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Early History - Combinatorics

Theorem (Littlewood-Richardson, 1934)
PrSy = Z(_l)ht(A/M)s)\
}

where the summation is over all A such that
A/ is a border strip of size r.
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Early History - Combinatorics
Dudley Littlewood

Theorem (Littlewood-Richardson, 1934)

Prsu = Z(—l)ht()‘/“)sA
y

where the summation is over all A such that
A/ is a border strip of size r.

Corollary Archibald

Iteration gives Richardson

) =) (=)D

where the sum is over all border strip tableaux
of shape A and type u.



Early History - Further work

» Francis Murnaghan (1937) On representations of the
symmetric group




Early History - Further work

» Francis Murnaghan (1937) On representations of the
symmetric group

» Tadasi Nakayama (1941) On some modular properties of
irreducible representations of a symmetric group
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r boxes and containing no 2 x 2 squares.
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Border Strips

A border strip of size r is a connected skew partition consisting of
r boxes and containing no 2 x 2 squares.

Example

(4,3,3)/(2,2) is a border strip of size 6:

Definition

ht (A/p) = # vertical dominos in A/

ht =2
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The Murnaghan-Nakayama rule

Theorem

A

sum over all \ such that A/ a border strip of size r.

Example

P3s21 = S2,11,1,1 — 52,22




The Murnaghan-Nakayama rule

Theorem

A

sum over all \ such that A/ a border strip of size r.

Example

P3S21 = S2,1,1,1,1 — $2,2,2 — S3.3




The Murnaghan-Nakayama rule

Theorem

A

sum over all \ such that A/ a border strip of size r.

Example

P3s21 = S2,1,1,1,1 — 2,22 — S33 + S5.1

T Te)a T Telels]




Border strip tableaux

Definition
A border strip tableau of shape ) is a filling of \ satisfying:
» Restriction to any single entry is a border strip

> Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (# of boxes labelled 7);
Height of a border strip tableau: sum of heights of border strips
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A border strip tableau of shape ) is a filling of \ satisfying:
» Restriction to any single entry is a border strip

> Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (# of boxes labelled 7);
Height of a border strip tableau: sum of heights of border strips

Example
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T=[111]3]3] ht(T)=2+0+2=4
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type(T) = (4,1,5)
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Border strip tableaux

Definition
A border strip tableau of shape ) is a filling of \ satisfying:
» Restriction to any single entry is a border strip

> Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (# of boxes labelled 7);
Height of a border strip tableau: sum of heights of border strips

Example

13
1

T=[111]3]3] ht(T)=2+0+2=4

type(T) = (4,1,5)
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Border strip tableaux

Definition

A border strip tableau of shape ) is a filling of \ satisfying:

» Restriction to any single entry is a border strip

> Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (# of boxes labelled 7);
Height of a border strip tableau: sum of heights of border strips

Example
1133
1123
T—11][1]3]3]

type(T) = (4,1,5)

ht(T)=2+0+2=4



The affine Murnaghan-Nakayama rule

Theorem (Bandlow-S-Zabrocki, 2010)
For r < k,

prS,Sk) — Z(_l)ht(/\/u)sgk)
)

where the summation is over all A such that
A/ is a k-border strip of size r.



The affine Murnaghan-Nakayama rule

Jason Bandlow

Theorem (Bandlow-S-Zabrocki, 2010)
For r < k,

prS,Sk) — Z(_l)ht(/\/u)sgk)
)

where the summation is over all A such that
A/ is a k-border strip of size r.

Mike Zabrocki



k-Schur functions

k-Schur functions were first introduced in 2000 by Luc Lapointe,
Alain Lascoux and Jennifer Morse.



k-Schur functions
k-Schur functions were first introduced in 2000 by Luc Lapointe,
Alain Lascoux and Jennifer Morse.




k-Schur functions

Here we use the definition due to Lapointe and Morse in 2004:

h,s/(\k)(x) = Z s!gk)(x) Pieri rule
I

where the sum is over those y such that ¢(u)/c(A) is a horizontal
strip.
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Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

2|1 2|1
3|2 312
5/4]1 312|1
6(5/2] 413]2




Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

2|1 2|1

312 32

5/4]1 312|1
6/5[2] _, 413]1]




Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

201 201

312 32

51411 3(2|1
6/5[2] _, 412]1]




Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

2[1 2]1

3]2 3[2

5/4[1 3/2]1

6/5[2] _, 3/2[1]




Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

2[1 2]1

3]2 3[2

5/4]1 716[3]2]1

6/5/2] _, [11]i0/7][6]5[3]2]1]
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k-conjugate
The k-conjugate of a k-bounded partition A is found by

