EXERCISES FOR 2012 BANFF SUMMER SCHOOL

BJORN POONEN

- P1. Recall that an Azumaya algebra over a field k is a twist of a matrix algebra, i.e., a k-algebra A (associative with 1) such that $A \otimes_k k^{\text{sep}} \simeq M_n(k^{\text{sep}})$ for some $n \in \mathbb{Z}_{>0}$. Let A, B be Azumaya k-algebras. Prove that:
 - (a) The tensor product $A \otimes_k B$ is an Azumaya k-algebra.
 - (b) The opposite algebra A^{op} is an Azumaya algebra.
 - (c) The map $A \otimes_k A^{\text{op}} \to \text{End}_k A$ sending $a \otimes b$ to the k-linear map $x \mapsto axb$ is a kalgebra isomorphism. (Here $\text{End}_k A$ is the k-algebra of k-linear endomorphisms of A viewed as a k-vector space, so $\text{End}_k A$ is isomorphic to a matrix algebra.)
 - (d) For any field extension L of k, the L-algebra $A \otimes_k L$ is an Azumaya L-algebra.
 - (e) A is central (i.e., its center is k).
 - (f) A is simple (i.e., it has exactly two 2-sided ideals, namely (0) and A itself).
- P2. How many different proofs can you find for the statement that for $a, b \in \mathbb{F}_q^{\times}$ with q odd, the quadratic form $x^2 ay^2 bz^2$ has a nontrivial zero? (Actually, it is trivially true for even q too.)
- P3. Using the previous exercise, prove that if k is a nonarchimedean local field with (finite) residue field of odd size, and $a, b \in k$ are units (elements of valuation 0), then the quaternion algebra (a, b) over k is split.
- P4. Describe a method for computing $\operatorname{inv}_p(a,b) \in \frac{1}{2}\mathbb{Z}/\mathbb{Z}$ for any $a,b \in \mathbb{Q}^{\times}$ and for any $p \leq \infty$.
- P5. Let p and q be odd primes. The reciprocity law for the Brauer group, i.e., the exactness of

$$0 \to \operatorname{Br} \mathbb{Q} \to \bigoplus_{v} \operatorname{Br} \mathbb{Q}_{v} \to \mathbb{Q}/\mathbb{Z} \to 0,$$

implies that

(*) the number of places at which the quaternion algebra (p, q) ramifies is even.

Show that (*) is equivalent to quadratic reciprocity for p and q.

P6. Use the reciprocity law for the Brauer group to prove the Legendre symbol formula

$$\begin{pmatrix} \frac{2}{p} \end{pmatrix} = \begin{cases} \pm 1, & \text{if } p \equiv \pm 1 \pmod{8}; \\ -1, & \text{if } p \equiv \pm 3 \pmod{8}. \end{cases}$$

- P7. Let $\{K_{\alpha}\}$ be a directed system of fields, and let $K = \varinjlim K_{\alpha}$ be the direct limit. Prove that Br $K = \lim \operatorname{Br} K_{\alpha}$.
- P8. (a) Let k be a global field, and let $a \in \operatorname{Br} k$. Prove that there is a root of unity $\zeta \in \overline{k}$ such that the image of a in $\operatorname{Br} k(\zeta)$ is 0.
 - (b) Let k be a global field, and let k^{ab} denote its maximal abelian extension. Prove that Br $k^{ab} = 0$.

Date: June 9, 2012.

- P9. Let X be a k-variety. Explain why the map $\operatorname{Br} k \to \operatorname{Br} X$ is injective when X has a k-point, or when k is a global field and $X(\mathbf{A}) \neq \emptyset$.
- P10. Let k be a field of characteristic 0. Let X be a smooth plane conic in \mathbb{P}^2 . Since X is a twist of \mathbb{P}^1 , it corresponds to an element of $\mathrm{H}^1(k, \mathrm{Aut} \mathbb{P}^1_{k^{\mathrm{sep}}}) = \mathrm{H}^1(k, \mathrm{PGL}_2)$, and hence gives an element $\alpha \in \mathrm{Br} X$ of order dividing 2. Prove that $\mathrm{Br} k \to \mathrm{Br} X$ is surjective, and that its kernel is generated by α .
- P11. (Iskovskikh's counterexample to the local-global principle)
 - (a) Construct a smooth projective model X of the affine variety

$$X_0: y^2 + z^2 = (x^2 - 2)(3 - x^2)$$

over \mathbb{Q} . (Suggestion: extend $x: X_0 \to \mathbb{A}^1$ to a morphism $X \to \mathbb{P}^1$ with X a closed subscheme of a \mathbb{P}^2 -bundle over \mathbb{P}^1 such that each geometric fiber of $X \to \mathbb{P}^1$ is either a smooth plane conic or a union of two distinct lines.)

- (b) Prove that $X(\mathbf{A}) \neq \emptyset$.
- (c) Let K be the function field of X. Let A be the class of $(-1, x^2 2)$ in Br K. Let B be the class of $(-1, 3 x^2)$ in Br K. Let C be the class of $(-1, 1 2/x^2)$ in Br K. Prove that A = B = C.
- (d) Prove that $A \in Br X$. (Hints: Equivalently, one must show that the residue of A along each irreducible divisor of X is trivial. We already know that A has zero residue at all irreducible divisors except possibly those appearing in the divisor of -1 or $x^2 2$.)
- (e) Show that for $p \leq \infty$ and $x \in X(\mathbb{Q}_p)$,

$$\operatorname{inv}_p A(x) = \begin{cases} 0, & \text{if } p \neq 2\\ 1/2, & \text{if } p = 2. \end{cases}$$

