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Banach Spaces with Few Operators

Let X be a Banach Space. We say

Definition

X has few operators if every operator from X to itself is of
the form λI + S , with S strictly singular.

X has very few operators if every operator from X to itself is
of the form λI + K , with K compact.

Notation

N0

e∗m = (0, 0, . . . , 1, 0 . . . ).

L(X )

K(X )

SS(X )
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Banach Spaces with Few Operators

Known that X∗K = `1.

Since `1 has Schur property, weakly compact and compact
operators have to coincide.

For this reason, XK is a good candidate space for having very
few operators.

However, proof XK has very few operators does not use the
Schur property of `1.

Questions

If X is an `1 predual, is K(X ) = SS(X )?

If X satisfies the properties of XK and has few operators,
must it have very few operators?
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Banach Spaces With Few Operators

Theorem

Given k ∈ N, k ≥ 2, there is a (HI), separable L∞ space Xk with a
basis such that

1 X∗k is isomorphic to `1
2 There is a non-compact, strictly singular operator

S : Xk → Xk with S j 6= 0 for 1 ≤ j ≤ k − 1 and Sk = 0.

3 Moreover S j (0 ≤ j ≤ k − 1) is not a compact perturbation of
any linear combination of the operators S l , l 6= j . Equivalently,
[S j ]k−1j=0 are linearly independent vectors in L(Xk)/K(Xk).

4 Whenever T : Xk → Xk is an operator on Xk , there are
(unique) λi ∈ R and a compact operator K ∈ K(Xk) such
that

T =
k−1∑
i=0

λiS
i + K
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One further ‘generalisation’

Theorem

There is a separable L∞ space with a basis, X∞; the space has `1
dual and there exists a non-compact operator S : X∞ → X∞
satisfying the following properties:

The sequence of vectors
(
[S j ]
)∞
j=0

is a basic sequence in the
Calkin algebra isometrically equivalent to the canonical basis
of `1(N0).

If T ∈ L(X∞) then there are unique scalars (λi )
∞
i=0 and a

compact operator K ∈ L(X∞) with
∑∞

i=0 |λi | <∞ and

T =
∞∑
i=0

λiS
i + K
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Calkin Algebras

Note the Calkin algebra L(Xk)/K(Xk) is isomorphic to the
algebra A of k × k upper-triangular-Toeplitz matrices.

Explicit isomorphism given by ψ : L(Xk)/K(Xk)→ A

k−1∑
j=0

λjS
j +K(Xk) 7→



λ0 λ1 λ2 · · · · · · λk−1
0 λ0 λ1 λ2 · · · λk−2

0 0 λ0 λ1
. . .

...
...

... 0
. . .

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 λ0


Norm closed ideals in L(Xk):

K(Xk) ( 〈Sk−1〉 ( 〈Sk−2〉 . . . 〈S〉 ( L(Xk).
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Calkin algebras

The Calkin algebra of X∞ is (isometric) to `1(N0) under

`1(N0) 3 (an)∞n=0 7→
∞∑
j=0

ajS
j +K(X∞)
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Interesting properties of X∞

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to `1(N0) then X is indecomposable.

Proof.

If P is a projection on X , then [P]↔ (ai )
∞
i=0 ∈ `1(N0) is an

idempotent.

Only idempotents in `1(N0) are 0 and (1, 0, 0, . . . ).

So P is compact or P = I + K . In either case, P is certainly a
trivial projection.
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Interesting properties of X∞

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to `1(N0) then the strictly singular and
compact operators on X coincide.

Proof.

If T is strictly singular, then

limn→∞ ‖[T ]n‖
1
n = limn→∞ ‖T n +K(X )‖

1
n = 0

If a = (a0, a1, . . . ) ∈ `1(N0) \ {0}, let k be minimal such that
ak 6= 0. Easy computation gives ‖an‖`1 ≥ |ak |n, so that

limn→∞ ‖an‖
1
n ≥ |ak |.

Since Calkin algebra is `1(N0), we see T strictly singular
implies [T ] = 0.

So, T strictly singular =⇒ T compact.
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The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for `1 = `1(N).

Since `1 turns out to be the dual of all the spaces we construct, we
think of elements of `1 as functionals and denote vectors of `1 by
x∗, y∗ etc.

Assuming I have a (special kind of) Schauder basis of `1, denote it
by (d∗n )∞n=1. The biorthogonal vectors (dn)∞n=1 form a basic
sequence in `∞. Taking the closed linear span of the dn we obtain
a Banach space X, with basis (dn)∞n=1.

Follows from completely standard results that `1 embeds
isomorphically into X ∗ under the map `1 3 x∗ 7→ J`1(x∗)|X

The embedding is onto precisely when (d∗n ) is boundedly complete
basis for `1 ⇐⇒ (dn) is a shrinking basis for X .