A —c(A) = c(A) — Ak

Example
k=3
1]
2]
3
1
201 2
3|2 3
312|1 2
- 3[2[1] 3




k-conjugate
The k-conjugate of a k-bounded partition A is found by

A —c(A) = c(A) — Ak

Example
k=3
1]
2]
3
1
201 2
3|2 3
312|1 2
- 3[2[1] 3




content
When k = oo, the content of a cell in a diagram is

(column index) — (row index)

Example




content
When k = oo, the content of a cell in a diagram is

(column index) — (row index)

Example
—3—2
—2—1
-10|1]2
0/1/2]3

For k < 0o we use the residue mod k + 1 of the associated core

Example

R IOoO|WiN

OIWIN|F

2/3]0[1]2]3]




k-connected

A skew k + 1 core is k-connected if the residues form a proper
subinterval of the numbers {0, ..., k}, considered on a circle.



k-connected

A skew k + 1 core is k-connected if the residues form a proper
subinterval of the numbers {0, ..., k}, considered on a circle.

Example
A 3-connected skew core:

olw[n]=]o]
NEIRN
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N
w
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k-connected
A skew k + 1 core is k-connected if the residues form a proper
subinterval of the numbers {0, ..., k}, considered on a circle.
Example
A 3-connected skew core:
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k-connected
A skew k + 1 core is k-connected if the residues form a proper
subinterval of the numbers {0, ..., k}, considered on a circle.
Example
A 3-connected skew core:

0

2[3]0]

A skew core which is not 3-connected:
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w
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k-connected
A skew k + 1 core is k-connected if the residues form a proper
subinterval of the numbers {0, ..., k}, considered on a circle.
Example
A 3-connected skew core:

0

2[3]0]

A skew core which is not 3-connected:

o




k-border strips
The skew of two k-bounded partitions A/ is a k-border strip of
size r if it satisfies the following conditions:
> (size) [\/p| =r
(containment) € A and put9) c A9
(connectedness) ¢(\)/c¢(u) is k-connected
(first ribbon condition) ht(A/u) 4+ ht (AR /u)) = r —1
(second ribbon condition) ¢(A)/c(p) contains no 2 x 2 squares

vvyyvyy



k-border strips

The skew of two k-bounded partitions A/ is a k-border strip of
size r if it satisfies the following conditions:

> (size) [\/p| =r

> (containment) p C A and p(k) c A(K)

» (connectedness) ¢(\)/c¢(u) is k-connected

» (first ribbon condition) ht(A/u) + ht ()\(k)/,u(k)) =r—1

» (second ribbon condition) ¢(\)/c(p) contains no 2 x 2 squares

Example
k=3,r=2

= A®) /) = e(N)/e() = [2]3]




k-ribbons at oo

At k = oo the conditions

(size) |\/u] = r

containment) 1 C X and (k) ¢ A(K)

connectedness) ¢(\)/c(u) is k-connected

first ribbon condition) ht(\/u) + ht (A /p(K)) = r — 1

>
>
>
>
» (second ribbon condition) ¢(\)/c(u) contains no 2 x 2 squares
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At k = oo the conditions become

(size) \/ul = r
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connectedness) A/u is connected

first ribbon condition) ht(\/u) +ht (N /p') =r—1

>
>
>
>
» (second ribbon condition) A\/u contains no 2 x 2 squares

(
(
(
(



k-ribbons at oo

At k = oo the conditions become

(size) \/ul = r

containment) p C A

connectedness) A/u is connected

first ribbon condition) ht(\/u) +ht (N /p') =r—1

>
>
>
>
» (second ribbon condition) A\/u contains no 2 x 2 squares

(
(
(
(

Proposition
At k = oo the first four conditions imply the fifth.



The ribbon statistic at k = oo

Let A/ be connected of size r, and
ht (A/p)+ht (X'/p') = #vert. dominos + #horiz. dominos = r—1

Then A/u is a ribbon



The ribbon statistic at k = oo

Let \/u be connected of size r, and
ht (A/p)+ht (X'/p') = #vert. dominos+ #horiz. dominos = r—1

Then \/p is a ribbon

Example

3+3=6



The ribbon statistic at k = oo

Let A/ be connected of size r, and
ht (A/p)+ht (X'/p') = #vert. dominos + #horiz. dominos = r—1

Then A/u is a ribbon

Example

B+1)+(B+1)=8#7



Recap for general k

Theorem (Bandlow-S-Zabrocki, 2010)
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Recap for general k
Theorem (Bandlow-S-Zabrocki, 2010)

For r < k,
prsﬁk) _ Z(_l)ht()\/,u)s)(\k)
A
where the summation is over all X\ such that \/u satifies
> (size) |\l = r
> (containment) yu C X\ and pu) < \(K)
» (connectedness) ¢(\)/c(u) is k-connected
» (first ribbon condition) ht(\/u) + ht ()\(k)/,u(k)) =r—1
» (second ribbon condition) ¢(\)/c(u) is a ribbon

Conjecture

The first four conditions imply the fifth.

