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1. Banach’s hyperplane problem

Kalton-Peck’s space was the first space conjectured not to be
isomorphic to its hyperplanes (still unsolved).

Casazza defined a sufficient condition for a space not to be
isomorphic to its hyperplanes.

Definition
I We shall call even-odd a basic sequence (xn) such that the

odd subsequence (x2n+1) is equivalent to the even
subsequence (x2n).

I A space with a basis satisfies Casazza’s criterion if it
contains no even-odd block sequence.

Proposition (Casazza, 90’s)
A space which satisfies Casazza’s criterion is isomorphic to no
proper subspaces.
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1. Casazza’s criterion and HI spaces

Theorem (Gowers-Maurey, 90’s)
There exists a Banach space GM without an unconditional
basic sequence.

it was unclear whether GM satisfied Casazza’s criterion, so
Gowers defined an unconditional version Gu of
Gowers-Maurey’s space and proved:

Theorem (Gowers, 90’s)
The space Gu satisfies Casazza’s criterion, and therefore is not
isomorphic to its proper subspaces.

But then Gowers and Maurey improved the properties of GM.

Theorem (Gowers-Maurey, 90’s)
The space GM is HI and no HI space is isomorphic to its proper
subspaces.
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1. Casazza’s criterion and HI spaces

So the proof that GM also solves Banach’s hyperplane problem
was based on general properties on HI spaces and Fredholm
theory, and it remained unclear whether Casazza’s criterion
was satisfied by GM.

That Casazza’s criterion is not a necessary condition is easy:

Observation
Let (en) be the natural basis of the complex GM space. Then
e1, ie1,e2, ie2, . . . is an even-odd real basis of GM, yet GM is
not R-linearly isomorphic to its real proper subspaces.
But the problem remained in the complex case.

Actually our results will suggest that GM fails Casazza’s
criterion in a strong way:

Theorem (F., Schlumprecht, 11)
A version of GM is saturated with even-odd block sequences.
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1. Gowers’ dichotomies

Theorem (Gowers’ 1st dichotomy, 96)
Every Banach space contains either an HI subspace or a
subspace with an unconditional basis.
A space is said to be quasi-minimal if any two subspaces have
further subspaces which are isomorphic.

Theorem (Gowers’ 2nd dichotomy, 02)
Every Banach space contains a quasi-minimal subspace or a
subspace with a basis such that no two disjointly supported
block subspaces are isomorphic.

Note that the property that no two disjointly supported block
subspaces are isomorphic is a strong form of the criterion of
Casazza.
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1. Gowers classification program

These results opened the way to a loose classification of
Banach spaces up to subspaces, known as Gowers’ program.
The aim of this program is to produce a list of classes of infinite
dimensional Banach spaces such that:

(a) the classes are hereditary, i.e., stable under taking
subspaces (or block subspaces),
(b) the classes are inevitable, i.e., every infinite dimensional
Banach space contains a subspace in one of the classes,
(c) the classes are mutually disjoint,
(d) belonging to one class gives some information about the
operators that may be defined on the space or on its
subspaces.
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1. Gowers’ list of four classes

Finally, H. Rosenthal had defined a space to be minimal if it
embeds into any of its subspaces. A quasi minimal space
which does not contain a minimal subspace was called strictly
quasi minimal by Gowers.

Gowers deduced from these dichotomies and from easy
implications (e.g. HI implies strictly quasi minimal) a list of four
inevitable classes of Banach spaces characterized by the
properties:

I HI spaces (GM),
I no disjointly supported subspaces are isomorphic (Gu),
I strictly quasi-minimal with an unconditional basis (T ),
I minimal spaces (c0, `p,T ∗,S).
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2. New dichotomies

The second dichotomy of Gowers is of the form ”many versus
few” isomorphisms between subspaces. We shall now define
another dichotomy of this form.

We use here a presentation of results of F. - Rosendal (2007)
based on observations made with G. Godefroy (2011).
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2. Tightness

Proposition (F. - Godefroy)
Let X have a basis (en). Then for any space Y , are equivalent:

1.
{

u ∈ 2ω : Y embeds into [en : n ∈ u]
}

is a meager subset of
the Cantor space 2ω.

