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We give below some known estimates for linear forms in Archimedean and non-
Archimedean logarithms. We give very few bibliographic references and direct the reader
to the textbook of Waldschmidt [11] for further information.

1. Archimedean estimates

Let n ≥ 2 be an integer. For 1 ≤ i ≤ n, let xi/yi be a non-zero rational number and
bi a positive integer. Set

B := max{3, b1, . . . , bn}

and, for 1 ≤ i ≤ n, set
Ai := max{3, |xi|, |yi|}.

We assume that the rational number

Λ :=

(
x1
y1

)b1

· · ·
(
xn
yn

)bn

− 1 (1.1)

is non-zero. We wish to bound |Λ| from below, thus we may assume that |Λ| ≤ 1/2 and
we get a linear form in logarithms:

|Λ| ≥ | log(1 + Λ)|
2

=
1

2

∣∣∣∣b1 log
x1
y1

+ · · ·+ bn log
xn
yn

∣∣∣∣.
A trivial estimate of the denominator of (1.1) gives

log |Λ| ≥ −
n∑

i=1

bi log |yi| ≥ −B
n∑

i=1

logAi.

The dependence on the Ai’s is very satisfactory, unlike the dependence on B. However,
for applications to Diophantine problems, we need a better estimate in terms of B, even
if it means to get a weaker one in terms of the Ai’s.

Alan Baker [1, 2] was the first to prove such a result, and we are now able to show
that, under the above assumptions, there exists an effectively computable constant c(n),
depending only on the number n of rational numbers involved, such that the lower estimate

log |Λ| ≥ −c(n) logA1 . . . logAn logB

holds.
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More generally, one can get analogous lower bounds if the rational numbers xi/yi are
replaced by algebraic numbers αi, the quantity logAi being then essentially the absolute
logarithmic height of αi.

Let θ be an algebraic real number and

P (X) = ad

d∏
i=1

(X − θi)

be its minimal defining polynomial over Z, with ad ≥ 1. The height of θ, denoted by h(θ),
is by definition

h(θ) =
1

d

(
log ad +

d∑
i=1

log max{1, |θi|}
)
.

Let α1, . . . , αn be algebraic numbers distinct from 0 and 1. Let logα1, . . . , logαn be
any determination of their logarithms. Let b1, . . . , bn be non-zero integers such that

Λa := |b1 logα1 + · · ·+ bn logαn|

is non-zero. Instead of making an historical survey, we rather quote a corollary of the, at
present time, best estimate, due to Matveev [9]. Let D be the degree of a number field K
containing the αi, let E ≥ e and A1, . . . , An be real numbers > 1 with

logAi ≥ max
{

h(αi),
| logαi|
D

,
0.16

D

}
, 1 ≤ i ≤ n.

Set

B = max{|b1|, . . . , |bn|}.

The next result is a corollary of Theorem 2 of Matveev [9].

Theorem A. Under the above assumption, we have

log |Λa| > −2× 30n+4 (n+ 1)6Dn+2 log(eD) logA1 . . . logAn log(eB). (1.2)

For n = 2, the numerical constant in (1.2) can be substantially reduced, see below.
This is crucial for applications to the complete resolution of Diophantine equations.

Matveev’s result is clean, easy to apply and has the currently best known dependence
on the number n of algebraic numbers involved in the linear form. However, it does not
include other refinements which are crucial for many applications.

The next theorem is Theorem 10.22 of [11].
Here, we have E ≥ e and

logAi ≥ max
{

h(αi),
E

D
| logαi|,

logE

D

}
, 1 ≤ i ≤ n.
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Theorem B. Assume furthermore that bn is non-zero. Let E∗ and B′ be real numbers
satisfying B′ ≥ E∗ ≥ E1/D, E∗ ≥ D/(logE) and

B′ ≥ max
1≤j≤n−1

{
|bn|

logAj
+
|bj |

logAn

}
.

Then, there exists an effectively computable numerical constant C such that

log |Λa| ≥ −Cn n3nDn+2 logA1 . . . logAn logB′ logE∗(logE)−n−1.

The dependence on n is not as good as in Theorem A. The refinement consisting
in replacing the quantity B by B′ is very interesting when |bn| is small. This has many
applications, in particular to Thue equations. The parameter E originates in papers by
Shorey [10]. It is of interest when the αi are real and very close to 1, in which case E
can be chosen to be very big. In the most favorables cases, this extra term allows us to
replace the product of the logAi, as it occurs in the statement of Theorem A, by their
sum. Further explanations are given in Section 10.4.3 of [11].

