic experiments (Consistency)
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Original longitudinal Log-Jacobian 
map

Scalar transport

Conjugation
(deformation field)

Reorientation
(velocity field)

Schild’s Ladder
(velocity field)

Vector transport:



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrophy (FdR corrected)
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Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrophy (FdR corrected)
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[Lorenzi et al, in Proc. 
of IPMI 2011]

Contraction Expansion 



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrophy (FdR corrected)

X. Pennec - Geometry for Anatomy W. Banff 2011-08-31 27

Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrophy (FdR corrected)

X. Pennec - Geometry for Anatomy W. Banff 2011-08-31 28

Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]



Longitudinal model for AD

30

Modeled changes from 70 AD subjects (ADNI data)

Extrapolation

ObservedExtrapolated Extrapolated
year
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Analysis of longitudinal datasets
Multilevel framework

31

Single-subject, two time points

Single-subject, multiple time points

Multiple subjects, multiple time points

Log-Demons (LCC criteria)

4D registration of time series within the 
Log-Demons registration.

Schild’s Ladder

[Lorenzi et al, in Proc. of MICCAI 2011]
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Study of prodromal Alzheimer’s disease 
 98 healthy subjects, 5 time points (0 to 36 months).
 41  subjects Aβ42 positive (“at risk” for Alzheimer’s)
 Q: Different morphological evolution for Aβ+ vs Aβ-?
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Average SVF
for normal
evolution (Aβ-)

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]



Study of prodromal Alzheimer’s disease 
Linear regression of the SVF over time: interpolation + prediction
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Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) )

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
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Conclusion

Algorithms for SVFs
 Log-demons: Open-source ITK implementation http://hdl.handle.net/10380/3060 
 Tensor (DTI) Log-demons: https://gforge.inria.fr/projects/ttk 
 LCC time-consistent log-demons for AD available soon
 ITK class for SVF diffeos currently under development

Schilds Ladder for parallel transport  
 Effective instrument for the transport of deformation trajectories 
 Key component for multivariate analysis and modeling of longitudinal data
 Stability and sensitivity

From group models to subject-specific measures
 Faithful measure at individual level: diagnosis / follow-up 
 Model at group level: statistical prediction (extrapolation)
 Personalized model: prediction (prognosis)
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Conclusion

Affine connection instead of Riemannian spaces?
 A symmetric connection defines geodesics but no length along them
 Not always a geodesic joining two points
 Covariance matrix makes sense in a basis but no canonical basis
 PCA -> ICA?

An apparently nice setting for transformation groups
 Canonical Cartan connection on Lie groups: one-parameters subgroups
 Bi-invariant mean on Lie groups [Arsigny Preprint + PhD 2006]
 Parallel transport is easy using Schilds Ladder

Left/right invariant metrics (LDDMM) and symmetric Cartan connection 
 Quantify differences between geodesics
 Evaluate the practical impact on statistics



Advertisement 
Master of Science in Computational Biology 
at Nice-Sophia Antipolis University

 http://www.computationalbiology.eu

Workshop Mathematical Foundations of Computational 
Anatomy at MICCAI 2011
 Toronto, September 18 or 22, 2011

 http://www-sop.inria.fr/asclepios/events/MFCA08/
 http://www-sop.inria.fr/asclepios/events/MFCA06/
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Publications: http://www.inria.fr/sophia/asclepios/biblio

Software: http://www.inria.fr/sophia/asclepios/software/MedINRIA.

Thank You!

Special thanks to Pierre Fillard for many illustrations!
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