2. Y embeds in no more than a meager class of
block-subspaces of X .

3. there is a sequence of subsets I0 < I1 < I2 < . . . of N, such
that the support on (en) of any isomorphic copy of Y
intersects all but finitely many of the Ij ’s.

If (i)-(ii)-(iii) occurs we say that Y is tight in X.

0− 1 topological laws imply that Y is either tight in X , or
embeds in a comeager class of block-subspaces of X . But a
much more powerful result is true.
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2. Tightness

Proposition (F. - Godefroy)
Let X have a basis (en). Then for any space Y , are equivalent:

1.
{

u ∈ 2ω : Y embeds into [en : n ∈ u]
}

is a meager subset of
the Cantor space 2ω.

2. Y embeds in no more than a meager class of
block-subspaces of X .

3. there is a sequence of subsets (intervals) I0 < I1 < I2 < . . .
of N, such that the support on (en) of any isomorphic copy
of Y intersects all but finitely many of the Ij ’s.

If (i)-(ii)-(iii) occurs we say that Y is tight in X.

Definition (F. - Rosendal)
A space X is tight if Y is tight in X for any space Y .
So we may reformulate tightness more explicitely as:
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2. Tightness

Proposition
Let X be a space with a basis (en). Then the following are
equivalent

1. X is tight.
2. any (block-subspace) Y embeds in no more than a meager

class of block-subspaces of X (or the equivalent in the
Cantor space setting)

3. for any (block-subspace) Y , there is a sequence of subsets
(intervals) I0 < I1 < I2 < . . . of N, such that the support on
(en) of any isomorphic copy of Y intersects all but finitely
many of the Ij ’s.

Theorem (3d dichotomy, F. - Rosendal, 2007)
Every Banach space contains a minimal subspace or a tight
subspace.
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2. Tightness

Proposition
Let X be a space with a basis (en). Then the following are
equivalent

1. X is tight.
2. any (block-subspace) Y embeds in no more than a meager

class of block-subspaces of X (or the equivalent in the
Cantor space setting)

3. for any (block-subspace) Y , there is a sequence of subsets
(intervals) I0 < I1 < I2 < . . . of N, such that the support on
(en) of any isomorphic copy of Y intersects all but finitely
many of the Ij ’s.

Before seeing how this may improve Gowers’ classification, let
us see how special types of tightness may be defined according
to the way the Ij ’s may be chosen in function of Y in 3.

Valentin Ferenczi, University of São Paulo Supports and ranges in Banach spaces



2. Tightness

Proposition
Let X be a space with a basis (en). Then the following are
equivalent

1. X is tight.
2. any (block-subspace) Y embeds in no more than a meager

class of block-subspaces of X (or the equivalent in the
Cantor space setting)

3. for any (block-subspace) Y , there is a sequence of subsets
(intervals) I0 < I1 < I2 < . . . of N, such that the support on
(en) of any isomorphic copy of Y intersects all but finitely
many of the Ij ’s.

For example, if Y is a block-subspace [yn]n∈N of X , a natural
choice is Ij = supp yj for all j .
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2. Forms of tightness

Lemma
Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace Y = [yj ] ⊂ X, the
tightness of Y in X is witnessed by the sequence
Ij = supp yj

2. no subspace of X embeds in X disjointly from its support,
3. no disjointly supported subspaces of X are isomorphic.

So we recover Gowers’ space Gu ’s main property. We shall call
this property of Gu tightness by support.

Also Gowers’ 2nd dichotomy is interpreted as between a strong
form of tightness and a weak form of minimality.
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2. no subspace of X embeds in X disjointly from its support,
3. no disjointly supported subspaces of X are isomorphic.
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2. Four classes revisited

In passing, note that Gowers’ classification is therefore refined
as follows:

Every Banach space contains a subspace with one of the four
properties:

I tight and HI (a subspace of GM),
I tight by support (Gu),
I tight, quasi-minimal with an unconditional basis (T ),
I minimal (c0, `p,T ∗,S).