Matthew Tarbard Banach Spaces with Few Operators



The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for `1 = `1(N).

Since `1 turns out to be the dual of all the spaces we construct, we
think of elements of `1 as functionals and denote vectors of `1 by
x∗, y∗ etc.

Assuming I have a (special kind of) Schauder basis of `1, denote it
by (d∗n )∞n=1. The biorthogonal vectors (dn)∞n=1 form a basic
sequence in `∞. Taking the closed linear span of the dn we obtain
a Banach space X, with basis (dn)∞n=1.

Follows from completely standard results that `1 embeds
isomorphically into X ∗ under the map `1 3 x∗ 7→ J`1(x∗)|X

The embedding is onto precisely when (d∗n ) is boundedly complete
basis for `1 ⇐⇒ (dn) is a shrinking basis for X .

Matthew Tarbard Banach Spaces with Few Operators



The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for `1 = `1(N).

Since `1 turns out to be the dual of all the spaces we construct, we
think of elements of `1 as functionals and denote vectors of `1 by
x∗, y∗ etc.

Assuming I have a (special kind of) Schauder basis of `1, denote it
by (d∗n )∞n=1. The biorthogonal vectors (dn)∞n=1 form a basic
sequence in `∞. Taking the closed linear span of the dn we obtain
a Banach space X, with basis (dn)∞n=1.

Follows from completely standard results that `1 embeds
isomorphically into X ∗ under the map `1 3 x∗ 7→ J`1(x∗)|X

The embedding is onto precisely when (d∗n ) is boundedly complete
basis for `1 ⇐⇒ (dn) is a shrinking basis for X .

Matthew Tarbard Banach Spaces with Few Operators



The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for `1 = `1(N).

Since `1 turns out to be the dual of all the spaces we construct, we
think of elements of `1 as functionals and denote vectors of `1 by
x∗, y∗ etc.

Assuming I have a (special kind of) Schauder basis of `1, denote it
by (d∗n )∞n=1. The biorthogonal vectors (dn)∞n=1 form a basic
sequence in `∞. Taking the closed linear span of the dn we obtain
a Banach space X, with basis (dn)∞n=1.

Follows from completely standard results that `1 embeds
isomorphically into X ∗ under the map `1 3 x∗ 7→ J`1(x∗)|X

The embedding is onto precisely when (d∗n ) is boundedly complete
basis for `1 ⇐⇒ (dn) is a shrinking basis for X .

Matthew Tarbard Banach Spaces with Few Operators



The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for `1 = `1(N).

Since `1 turns out to be the dual of all the spaces we construct, we
think of elements of `1 as functionals and denote vectors of `1 by
x∗, y∗ etc.

Assuming I have a (special kind of) Schauder basis of `1, denote it
by (d∗n )∞n=1. The biorthogonal vectors (dn)∞n=1 form a basic
sequence in `∞. Taking the closed linear span of the dn we obtain
a Banach space X, with basis (dn)∞n=1.

Follows from completely standard results that `1 embeds
isomorphically into X ∗ under the map `1 3 x∗ 7→ J`1(x∗)|X

The embedding is onto precisely when (d∗n ) is boundedly complete
basis for `1 ⇐⇒ (dn) is a shrinking basis for X .

Matthew Tarbard Banach Spaces with Few Operators



The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for `1 = `1(N).

Since `1 turns out to be the dual of all the spaces we construct, we
think of elements of `1 as functionals and denote vectors of `1 by
x∗, y∗ etc.

Assuming I have a (special kind of) Schauder basis of `1, denote it
by (d∗n )∞n=1. The biorthogonal vectors (dn)∞n=1 form a basic
sequence in `∞. Taking the closed linear span of the dn we obtain
a Banach space X, with basis (dn)∞n=1.

Follows from completely standard results that `1 embeds
isomorphically into X ∗ under the map `1 3 x∗ 7→ J`1(x∗)|X

The embedding is onto precisely when (d∗n ) is boundedly complete
basis for `1 ⇐⇒ (dn) is a shrinking basis for X .

Matthew Tarbard Banach Spaces with Few Operators



The Bourgain-Delbaen construction

We divide N into finite ‘intevals’ (∆n)∞n=1 in such a way that
max ∆n + 1 = min ∆n+1.

We say a sequence (d∗m)∞m=1 in `1 is unit triangular if d∗m = e∗m for
all m ∈ ∆1 and, for m ∈ ∆n, n > 1, we have

d∗m = e∗m − c∗m

where supp c∗m ⊆ ∪n−1j=1 ∆j . Refer to the c∗m vectors as BD
functionals.