- (f) Deduce that $X(\mathbf{A})^{\mathrm{Br}} = \emptyset$ and that $X(\mathbb{Q}) = \emptyset$.
- (g) Show that exactly four of the geometric fibers of $X \to \mathbb{P}^1$ are reducible, each consisting of the union of two lines crossing at a point.
- (h) Show that each of those lines has self-intersection -1.
- (i) Deduce that $X^{\text{sep}} := X \times_{\mathbb{Q}} \overline{\mathbb{Q}}$ is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ blown up at 4 points.
- (j) What is $\operatorname{Pic} X^{\operatorname{sep}}$?
- (k) (Difficult) Show that $\operatorname{Br} X/\operatorname{Br} \mathbb{Q}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, generated by the image of A.
- P12. Let k be a field of characteristic not 2. Let $a \in k^{\times}$.
 - (a) Show that the affine variety $x^2 ay^2 = 1$ can be given the structure of an algebraic group G.
 - (b) Show that for every $b \in k^{\times}$, the affine variety $x^2 ay^2 = b$ can be given the structure of a *G*-torsor, and that all *G*-torsors over k arise this way.
- P13. Let L/k be a finite Galois extension of fields. Let G = Gal(L/k). View G as a 0dimensional group scheme over k consisting of one point for each element. Prove that the obvious right action of G on Spec L makes Spec L a G-torsor over Spec k.

P14. Let G be a *commutative* algebraic group over a field k, with group law written additively. An extension of the constant group scheme \mathbb{Z} by G (in the category of commutative k-group schemes) is a commutative k-group scheme E fitting in an exact sequence

$$0 \to G \to E \to \mathbb{Z} \to 0$$

A morphism of extensions is a commutative diagram

Given an extension, write $E = \coprod_{n \in \mathbb{Z}} E_n$, where E_n is the inverse image under $E \to \mathbb{Z}$ of the point corresponding to the integer n.

- (a) Prove that each E_n is a torsor under G.
- (b) Prove that there is an equivalence of categories

{ extensions of
$$\mathbb{Z}$$
 by G } \rightarrow { k -torsors under G }
($0 \rightarrow G \rightarrow E \rightarrow \mathbb{Z} \rightarrow 0$) $\mapsto E_1$,

and hence that the set of isomorphism classes of extensions is in bijection with $\mathrm{H}^{1}(k,G)$.

(c) Prove that any extension induces an exact sequence of G_k -modules

$$0 \to G(k^{\rm sep}) \to E(k^{\rm sep}) \to \mathbb{Z} \to 0$$

and that the image of n under the coboundary homomorphism $\mathbb{Z} = \mathrm{H}^{0}(G_{k}, \mathbb{Z}) \to \mathrm{H}^{1}(k, G)$ is the class of the torsor E_{n} .

(Remark: Similarly, a 2-extension

$$0 \to G \to E_1 \to E_0 \to \mathbb{Z} \to 0$$

gives rise to a class in $H^2(k, G)$, and so on; this is related to the notion of gerbe.)

- P15. Let k be a number field. Let E be an elliptic curve over k. Let m be a positive integer. Let $f: E \to E$ be the multiplication-by-n map.
 - (a) Explain why $f: E \to E$ is an E[n]-torsor over E.
 - (b) Show that the sets in the resulting partition of E(k) are either empty or cosets of nE(k). (Thus finiteness of the Selmer set $\operatorname{Sel}_f \subseteq H^1(k, E[n])$ implies the weak Mordell–Weil theorem that E(k)/nE(k) is finite.)
 - (c) Show that the Selmer set Sel_f is the same as the classically defined *n*-Selmer group of *E*.
- P16. Explain why the subset $X(\mathbf{A})^{\text{PGL}}$ cut out by all torsors under all the groups PGL_n equals the subset $X(\mathbf{A})^{\text{Br}}$.
- P17. (An example of E. Victor Flynn) Let X be the smooth projective model of the affine curve $y^2 = (x^2+1)(x^4+1)$ over \mathbb{Q} ; this is a genus-2 curve. It turns out that the Jacobian of X is isogenous to a product of two elliptic curves over rank 1, so Chabauty's method does not apply. For each squarefree integer d, let Y_d be the smooth projective model of the affine curve defined by $y^2 = (x^2+1)(x^4+1)$ and $dz^2 = x^4+1$ in \mathbb{A}^3 over \mathbb{Q} . Let $Y_1 = Y$. Projection (forgetting the z-coordinate) induces a morphism $Y_d \to X$.
 - (a) Show that $f: Y \to X$ is a $\mathbb{Z}/2\mathbb{Z}$ -torsor over X.
 - (b) Show that the twisted torsors are the curves Y_d .

- (c) Show that $Y_d(\mathbf{A}) = \emptyset$ except for $d \in \{1, 2\}$. Thus $\# \operatorname{Sel}_f = 2$.
- (d) Let C_d be the smooth projective model of the affine plane curve $dz^2 = x^4 + 1$, so there is also a morphism $Y_d \to C_d$. Assuming that $C_1(\mathbb{Q})$ and $C_2(\mathbb{Q})$ are of size 4 (as could be shown by applying 2-descent to these elliptic curves), compute $Y_1(\mathbb{Q})$ and $Y_2(\mathbb{Q})$.
- (e) Finally, compute $X(\mathbb{Q})$.

The online lecture notes at

http://math.mit.edu/~poonen/papers/Qpoints.pdf

cover most of the topics presented, and suggest references for further reading. They also implicitly contain solutions to some of the exercises here. (If you get a "Forbidden" error when trying to download this PDF file, try again after a few seconds.)

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA 02139-4307, USA

E-mail address: poonen@math.mit.edu *URL*: http://math.mit.edu/~poonen/