Lower bounds for linear forms in two or three logarithms occur in many Diophan-
tine problems. While, in the case of three logarithms, we do not have very satisfactory
estimates, Laurent, Mignotte & Nesterenko [8] obtained in 1995 a sharp lower bound for
linear forms in two logarithms. The quality of their result is an illustration of the method
of interpolation determinants, introduced in this context by Laurent [6]. The current best
known estimate is established in [7].

Theorem C. Assume n = 2 in (1.2) and that the algebraic numbers α1 and α2 are
multiplicatively independent. Set D′ = [Q(α1, α2) : Q]/[R(α1, α2) : R]. Let A1 and A2

be real numbers > 1 such that

logAi ≥ max

{
h(αi),

1

D′
,
| logαi|
D′

}
, 1 ≤ i ≤ 2.

Set

B′ =
|b1|

D′ logA2
+

|b2|
D′ logA1

.

Then, we have the lower bound

log |Λa| ≥ −30.9D′4 logA1 logA2

(
max

{
logB′ + 0.66,

21

D′
,

1

D′

})2

.

Observe that the dependence on B′ is worse than in Theorem B, since logB′ occurs
squarred. However, this does not restrict the applications. The fact that the numerical
constant is small (namely equal to 30.9 in Theorem C) compensates largely the extra
square.

We can be more precise when α1 and α2 are very close to 1. We quote Corollaire 3 of
[8]. Note that D′ = D when α1 and α2 are real.
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Theorem D. Assume that logα1 and logα2 are real, positive, and linearly independent
over Q. Set

E = 1 + min

{
D logA1

logα1
,
D logA2

logα2

}
and

logB = max
{

logB′ + log logE + 0.47,
10 logE

D
,

1

2

}
.

Assume furthermore that E ≤ min{A3D/2
1 , A

3D/2
2 }. Then,

log |Λ| ≥ −35.1D4(logA1)(logA2)(logB)2(logE)−3. (1.3)

Let x1/y1 and x2/y2 be multiplicatively independent rational numbers, both > 1. Let
b1 and b2 be positive rational integers and consider the linear form

Λ = b2 log(x2/y2)− b1 log(x1/y1).

Let A1 and A2 be real numbers such that

logAi ≥ max{log xi, 1}, (i = 1, 2).

We highlight the special case of Theorem D where α1 and α2 are rational numbers.

Theorem E. Keep the above notation. Let E ≥ 3 be a real number such that

E ≤ 1 + min

{
logA1

log(x1/y1)
,

logA2

log(x2/y2)

}
,

and set

logB = max

{
log

(
b1

logA1
+

b2
logA2

)
+ log logE + 0.47, 10 logE

}
.

Assuming that E ≤ min{A3/2
1 , A

3/2
2 }, we have

log Λ ≥ −35.1 (logA1)(logA2)(logB)2(logE)−3. (1.4)

When x1/y1 and x2/y2 are very close to 1, the factor (logE)−3 allows us, roughly
speaking, to replace the product (logA1)(logA2) occurring in the ‘classical estimate’ (1.3)
by the sum (logA1) + (logA2). Indeed, assume for instance that we have |(xi/yi) − 1| ≤
x
−1/2
i for i = 1, 2. Then, we get log(xi/yi) ≤ x−1/2i for i = 1, 2 and, if x1 ≥ x2 ≥ 5, we see

that we can choose logE = (log x2)/2 = (logA2)/2 in Theorem E. By (1.4) this gives

log Λ ≥ −71 (logA1 + logA2) (10 + log(b1 + b2))2.

To be even more precise, we display a useful consequence of Theorem E. It deals with
a particular situation that occurs in many applications. We assume that b2 = 1, x1 ≥ 3,
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3 ≤ x2 < 2y2 and that |Λ| is very small. It follows that x2/y2 < x1/y1, thus the parameter
E satisfies

logE ≤ − log log(x2/y2).

Define ε by
x2
y2

= 1 + xε−12 .

Then we have 0 < ε < 1 and − log log(x2/y2) ≥ (1 − ε) log x2. Taking into account the

assumption E ≤ min{A3/2
1 , A

3/2
2 } in Theorem E, we set

logE = min{log x1, (1− ε) log x2}.

Corollary 1. Under the above assumption, we have

log Λ ≥ −35.1
(log x1)(log x2)

min{log x1, (1− ε) log x2}
(10 + log b1)2

≥ − 35.1

1− ε
max{log x1, log x2} (10 + log b1)2.

This crucial improvement upon the ‘classical’ estimate (1.3) turns out to have many
spectacular applications.

Before finishing this section, we highlight an indirect consequence of Theorem C, which
was established in [3].

We use the following notation. Let α1, . . . , αn, αn+1 be complex algebraic numbers
and logα1, . . . , logαn, logαn+1 any determinations of their logarithms. Let b1, . . . , bn be
non-zero integers and set

D = [Q(α1, . . . , αn+1) : Q], Λ = b1 logα1 + · · ·+ bn logαn + logαn+1.