This has been verified for all k, r < 11, all x of size < 12 and all A
of size |u| + r.



The non-commutative setting

Sergey Fomin

Theorem (Fomin-Greene, 1998)

Any algebra with a linearly ordered set of
generators uy, ..., U, satisfying certain
relations contains a homomorphic image of A.

Example

The type A nilCoxeter algebra. Generators
S1,...,5,_1. Relations

> sl-2 =0
» SiSi+1S5; = Si+1SiSi+1
> sis; = sjs; for [i — j| > 2.

Curtis Greene



The affine nilCoxeter algebra

The affine nilCoxeter algebra Ay is the Z-algebra generated by
up, . . ., Uy with relations

» u? =0 forall j € [0, k]
> UjUjy1U; = Ujy1UjUjyy forall i € [0, k]
> ujuj = uju; for all i, j with [i —j| > 1

All indices are taken modulo k + 1 in this definition.



A word in the affine nilCoxeter algebra is called cyclically
decreasing if

> its length is < k
> each generator appears at most once

» if uj and uj_; appear, then u; occurs first (as usual, the
indices should be taken mod k).

As elements of the nilCoxeter algebra, cyclically decreasing words
are completely determined by their support.

Example
k=6

(uous)(uausup) = (ususun)(upue) = uguouzUeur = - - -



Noncommutative h functions

For a subset S C [0, k], we write us for the unique cyclically
decreasing nilCoxeter element with support S.
For r < k we define

h, = Z us

IS[=r
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Theorem (Lam, 2005)

The elements {hy, ..., hc} commute and are
algebraically independent.




Noncommutative h functions

For a subset S C [0, k], we write us for the unique cyclically
decreasing nilCoxeter element with support S.
For r < k we define

h, = Z us

IS[=r

Theorem (Lam, 2005)

The elements {hy, ..., hc} commute and are
algebraically independent.

This immediately implies that the algebra
Q[hy,...,hg] ZQ[hy,. .., hx] where the latter functions are the
usual homogeneous symmetric functions.



Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric
functions by their relationship with the h basis.
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Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric
functions by their relationship with the h basis.

r

Z(—l)ier_,'h; =0

i=0
r—1
Pr= rhr - Zpihr—i
i=1

s) = det (hy, 1)



Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric
functions by their relationship with the h basis.

r

Z(—l)ier_,'h; =0

i=0
r—1
Pr= rhr - Zpihr—i
i=1

s) = det (hy, 1)

sE\k) by the k-Pieri rule



k-Pieri rule

The k-Pieri rule is
hrSE\k) — Zs/(tk)

7

where the sum is over all k-bounded partitions x such that p/\ is
a horizontal strip of length r and u(k)/)\(k) is a vertical strip of
length r. This can be re-written as

k k
A= Y,

IS[=r



The action on cores

There is an action of A, on k + 1-cores given by

0 no addable j-residue
up-c=
' c U all addable i-residues otherwise

Example
k=4



The action on cores

There is an action of A, on k + 1-cores given by

c 0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4

112

213

3/10(1/2]3
urup011]2]3]011]2[3]




The action on cores

There is an action of A, on k + 1-cores given by

0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4
(0]
12
21310
3/0(1(/2(3]0
i 011]2]3]0[1]2[3]0]



The action on cores

There is an action of A, on k + 1-cores given by

0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
k=24
(0] 0]
112 1(2
21310 21310
3/0(1(/2(3]0 31011/2]3]|0
urup011]213]0[1]2[3]0]— ), 0]1[2]3]0[1]2[3]0]



The action on cores

There is an action of A, on k + 1-cores given by

0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4
- 3]
0 0|1
112 1(2]3
21310 2/3|0|1
3/0(1(/2(3]0 3/0/1/2]3/0]|1
wug 011]2]3]011]2[3]0]— ), 0[1[2]3[0]1]2]3]0[1]



The action on cores

There is an action of A, on k + 1-cores given by

c 0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4

- 3]

0 0|1

112 1(2]3

21310 2/13/0]1

3/10(1]2]3 31011(213 1
wup011]21310[1]2[3]0]— 4, 0]1[2]3]0[1]2[3]0[1]—



Multiplication rule

A corollary of the k-Pieri rule is that if f is any non-commutative
symmetric function of the form

f:Zcuu

then
fsE\k) = Z cusff))\



Hook words

Fomin and Greene define a hook word in the context of an algebra
with a totally ordered set of generators to be a word of the form

ual...uarubl...ub

S

where
aa>a>-->a>b <b<--< b

To extend this notion to Ax which has a cyclically ordered set of
generators, we only consider words whose support is a proper
subset of [0, -, k].



