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Banach Spaces with Few Operators

Let X be a Banach Space. We say

Definition

@ X has few operators if every operator from X to itself is of
the form A\l + S, with S strictly singular.

@ X has very few operators if every operator from X to itself is
of the form A/ + K, with K compact.
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Banach Spaces with Few Operators

Let X be a Banach Space. We say

@ X has few operators if every operator from X to itself is of
the form A\l + S, with S strictly singular.

@ X has very few operators if every operator from X to itself is
of the form A/ + K, with K compact.

o Ny

e e =(0,0,...,1,0...).
e L(X)

e IC(X)

e SS(X)
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Banach Spaces with Few Operators

@ Known that X% = /3.
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Banach Spaces with Few Operators

@ Known that X% = /3.

@ Since /1 has Schur property, weakly compact and compact
operators have to coincide.
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Banach Spaces with Few Operators

@ Known that X% = /3.

@ Since /1 has Schur property, weakly compact and compact
operators have to coincide.

@ For this reason, Xk is a good candidate space for having very
few operators.
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Banach Spaces with Few Operators

@ Known that X% = /3.

@ Since /1 has Schur property, weakly compact and compact
operators have to coincide.

@ For this reason, Xk is a good candidate space for having very
few operators.

@ However, proof Xk has very few operators does not use the
Schur property of /5.
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Banach Spaces with Few Operators

@ Known that X% = /3.

@ Since /1 has Schur property, weakly compact and compact
operators have to coincide.

@ For this reason, Xk is a good candidate space for having very
few operators.

@ However, proof Xk has very few operators does not use the
Schur property of /5.

e If X is an ¢ predual, is £(X) = SS(X)?
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Banach Spaces with Few Operators

@ Known that X% = /3.

@ Since /1 has Schur property, weakly compact and compact
operators have to coincide.

@ For this reason, Xk is a good candidate space for having very
few operators.

@ However, proof Xk has very few operators does not use the
Schur property of /5.

If X is an 41 predual, is K(X) = SS(X)?

o If X satisfies the properties of Xk and has few operators,
must it have very few operators?
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Banach Spaces With Few Operators

Given k € N, k > 2, there is a (HI), separable £, space X with a
basis such that
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Banach Spaces With Few Operators

Given k € N, k > 2, there is a (HI), separable £, space X with a
basis such that

@ X} is isomorphic to /1
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Banach Spaces With Few Operators

Given k € N, k > 2, there is a (HI), separable £, space X with a
basis such that
@ X} is isomorphic to /1

@ There is a non-compact, strictly singular operator
S: X — X with S/ #£0for1<j<k—1and SK=0.
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Banach Spaces With Few Operators

Given k € N, k > 2, there is a (HI), separable £, space X with a
basis such that
@ X} is isomorphic to /1
@ There is a non-compact, strictly singular operator
S: X — XewithS #0for1 <j<k—1and SkK=0.

© Moreover S/ (0 <j < k —1) is not a compact perturbation of
any linear combination of the operators S',/ # j. Equivalently,
[/ J’fz_ol are linearly independent vectors in £(Xx)/IC(Xk).
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Banach Spaces With Few Operators

Given k € N, k > 2, there is a (HI), separable £, space X with a
basis such that

@ X} is isomorphic to /1

@ There is a non-compact, strictly singular operator
S: X — X with S/ #£0for1<j<k—1and SK=0.

© Moreover S/ (0 <j < k —1) is not a compact perturbation of
any linear combination of the operators S',/ # j. Equivalently,
[/ J’fz_ol are linearly independent vectors in £(Xx)/IC(Xk).

@ Whenever T: X, — X is an operator on X, there are
(unique) A; € R and a compact operator K € KC(Xx) such

that
k—1

T=) MNS'+K
i=0
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One further ‘generalisation’

Theorem

There is a separable £, space with a basis, X, the space has {1
dual and there exists a non-compact operator S: X, — X
satisfying the following properties:

@ The sequence of vectors ([5f ])J?'i0 is a basic sequence in the
Calkin algebra isometrically equivalent to the canonical basis
Offl(No).

o If T € L(X) then there are unique scalars ()72, and a
compact operator K € L(Xo) with Y2 |\i| < oo and

T = ix,-s" +K
i=0
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Calkin Algebras

e Note the Calkin algebra £(Xy)/K(X) is isomorphic to the
algebra A of k x k upper-triangular-Toeplitz matrices.
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Calkin Algebras

e Note the Calkin algebra £(Xy)/K(X) is isomorphic to the
algebra A of k x k upper-triangular-Toeplitz matrices.

e Explicit isomorphism given by ¢: L(Xk)/K(Xk) — A

X M A oo Al
0 )\0 /\1 /\2 s /\k72
k=1 0 0 X M :
D NS+ K (k)
- 0
j=0
0 0 0 0 o
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Calkin Algebras

e Note the Calkin algebra £(Xy)/K(X) is isomorphic to the
algebra A of k x k upper-triangular-Toeplitz matrices.

e Explicit isomorphism given by ¢: L(Xk)/K(Xk) — A

k—1 )
D NS+ K (k)
j=0

Ao
0

0

0

@ Norm closed ideals in £(Xy):

A1
Ao

0

0

A2
A1

Ao
0

0

A2
A1

Ak—1
Ak—2

Ao

K(Xk) S (S°71) S (557%) ... (S) € L(X).