To further divide these classes, we shall now recall the notion of
range of a vector.
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2. Supports and ranges

Tightness by support is very strong, for example, implies
unconditionality.

So we may look for a more general form of
tightness that could hold for HI spaces and would be closer to
Casazza’s criterion. For this the following distinction is useful.

If X is a space with a basis (ei)i , and x =
∑∞

i=0 xiei ∈ X , then
I while supp x= {i ∈ N : xi 6= 0},
I the range ran x of x is the smallest interval of integers

containing its support.
If Y = [yn,n ∈ N] is a block subspace of X , then the support of
Y is ∪n∈Nsupp yn, and the range of Y is ∪n∈Nran yn.

So say [e1 + e2,e5 + e6, ...] and [e3 + e4,e7 + e8, ...] have
dijsoint ranges,
but [e1 + e3,e5 + e7, ...] and [e2 + e4,e6 + e8, ...] have disjoint
supports but not disjoint ranges.
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2. Tightness by range

Ranges may now be used to define a weaker form of tightness:

Lemma
Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace Y = [yj ] ⊂ X, the
tightness of Y in X is witnessed by the sequence Ij = ran yj

2. no block-subspace of X embeds in X disjointly from its
range.

In this case we shall say that X is tight by range.

Observe that if (xn) is an even-odd block-sequence, then [x2n]
embeds disjointly from its range. Therefore by 2., tightness by
range may be seen as a slightly stronger form of Casazza’s
criterion.The two properties are so similar that we shall give
ideas of some proofs in the case of Casazza’s criterion instead
of tightness by range.
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2. Tightness by range

Question
Is tightness by range really weaker than tightness by support?

Theorem (F. - Rosendal, 07)
Yes. Gowers’ asymptotically unconditional and HI space Gau is
tight by range.

However it is not tight by support, since it is HI.

We shall now see that there also exists a dichotomy relative to
tightness by range.
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2. The fourth dichotomy

Definition
A space X with a basis (en) is subsequentially minimal if every
subspace of X contains an isomorphic copy of a subsequence
of (en). Example: T .

Theorem (4th dichotomy, F. - Rosendal 07)
Any Banach space contains a subspace with a basis which is
either tight by range or subsequentially minimal.

Why?
I If X is subsequentially minimal, then a subsequence

embeds into a very flat, wlog disjointly ranged,
block-sequence - therefore X is not tight by range.

I if X is saturated with even-odd block sequences, use
Gowers’ Ramsey theorem to enumerate, as a block
sequence, sufficiently many vectors witnessing the
equivalences.
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2. The list of 6 inevitable classes

The first four dichotomies and the interdependence of the
properties involved can be visualized in the following diagram.

Unconditional basis ∗ ∗ 1st dichotomy ∗ ∗ HI
⇑ ⇓

Tight by support ∗ ∗ 2nd dichotomy ∗ ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ ∗ 4th dichotomy ∗ ∗ Seq. minimal (*)
⇓ ⇑

Tight ∗ ∗ 3rd dichotomy ∗ ∗ Minimal

(*) Sequential minimality is a hereditary version of
subsequential minimality.
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2. The list of 6 inevitable classes

Theorem (F. - Rosendal 2007)
Any infinite dimensional Banach space contains a subspace of
one of the types listed in the following chart:

Type Properties Examples
(1) HI, tight by range Gau
(2) HI, tight, sequentially minimal ?
(3) tight by support Gu
(4) unconditional basis, tight by range,

quasi minimal ?
(5) unconditional basis, tight, T , T (p)

sequentially minimal
(6) unconditional basis, minimal S, T ∗, c0, `p
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3. Type (2) spaces

Theorem (F. - Schlumprecht, 11)
A version of GM is saturated with even-odd block sequences.

In other words this space does not contain any block-subspace
with Casazza’s criterion, and therefore no subspace tight by
range, so by the 4th dichotomy, some subspace is sequentially
minimal.
Also the space does not contain unconditional basic
sequences, so some further subspace XGM is HI (1st
dichotomy) and also tight (3rd dichotomy).

