Exercises on linear forms in the logarithms of algebraic numbers

Yann Bugeaud

Exercise 1.

Prove that the equation

$$y^2 + 1 = x^m$$

has no solutions in rational integers (V. A. Lebesgue, 1850).

Exercise 2.

Prove that the Diophantine equation $x^2 + 7 = 2^n$ has exactly five integer solutions, given by

$$(x, n) \in \{(1, 3), (3, 4), (5, 5), (11, 7), (181, 15)\}.$$

Hint. Prove that n = 4 gives the only solution with n even. Assume that n is odd and write n = 2m + 1, $y = 2^m$. Consider the equation

$$x^2 - 2y^2 = -7.$$

Prove that y is an element of the binary recurrence sequence $(y_s)_{s \in \mathbf{Z}}$ defined by

$$y_0 = 2$$
, $y_1 = 3$ and $y_{s+2} = 2y_{s+1} + y_s$, $s \in \mathbb{Z}$

We aim to show that the only elements of $(y_s)_{s \in \mathbb{Z}}$ which are powers of 2 are $y_{-6} = 128$ and $y_0 = 2$. Show that we can restrict ourselves to study the sequence $(u_s)_{s \in \mathbb{Z}}$, given by $u_s = y_{8s-6}/8$, that is, by the binary recurrence

$$u_0 = 16$$
, $u_1 = 1$ and $u_{s+2} = 1154u_{s+1} - u_s$.

Prove that if $y = 2^m$ for some $m \ge 8$, then $y = 8u_s$ for some $s \equiv 16 \mod 32$.

Look at the sequence $(u_s)_{s \in \mathbb{Z}}$ modulo the prime number 7681. Use the quadratic reciprocity law to show that, for any $s \equiv 16 \mod 32$, the number u_s cannot be a power of 2. Conclude.

Exercise 3.

Let $\alpha_1, \ldots, \alpha_n$ be algebraic numbers. Let b_1, \ldots, b_n be non-zero integers. Deduce from Theorem A a lower bound for the quantity

$$\Lambda := |\alpha_1^{b_1} \dots \alpha_n^{b_n} - 1|,$$

when $\Lambda \neq 0$. (Consider separately the case where all the α_i are real.)

Exercise 4.

Let d be a non-zero integer and consider the Diophantine equation

 $x^2 + d = y^p$, in x > 0, y > 0 and $p \ge 3$ prime.

Use Theorem A to get an upper bound for p when d = -2, d = 2, d = 7, and d = 25, respectively.

Exercise 5.

Let f(X) be an irreducible integer polynomial of degree at least 3. Prove that the equation

 $f(x) = y^2$

has only finitely many integer solutions x, y.

Exercise 6.

Consider the Diophantine equation

$$x^2 + a^2 = 2y^p,$$

where a is a given positive integer, x, y are coprime integers, and p > 3 is a prime. Show that there exists an absolute constant C such that $p \le C \log(2a)$.

Exercise 7.

Let a, b, k be non-zero integers. Prove that the equation

$$ax^m - by^n = k,$$

in the four unknowns $x \ge 2, y \ge 2, m \ge 3, n \ge 2$, has only finitely many solutions if one of the unknowns is fixed.

Exercise 8.

Consider the Diophantine equation in four unknowns

$$\frac{x^n - 1}{x - 1} = y^q.$$

Prove that it has only finitely many solutions if x is fixed or if n has a fixed prime divisor or if y has a fixed prime divisor.

Assume that x is a perfect square, $x = z^2$. Establish then an absolute (i.e., independent of x) upper bound for q.

Exercise 9.

Let ξ be an irrational, real, algebraic number. Let $(p_n/q_n)_{n\geq 1}$ be the sequence of convergents to ξ . Use Baker's theory to get an effective lower bound for $P[p_nq_n]$, where $P[\cdot]$ denotes the greatest prime factor.

Open problem: To get an effective lower bound for $P[p_n]$ (resp. for $P[q_n]$).

Exercise 10.

