Exercises on linear forms in the logarithms of algebraic numbers

Yann Bugeaud

Exercise 1.

Prove that the equation

$$
y^{2}+1=x^{m}
$$

has no solutions in rational integers (V. A. Lebesgue, 1850).

Exercise 2.

Prove that the Diophantine equation $x^{2}+7=2^{n}$ has exactly five integer solutions, given by

$$
(x, n) \in\{(1,3),(3,4),(5,5),(11,7),(181,15)\} .
$$

Hint. Prove that $n=4$ gives the only solution with n even. Assume that n is odd and write $n=2 m+1, y=2^{m}$. Consider the equation

$$
x^{2}-2 y^{2}=-7 .
$$

Prove that y is an element of the binary recurrence sequence $\left(y_{s}\right)_{s \in \mathbf{Z}}$ defined by

$$
y_{0}=2, \quad y_{1}=3 \quad \text { and } \quad y_{s+2}=2 y_{s+1}+y_{s}, \quad s \in \mathbf{Z} .
$$

We aim to show that the only elements of $\left(y_{s}\right)_{s \in \mathbf{Z}}$ which are powers of 2 are $y_{-6}=128$ and $y_{0}=2$. Show that we can restrict ourselves to study the sequence $\left(u_{s}\right)_{s \in \mathbf{Z}}$, given by $u_{s}=y_{8 s-6} / 8$, that is, by the binary recurrence

$$
u_{0}=16, \quad u_{1}=1 \quad \text { and } \quad u_{s+2}=1154 u_{s+1}-u_{s} .
$$

Prove that if $y=2^{m}$ for some $m \geq 8$, then $y=8 u_{s}$ for some $s \equiv 16 \bmod 32$.
Look at the sequence $\left(u_{s}\right)_{s \in \mathbf{Z}}$ modulo the prime number 7681. Use the quadratic reciprocity law to show that, for any $s \equiv 16 \bmod 32$, the number u_{s} cannot be a power of 2. Conclude.

Exercise 3.

Let $\alpha_{1}, \ldots, \alpha_{n}$ be algebraic numbers. Let b_{1}, \ldots, b_{n} be non-zero integers. Deduce from Theorem A a lower bound for the quantity

$$
\Lambda:=\left|\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}-1\right|,
$$

when $\Lambda \neq 0$. (Consider separately the case where all the α_{i} are real.)

Exercise 4.

Let d be a non-zero integer and consider the Diophantine equation

$$
x^{2}+d=y^{p}, \quad \text { in } x>0, y>0 \text { and } p \geq 3 \text { prime. }
$$

Use Theorem A to get an upper bound for p when $d=-2, d=2, d=7$, and $d=25$, respectively.

Exercise 5.

Let $f(X)$ be an irreducible integer polynomial of degree at least 3. Prove that the equation

$$
f(x)=y^{2}
$$

has only finitely many integer solutions x, y.

Exercise 6.

Consider the Diophantine equation

$$
x^{2}+a^{2}=2 y^{p},
$$

where a is a given positive integer, x, y are coprime integers, and $p>3$ is a prime.
Show that there exists an absolute constant C such that $p \leq C \log (2 a)$.

Exercise 7.

Let a, b, k be non-zero integers. Prove that the equation

$$
a x^{m}-b y^{n}=k,
$$

in the four unknowns $x \geq 2, y \geq 2, m \geq 3, n \geq 2$, has only finitely many solutions if one of the unknowns is fixed.

Exercise 8.

Consider the Diophantine equation in four unknowns

$$
\frac{x^{n}-1}{x-1}=y^{q} .
$$

Prove that it has only finitely many solutions if x is fixed or if n has a fixed prime divisor or if y has a fixed prime divisor.

Assume that x is a perfect square, $x=z^{2}$. Establish then an absolute (i.e., independent of x) upper bound for q.

Exercise 9.

Let ξ be an irrational, real, algebraic number. Let $\left(p_{n} / q_{n}\right)_{n \geq 1}$ be the sequence of convergents to ξ. Use Baker's theory to get an effective lower bound for $P\left[p_{n} q_{n}\right]$, where $P[\cdot]$ denotes the greatest prime factor.

Open problem: To get an effective lower bound for $P\left[p_{n}\right]$ (resp. for $P\left[q_{n}\right]$).

Exercise 10.