Hook words

There is a canonical order on any proper subset of [0, k] given by
thinking of the smallest (in integer order) element which does not
appear as the smallest element of the circle.



Hook words

There is a canonical order on any proper subset of [0, k] given by
thinking of the smallest (in integer order) element which does not
appear as the smallest element of the circle.

Example

For {0,1,3,4,6} C [0, 6], we have the order

2<3<4<bh<b<0<«1

Hook words in A have (support = proper subset) and form

ual...uarubl...ub

S

where
ai>a>-->a >b <b <---<bs



Hook words

There is a canonical order on any proper subset of [0, k] given by
thinking of the smallest (in integer order) element which does not
appear as the smallest element of the circle.

Example
For {0,1,3,4,6} C [0, 6], we have the order

2<3<4<bh<b<0<«1

Hook words in A have (support = proper subset) and form

ual...uarubl...ub

S

where
ai>a>-->a >b <b <---<bs

Hook word representations are unique; therefore the number of
ascents in a hook word is well-defined as s — 1.



The non-commutative rule

Theorem (Bandlow-S-Zabrocki, 2010)

prS/&k) _ Z(_l)asc(w)s(wlﬁ)u

w
where the sum is over all words in the affine nilCoxeter algebra
satisfying

> (size) len(w) = r

» (containment) w - j1 # 0

» (connectedness) w is a k-connected word

» (ribbon condition) w is a hook word



Comparison between characterizations

Characterize the image of the map (w — w -y = A):
conditions on words: conditions on shapes:
> (size) > (size)
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Comparison between characterizations

Characterize the image of the map (w — w -y = A):

conditions on words: conditions on shapes:
> (size) > (size)
len(w) =r (Nl =r
» (containment) » (containment)
w-p#0 pC Aand pk) c AR

» (connectedness)
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» (connectedness)
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Comparison between characterizations

Characterize the image of the map (w — w -y = A):

conditions on words: conditions on shapes:
> (size) > (size)
len(w) =r (Nl =r
» (containment) » (containment)
w-p#0 pC Aand pk) c AR

» (connectedness)

. > (connectedness)
w is a k-connected

¢(N\)/c(u) is k-connected

word
» (first ribbon condition)
» (ribbon condition) ht(A/p) + ht ()‘(k)/“(k)) =r—1
w is a hook word > (second ribbon condition)

¢(N)/c(p) is a ribbon



[teration

Iterating the rule

prsgk) _ Z(_l)ht(u/A)slgk)
m

gives

= S sy = S

T

where the sum is over all k-ribbon tableaux, defined analogously to
the classical case.



Duality

In the classical case, the inner product immediately gives

1
A= s, <= 5= PR QL)

m A

In the affine case we have

px = Z)Z(Ak)(u)s,(f Z X(Ak P
m



Duality

In the classical case, the inner product immediately gives

1
A= s, <= 5= PR QL)
I

A

In the affine case we have
_(k _(k)
Px = ZX(A )(M)S,(f Z X(A Px
“w

We would like the inverse matrix

1
s$0=%" ngk)(u)pu

m



Conceptual reasons

A ring of symmetric functions
Pk set of partitions {\ | A\; < k}

Ny = C({hy | A € P¥) = C(ey | A € P¥) = C(px | X € P¥)
AR = C(my | X € PX)



Conceptual reasons

A ring of symmetric functions
Pk set of partitions {\ | A\; < k}

Ny = C(hy | A € P¥) = C(ex | A € P¥) = C(px | A € P¥)
AR .= C(my | A € PK)

Hall inner product (-, -):

for f € Ay and g € AK) define (f, g) as the usual Hall inner
product in A

{hx} and {my} with A € P¥ form dual bases of Ay and AK)

Ay s a subalgebra

A) s not closed under multiplication, but comultiplication



Conceptual reasons

A ring of symmetric functions
Pk set of partitions {\ | A\; < k}

Ny = C({hy | A € P¥) = C(ey | A € P¥) = C(px | X € P¥)
AR = C(my | X € PX)

k-Schur functions {sik) | A € P} form basis of A
(Schubert class of cohomology of affine Grassmannian H,(Gr))

dual k-Schur functions {6&“ | A € P} form basis of AK)
(Schubert class of homology of affine Grassmannian H*(Gr))



Back to Frobenius

For V any S, representation, we can find the
decomposition into irreducible submodules

with 1
D oxv(mpn =) _as
H A

o
So finding

K 1 «
5,(\ ) = Z gxg\ )(M)Pu
o

would potentially allow one to verify that a
given representation had a character equal to
k-Schur functions.
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Full paper available at arXiv:1004.8886
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