Give an explicit lower bound for the greatest prime factor of k(k-1), when the integer k goes to infinity.

Exercise 11.

Using only elementary method, show that there exists an absolute constant C such that

$$v_5(3^m - 1) \leq C \log m$$
, for any $m \geq 2$.

More generally, let **K** be a number field of degree d, let p be a prime number and \mathcal{P} be a prime ideal in $O_{\mathbf{K}}$ dividing p. Then, for any algebraic integer α in **K** and any positive integer $m \geq 2$ such that $\alpha^m \neq 1$, there exists a positive constant C, depending only on d, p and α , such that

$$v_{\mathcal{P}}(\alpha^m - 1) \le C \log m.$$

Exercise 12.

Let p_1, \ldots, p_ℓ be distinct prime numbers. Let S be the set of all positive integers of the form $p_1^{a_1} \ldots p_\ell^{a_\ell}$ with $a_i \ge 0$. Let $1 = n_1 < n_2 < \ldots$ be the sequence of integers from Sranged in increasing order. As above, let $P[\cdot]$ denote the greatest prime divisor. Give an effective lower bound for $P[n_{i+1} - n_i]$ as a function on n_i .

Exercise 13.

Let a, b, c and d be non-zero integers. Let p and q be coprime integers. Prove that the Diophantine equation

$$ap^{x} + bq^{y} + cp^{z} + dq^{w} = 0$$
, in non-negative integers x, y, z, w ,

has only finitely many solutions.

Exercise 14.

Let $\alpha > 1$ and d > 1 be an integer. Suppose that (x, y, m, n) with y > x is a solution of the Diophantine equation

$$\frac{x^m - 1}{x - 1} = \frac{y^n - 1}{y - 1}.$$

Assume that

$$gcd(m-1, n-1) = d, \quad \frac{m-1}{n-1} \le \alpha.$$

Apply Baker's theory to bound d by a linear function of α .

Exercise 15.

Consider the Diophantine equation $x^2 - 2^m = y^n$ in positive integers y > 1, n > 2, x, m, with x and y coprime. Show that n is bounded by an absolute numerical constant. What happens if 2 is replaced by an odd prime number p?

Exercise 16.

Let $P \ge 2$ be an integer and S be the set of all integers which are composed of primes less than or equal to P. Show that there are only finitely many quintuples (x, y, z, m, n)satisfying

$$x^m - y^n = z^{\langle m, n \rangle},$$

with x, y, m, n all ≥ 2 and z in S, where $\langle m, n \rangle$ denotes the least common multiple of m and n.

Exercise 17.

Consider the Diophantine equation

$$2^a + 2^b + 1 = y^q,$$

in integers a > b > 0, $q \ge 2$, $y \ge 2$. Prove that q is bounded.

Consider the Diophantine equation

$$2^a + 2^b + 2^c + 1 = y^q,$$

in integers a > b > c > 0, $q \ge 2$, $y \ge 2$. Prove that q is bounded.

What happens if one replaces 2 in the above equations by an odd prime number p?

Exercise 18.

Let $a \ge 1, b, c$ be non-zero integers. Prove that the equation

$$ax^n - by^n = c,$$

in the unknowns $x \ge 2, y \ge 2, n \ge 3$ has only finitely many solutions.

Show that if c and a - b are very small compared to a, then one gets an upper bound for n independent of a, b, c.

Exercise 19.

Deduce Theorem F from Theorem C.

Hint. Establish first that, for integers b_1, \ldots, b_n and $N \ge Q \ge 1$, there exist a positive integer r and integers p_1, \ldots, p_n such that $\lfloor N/Q \rfloor \le r \le N$ and

$$|b_i - rp_i| \le rQ^{-1/n} + |b_i|/(2r-1)$$
 $(i = 1, ..., n).$

Then, consider the algebraic numbers $\alpha = \alpha_1^{p_1} \cdots \alpha_n^{p_n}$ and $\gamma = \alpha_1^{b_1 - rp_1} \cdots \alpha_n^{b_n - rp_n} \alpha_{n+1}$.