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Exercise 1.

Prove that the equation
y2 + 1 = xm

has no solutions in rational integers (V. A. Lebesgue, 1850).

Exercise 2.

Prove that the Diophantine equation x2 + 7 = 2n has exactly five integer solutions,
given by

(x, n) ∈ {(1, 3), (3, 4), (5, 5), (11, 7), (181, 15)}.

Hint. Prove that n = 4 gives the only solution with n even. Assume that n is odd
and write n = 2m+ 1, y = 2m. Consider the equation

x2 − 2y2 = −7.

Prove that y is an element of the binary recurrence sequence (ys)s∈Z defined by

y0 = 2, y1 = 3 and ys+2 = 2ys+1 + ys, s ∈ Z.

We aim to show that the only elements of (ys)s∈Z which are powers of 2 are y−6 = 128
and y0 = 2. Show that we can restrict ourselves to study the sequence (us)s∈Z, given by
us = y8s−6/8, that is, by the binary recurrence

u0 = 16, u1 = 1 and us+2 = 1154us+1 − us.

Prove that if y = 2m for some m ≥ 8, then y = 8us for some s ≡ 16 mod 32.
Look at the sequence (us)s∈Z modulo the prime number 7681. Use the quadratic

reciprocity law to show that, for any s ≡ 16 mod 32, the number us cannot be a power of
2. Conclude.

Exercise 3.

Let α1, . . . , αn be algebraic numbers. Let b1, . . . , bn be non-zero integers. Deduce
from Theorem A a lower bound for the quantity

Λ := |αb1
1 . . . αbn

n − 1|,

when Λ 6= 0. (Consider separately the case where all the αi are real.)
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Exercise 4.

Let d be a non-zero integer and consider the Diophantine equation

x2 + d = yp, in x > 0, y > 0 and p ≥ 3 prime.

Use Theorem A to get an upper bound for p when d = −2, d = 2, d = 7, and d = 25,
respectively.

Exercise 5.

Let f(X) be an irreducible integer polynomial of degree at least 3. Prove that the
equation

f(x) = y2

has only finitely many integer solutions x, y.

Exercise 6.

Consider the Diophantine equation

x2 + a2 = 2yp,

where a is a given positive integer, x, y are coprime integers, and p > 3 is a prime.
Show that there exists an absolute constant C such that p ≤ C log(2a).

Exercise 7.

Let a, b, k be non-zero integers. Prove that the equation

axm − byn = k,

in the four unknowns x ≥ 2, y ≥ 2,m ≥ 3, n ≥ 2, has only finitely many solutions if one of
the unknowns is fixed.

Exercise 8.

Consider the Diophantine equation in four unknowns

xn − 1

x− 1
= yq.

Prove that it has only finitely many solutions if x is fixed or if n has a fixed prime divisor
or if y has a fixed prime divisor.

Assume that x is a perfect square, x = z2. Establish then an absolute (i.e., indepen-
dent of x) upper bound for q.
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Exercise 9.

Let ξ be an irrational, real, algebraic number. Let (pn/qn)n≥1 be the sequence of
convergents to ξ. Use Baker’s theory to get an effective lower bound for P [pnqn], where
P [·] denotes the greatest prime factor.

Open problem: To get an effective lower bound for P [pn] (resp. for P [qn]).

Exercise 10.

Give an explicit lower bound for the greatest prime factor of k(k−1), when the integer
k goes to infinity.

Exercise 11.

Using only elementary method, show that there exists an absolute constant C such
that

v5(3m − 1) ≤ C logm, for any m ≥ 2.

More generally, let K be a number field of degree d, let p be a prime number and P
be a prime ideal in OK dividing p. Then, for any algebraic integer α in K and any positive
integer m ≥ 2 such that αm 6= 1, there exists a positive constant C, depending only on d,
p and α, such that

vP(αm − 1) ≤ C logm.

Exercise 12.

Let p1, . . . , p` be distinct prime numbers. Let S be the set of all positive integers of
the form pa1

1 . . . pa`

` with ai ≥ 0. Let 1 = n1 < n2 < . . . be the sequence of integers from S
ranged in increasing order. As above, let P [·] denote the greatest prime divisor. Give an
effective lower bound for P [ni+1 − ni] as a function on ni.

Exercise 13.

Let a, b, c and d be non-zero integers. Let p and q be coprime integers. Prove that
the Diophantine equation

apx + bqy + cpz + dqw = 0, in non-negative integers x, y, z, w,

has only finitely many solutions.

Exercise 14.

Let α > 1 and d > 1 be an integer. Suppose that (x, y,m, n) with y > x is a solution
of the Diophantine equation

xm − 1

x− 1
=
yn − 1

y − 1
.

Assume that

gcd(m− 1, n− 1) = d,
m− 1

n− 1
≤ α.

Apply Baker’s theory to bound d by a linear funtion of α.
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Exercise 15.

Consider the Diophantine equation x2 − 2m = yn in positive integers y > 1, n > 2,
x,m, with x and y coprime. Show that n is bounded by an absolute numerical constant.
What happens if 2 is replaced by an odd prime number p?

Exercise 16.

Let P ≥ 2 be an integer and S be the set of all integers which are composed of primes
less than or equal to P . Show that there are only finitely many quintuples (x, y, z,m, n)
satisfying

xm − yn = z<m,n>,

with x, y,m, n all ≥ 2 and z in S, where < m,n > denotes the least common multiple of
m and n.

Exercise 17.

Consider the Diophantine equation

2a + 2b + 1 = yq,

in integers a > b > 0, q ≥ 2, y ≥ 2. Prove that q is bounded.

Consider the Diophantine equation

2a + 2b + 2c + 1 = yq,

in integers a > b > c > 0, q ≥ 2, y ≥ 2. Prove that q is bounded.

What happens if one replaces 2 in the above equations by an odd prime number p?

Exercise 18.

Let a ≥ 1, b, c be non-zero integers. Prove that the equation

axn − byn = c,

in the unknowns x ≥ 2, y ≥ 2, n ≥ 3 has only finitely many solutions.
Show that if c and a− b are very small compared to a, then one gets an upper bound

for n independent of a, b, c.

Exercise 19.

Deduce Theorem F from Theorem C.
Hint. Establish first that, for integers b1, . . . , bn and N ≥ Q ≥ 1, there exist a

positive integer r and integers p1, . . . , pn such that bN/Qc ≤ r ≤ N and

|bi − rpi| ≤ rQ−1/n + |bi|
/

(2r − 1) (i = 1, . . . , n).

Then, consider the algebraic numbers α = αp1

1 · · ·αpn
n and γ = αb1−rp1

1 · · ·αbn−rpn
n αn+1.
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