Let A1, . . . , An+1 be real numbers such that

logAi ≥ max
{

h(αi),
| logαi|
D

,
1

D

}
(i = 1, . . . , n+ 1).

Theorem F. Assume that
0 < |Λ| < e−εB ,

where ε is a positive real number and B = max{|b1|, . . . , |bn|}. We then have

B ≤ (logAn+1)B0,

where B0 is an effectively computable constant depending only on A1, . . . , An, D and ε.

Clearly, this statement is much weaker than Theorems A and B. However, its proof
is simpler. And it is sufficient for many interesting applications (including that to Thue
equations).
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2. Non-Archimedean estimates

The p-adic analogue of Baker’s theory has been studied by Coates, van der Poorten,
Dong and Yu. We quote a result of Yu [12] (see also his previous papers for bibliographic
references).

Keep the above notation.
Let p be a prime number and denote by Qp an algebraic closure of the p-adic field

Qp. We equip the field Qp with the ultrametric absolute value |x|p = p−vp(x), where vp
denotes the unique extension to Qp of the standard p-adic valuation over Qp normalized
by vp(p) = 1 (we set vp(0) = +∞). Let α1, . . . , αn be algebraic over Q and we regard
them as elements of the field Qp. We look for a lower bound for the ultrametric absolute
value of

Λu := vp(αb1
1 . . . αbn

n − 1), (2.1)

where b1, . . . , bn denote rational integers.
We assume that αb1

1 . . . αbn
n − 1 is non-zero, thus Λu is finite. Let A1, . . . , An be real

numbers with
logAi ≥ max{h(αi), 1/(16e2D2)}, 1 ≤ i ≤ n.

The next result is a crude simplification of the estimate given on page 190 of [12].

Theorem G. With the above notation, we have

Λu < (16eD)2(n+1)n5/2(log(2nD))2Dn pD

(log p)2
logA1 . . . logAn logB.

Theorem G should be compared with Theorem A. We have exactly the same depen-
dence on the parameters n, logAi and B.

The next theorem reproduces one of the corollaries of the main result of [5].

Theorem H. Assume n = 2 in (2.1) and that α1 and α2 are multiplicatively independent
in Qp(α1, α2) and satisfy vp(α1) = vp(α2) = 0. Set D = [Q(α1, α2) : Q]. Let A1 and A2

be real numbers > 1 such that

logAi ≥ max

{
h(αi),

log p

D

}
, 1 ≤ i ≤ 2.

Set

B′ =
b1

D logA2
+

b2
D logA1

.

Then, we have the upper bound

Λu ≤
24p(pD − 1)

(p− 1)(log p)4
D4 logA1 logA2

(
max

{
logB′ + log log p+ 0.4,

10 log p

D
, 10
})2

.

Theorem H should be compared with Theorem C. In particular, the numerical constant
is very small and the quantity logB′ also occurs squarred.
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We end this section with an improvement of Theorem H when α1 and α2 are rational
numbers.

Let x1/y1 and x2/y2 be non-zero rational numbers. Assume that there exist a positive
integer g and a real number E such that

vp
(
(x1/y1)g − 1)

)
≥ E > 1/(p− 1) and vp

(
(x2/y2)g − 1)

)
> 0.

Theorem I below, established in [4], provides an explicit upper bound for the p-adic valu-
ation of

Λ =

(
x1
y1

)b1

−
(
x2
y2

)b2

,

where b1 and b2 are positive integers. We let A1 > 1, A2 > 1 be real numbers such that

logAi ≥ max{log |xi|, log |yi|, E log p}, (i = 1, 2).

and we put

b′ =
b1

logA2
+

b2
logA1

.

Theorem I. With the above notation, if x1/y1 and x2/y2 are multiplicatively indepen-
dent, then we have the upper estimates

vp(Λ) ≤ 36.1 g

E3 (log p)4
(
max{log b′ + log(E log p) + 0.4, 6E log p, 5}

)2
logA1 logA2

and

vp(Λ) ≤ 53.8 g

E3 (log p)4
(
max{log b′ + log(E log p) + 0.4, 4E log p, 5}

)2
logA1 logA2,

if p is odd or if p = 2 and v2(x2/y2 − 1) ≥ 2. Otherwise, we have

v2(Λ) ≤ 208
(
max{log b′ + 0.04, 10}

)2
logA1 logA2.

The parameter E in Theorem I should be compared with the parameter E in Theorems
D and E. Roughly speaking, provided that the algebraic numbers involved are p-adically
close to 1, this means that one can replace the product (logA1)(logA2) in the estimate by
the sum (logA1) + (logA2).
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