So we just needed to ”look” at the first known HI space to
obtain a type (2) space!
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3. Six classes

Theorem
Any infinite dimensional Banach space contains a subspace of
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3. Technical ideas

We end with ideas of the construction of the version GM of
Gowers-Maurey’s space which is saturated with even-odd block
sequences.

Assuming we want to disprove the existence of equivalent
sequences (xn) and (yn) with x1 < y1 < x2 < y2 < · · · in a
Gowers-Maurey space, the Gowers-Maurey method is to

1. block cleverly the xi ’s to build `1-averages (then RIS
vectors...)

2. find norming functionals x∗n for these `1-averages, which do
not act on the yi ’s - for example functionals disjointly
supported from the yi ’s,

3. special functionals built from the x∗n show that a
combination of the xi ’s has norm much larger than the
corresponding combination of the yi ’s, contradicting
equivalence.
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3. Technical ideas

I In GM this fails at the first step, namely, the construction of
`n

1-averages.

Indeed, assume x1 < y1 < x2 < y2 < · · · ; by James’
argument, given n, one may find a sum of xi ’s which is an
`n

1-sum x . But the functional x∗ norming x may have a
non-trivial action on the yi ’s in between.

I In the unconditional Gowers-Maurey space Gu, however,
one may just replace x∗ by its projection on the union of
the supports of the xi ’s. Then everything works...

I Actually a closer look shows that asymptotic
unconditionality is enough to construct `n

1’s from the xi ’s,
normed by functionals with support disjoint from the yi ’s.

So this is why Gu and Gau satisfy Casazza’s criterion, but the
question remained for GM.
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Technical ideas: GM

So let us on the contrary try to find an even-odd block
sequence in GM.

Remember the proof of the ”trivial”
quasi-minimality of HI spaces, i.e. of equivalence of many
disjointly supported sequences.

I By the HI property, we may find in two disjointly supported
subspaces two normalized sequences (xn) and (yn), so
that ‖xn − yn‖ tends fast enough to 0. Then the map
xn 7→ yn − xn is compact, and therefore xn is equivalent to
yn, and disjointly supported.

Now if we wish x1 < y1 < x2 < y2 < · · · , then infn ‖xn − yn‖ > 0
(by projecting on the range of xn) and so xn 7→ yn − xn can
never be compact! It may however be strictly singular and then
essentially xn 7→ yn is an isomorphism.

I So we build x1 < y1 < x2 < y2 < · · · so that xn 7→ xn − yn
(and yn 7→ xn − yn) is bounded and strictly singular.
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Technical ideas: GM

Summing up we want to build x1 < y1 < x2 < y2 < · · · so that
xn 7→ xn − yn is bounded (and strictly singular).

I by works of Schlumprecht we guarantee this if the
spreading model of xn − yn is strongly dominated by the
spreading models of xn, yn, xn + yn.

I in other words we want linear combinations of xn and yn to
add very conditionally, which we know how to do in GM
using special functionals.

I but we need this conditionality for all combinations of the
xn’s (resp. yn’s) defining the spreading models, so need
much more information than in the classical GM: for
example we shall need xn + yn to be normed by z∗n such
that (z∗2 , z

∗
3), (z

∗
2 , z
∗
4) but also (z∗3 , z

∗
4) are special

sequences...
I this is possible using functionals with multiple weights,

thanks to the ”yardstick vectors” of Kutzarova - Lin.
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Technical ideas: differences with GM

How is our space different from GM?

I to deal with spreading models, need special sequences of
length k starting with m1 = j2k ′ , with all k ′ ≥ k .

I need to work with all lengths, rather than lengths in
lacunary K .

I to work with sequences generating spreading models,
need to pass to subsequences, so lose some control and
only know that the space does not contain unconditional
basic sequences.

But we conjecture that GM itself is saturated with even-odd
sequences.

Many interesting questions relative to a different form of
tightness (of a more local nature) also remain unsolved.
And also of course the existence of a type (4) space.
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