Give an explicit lower bound for the greatest prime factor of $k(k-1)$, when the integer k goes to infinity.

Exercise 11.

Using only elementary method, show that there exists an absolute constant C such that

$$
v_{5}\left(3^{m}-1\right) \leq C \log m, \quad \text { for any } m \geq 2 .
$$

More generally, let \mathbf{K} be a number field of degree d, let p be a prime number and \mathcal{P} be a prime ideal in $O_{\mathbf{K}}$ dividing p. Then, for any algebraic integer α in \mathbf{K} and any positive integer $m \geq 2$ such that $\alpha^{m} \neq 1$, there exists a positive constant C, depending only on d, p and α, such that

$$
v_{\mathcal{P}}\left(\alpha^{m}-1\right) \leq C \log m
$$

Exercise 12.

Let p_{1}, \ldots, p_{ℓ} be distinct prime numbers. Let S be the set of all positive integers of the form $p_{1}^{a_{1}} \ldots p_{\ell}^{a_{\ell}}$ with $a_{i} \geq 0$. Let $1=n_{1}<n_{2}<\ldots$ be the sequence of integers from S ranged in increasing order. As above, let $P[\cdot]$ denote the greatest prime divisor. Give an effective lower bound for $P\left[n_{i+1}-n_{i}\right]$ as a function on n_{i}.

Exercise 13.

Let a, b, c and d be non-zero integers. Let p and q be coprime integers. Prove that the Diophantine equation

$$
a p^{x}+b q^{y}+c p^{z}+d q^{w}=0, \quad \text { in non-negative integers } x, y, z, w,
$$

has only finitely many solutions.

Exercise 14.

Let $\alpha>1$ and $d>1$ be an integer. Suppose that (x, y, m, n) with $y>x$ is a solution of the Diophantine equation

$$
\frac{x^{m}-1}{x-1}=\frac{y^{n}-1}{y-1} .
$$

Assume that

$$
\operatorname{gcd}(m-1, n-1)=d, \quad \frac{m-1}{n-1} \leq \alpha .
$$

Apply Baker's theory to bound d by a linear funtion of α.

Exercise 15.

Consider the Diophantine equation $x^{2}-2^{m}=y^{n}$ in positive integers $y>1, n>2$, x, m, with x and y coprime. Show that n is bounded by an absolute numerical constant. What happens if 2 is replaced by an odd prime number p ?

Exercise 16.

Let $P \geq 2$ be an integer and S be the set of all integers which are composed of primes less than or equal to P. Show that there are only finitely many quintuples (x, y, z, m, n) satisfying

$$
x^{m}-y^{n}=z^{\langle m, n>},
$$

with x, y, m, n all ≥ 2 and z in S, where $<m, n>$ denotes the least common multiple of m and n.

Exercise 17.

Consider the Diophantine equation

$$
2^{a}+2^{b}+1=y^{q},
$$

in integers $a>b>0, q \geq 2, y \geq 2$. Prove that q is bounded.
Consider the Diophantine equation

$$
2^{a}+2^{b}+2^{c}+1=y^{q},
$$

in integers $a>b>c>0, q \geq 2, y \geq 2$. Prove that q is bounded.
What happens if one replaces 2 in the above equations by an odd prime number p ?

Exercise 18.

Let $a \geq 1, b, c$ be non-zero integers. Prove that the equation

$$
a x^{n}-b y^{n}=c,
$$

in the unknowns $x \geq 2, y \geq 2, n \geq 3$ has only finitely many solutions.
Show that if c and $a-b$ are very small compared to a, then one gets an upper bound for n independent of a, b, c.

Exercise 19.

Deduce Theorem F from Theorem C.
Hint. Establish first that, for integers b_{1}, \ldots, b_{n} and $N \geq Q \geq 1$, there exist a positive integer r and integers p_{1}, \ldots, p_{n} such that $\lfloor N / Q\rfloor \leq r \leq N$ and

$$
\left|b_{i}-r p_{i}\right| \leq r Q^{-1 / n}+\left|b_{i}\right| /(2 r-1) \quad(i=1, \ldots, n)
$$

Then, consider the algebraic numbers $\alpha=\alpha_{1}^{p_{1}} \cdots \alpha_{n}^{p_{n}}$ and $\gamma=\alpha_{1}^{b_{1}-r p_{1}} \cdots \alpha_{n}^{b_{n}-r p_{n}} \alpha_{n+1}$.