Any such sequence is an algebraic basis for c00. We can thus
define linear projections P∗m : c00 → `m1 ⊆ `1 by

P∗md
∗
j =

{
d∗j if j ≤ m

0 otherwise

The important part of the BD construction is to construct the c∗n
in such a way that the projections P∗n are uniformly bounded (and
consequently (d∗n )∞n=1 is a basis for `1).
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Constructing interesting operators on BD spaces

Idea: Construct a linear map T on `1(N).

For T to be bounded, enough to show ∃M such that
‖Te∗n‖`1 ≤ M ∀n.

Restrict T ∗; get T ∗| : X → `∞.

Look at behaviour of T on vectors d∗n to determine if T ∗|
actually maps into X .
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Construction of S

Construct maps F : N→ N ∪ {undefined} and S∗ : `1 → `1
inductively.

Begin by defining F on ∆1 (which for the space Xk of the theorem
is the set {1, 2 . . . k}) by F (j) = j − 1 for j ≥ 2 and
F (1) = undefined. We define S∗ on `1(∆1) by

S∗(e∗m) =

{
e∗F (m) if F (m) is defined

0 otherwise

Since for m ∈ ∆1 we have d∗m = e∗m we also have the formula

S∗(d∗m) =

{
d∗F (m) if F (m) is defined

0 otherwise

Notice also that when F (m) is defined, the image of m under F is
still in ∆1. More generally, given j ∈ N ∩∆n we will say F
preserves the rank of j if either F (j) is undefined, or, F (j) ∈ ∆n
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Construction of S

We suppose inductively that F has been defined on Γn := ∪j≤n∆j

such that F preserves rank for all m ∈ Γn and S∗ is defined on
`1(Γn) such that the previous formulae hold for the e∗’s and d∗’s.

We want to extend our definition of F to include natural numbers
in ∆n+1 and also extend the definition of S∗ to `1(Γn+1).

Consider an m ∈ ∆n+1 and recall we have d∗m = e∗m − c∗m where
supp c∗m ⊆ Γn. Thus S∗c∗m is already defined. So in order to
preserve linearity, we are only free to define one of S∗d∗m or S∗e∗m.

The c∗’s are carefully chosen so that either S∗c∗m = c∗m′ where
m′ ∈ ∆n+1, in which case define F (m) = m′, or S∗c∗m = 0 in which
case set F (m) = undefined.

Easily checked that we can extend definition of S∗ to `1(Γn+1)
satisfying the required formulae.
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Construction of S

Easily seen that S∗ defines a bounded linear map from `1 to itself,
since S∗e∗n = e∗F (n) or 0 for all n.

Since

S∗(d∗m) =

{
d∗F (m) if F (m) is defined

0 otherwise

it is easy to show that the dual map S : `∞(N)→ `∞(N) acts on
the biorthogonal vectors by the formula

Sdn =
∑

m∈F−1(n)

dm

Consequently, S restricts to give a bounded linear map S | on the
B-D space to itself. It turns out that the dual of S | is precisely S∗!
So, it is easy to see that S can’t be compact, because certainly S∗

isn’t!

Showing that S | is strictly singular is harder!
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Further Research

Theorem (Daws, Haydon, Schlumprecht, White)

Let E be the space generated by the closed linear span in `∞(Z) of
the vector

x0 = (. . . , 0, 0, 1, 2−1, 2−1, 2−2, 2−1, 2−2, 2−2, 2−3, 2−1, . . . )

and its bilateral shifts. The space E is is a (shift invariant)
concrete predual of `1(Z) isomorphic to c0 that induces a
non-canonical weak* topology on `1(Z).

Here, x0 is the vector with 1 in the zero’th component and for
n > 0, the n’th component of x0 is 2−b(n) where b(n) is the
number of 1’s in the binary expansion of n.
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Connection to BD spaces

A ‘one-sided’ version of the space E just defined can be obtained
as follows. We work with N0 = N ∪ {0}.

Define c∗0 = 0 ∈ `1(N0) and for n > 0, write n = 2k + m,
where m < 2k and set c∗n = 1

2e
∗
m ∈ `1(N0).

For all n ∈ N0 set d∗n = e∗n − c∗n .

Easy to see [d∗n : n ∈ N0] = `1(N0).

In fact, this fits entirely into the framework of the BD
construction so that, in particular (d∗n ) is a Schauder basis for
`1(N0). The biorthogonal vectors [dn : n ∈ N0] generate a
(BD) (sub)space of `∞.

Turns out d0 = (1, 2−1, 2−1, 2−2, 2−1, 2−2, 2−2, 2−3, . . . ).
Also, [dn : n ∈ N0] is the same as the closed linear span of d0
and all its right shifts.
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Thank you.
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