Matthew Tarbard Banach Spaces with Few Operators



Calkin algebras

The Calkin algebra of X is (isometric) to ¢1(Np) under

01(No) 3 (an)po — Y _ 35 + K (%)
j=0
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Interesting properties of X

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then X is indecomposable.
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Interesting properties of X

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then X is indecomposable.

e If P is a projection on X, then [P] <+ (a;)72, € £1(Np) is an
idempotent.
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Interesting properties of X

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then X is indecomposable.

e If P is a projection on X, then [P] <+ (a;)72, € £1(Np) is an
idempotent.
@ Only idempotents in ¢1(Np) are 0 and (1,0,0,...).
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Interesting properties of X

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then X is indecomposable.

e If P is a projection on X, then [P] <+ (a;)72, € £1(Np) is an
idempotent.

@ Only idempotents in ¢1(Np) are 0 and (1,0,0,...).

@ So P is compact or P = | + K. In either case, P is certainly a
trivial projection.

Ol

v
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Interesting properties of X

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then the strictly singular and
compact operators on X coincide.

Matthew Tarbard Banach Spaces with Few Operators



Interesting properties of X

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then the strictly singular and
compact operators on X coincide.

Proof.
o If T is strictly singular, then
. 1 1
liMmp—oo [[T]7Il7 = limpooo | T" + K(X)||7 =0
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Interesting properties of X

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then the strictly singular and
compact operators on X coincide.

Proof.
o If T is strictly singular, then
iMoo (IT1717 = limg—soq | 77+ K(X)|[+ = 0
o If a=(ap,a1,...) € ¢1(Np) \ {0}, let k be minimal such that
ay # 0. Easy computation gives |[a”||s, > |ak|”, so that

. 1
iMoo 2”17 > |al.
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Interesting properties of X

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then the strictly singular and
compact operators on X coincide.

Proof.
o If T is strictly singular, then
iMoo (IT1717 = limg—soq | 77+ K(X)|[+ = 0
o If a=(ap,a1,...) € ¢1(Np) \ {0}, let k be minimal such that
ay # 0. Easy computation gives |[a”||s, > |ak|”, so that

. 1
iMoo 2”17 > |al.

@ Since Calkin algebra is ¢1(Np), we see T strictly singular
implies [T] = 0.
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Interesting properties of X

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic
(as a Banach algebra) to ¢1(Ng) then the strictly singular and
compact operators on X coincide.

Proof.
o If T is strictly singular, then
iMoo (IT1717 = limg—soq | 77+ K(X)|[+ = 0
o If a=(ap,a1,...) € ¢1(Np) \ {0}, let k be minimal such that
ay # 0. Easy computation gives |[a”||s, > |ak|”, so that

liMno (27|17 > |2 -

@ Since Calkin algebra is ¢1(Np), we see T strictly singular
implies [T] = 0.

@ So, T strictly singular — T compact.
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The Bourgain-Delbaen construction
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The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for 61 = 61 (N)
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The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for 61 = 61 (N)

Since /1 turns out to be the dual of all the spaces we construct, we
think of elements of ¢; as functionals and denote vectors of ¢; by
x*, y* etc.
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The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for 61 = fl (N)

Since /1 turns out to be the dual of all the spaces we construct, we
think of elements of ¢; as functionals and denote vectors of ¢; by
x*, y* etc.

Assuming | have a (special kind of) Schauder basis of /1, denote it
by (d)> ;. The biorthogonal vectors (d,)%2 ; form a basic
sequence in {,. Taking the closed linear span of the d,, we obtain
a Banach space X, with basis (d,)72 ;.
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The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for 61 = fl (N)

Since /1 turns out to be the dual of all the spaces we construct, we
think of elements of ¢; as functionals and denote vectors of ¢; by
x*, y* etc.

Assuming | have a (special kind of) Schauder basis of /1, denote it
by (d)> ;. The biorthogonal vectors (d,)%2 ; form a basic
sequence in {,. Taking the closed linear span of the d,, we obtain
a Banach space X, with basis (d,)72 ;.

Follows from completely standard results that /; embeds
isomorphically into X* under the map ¢1 > x* — Jy, (x*)|x
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The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis
for 61 = fl (N)

Since /1 turns out to be the dual of all the spaces we construct, we
think of elements of ¢; as functionals and denote vectors of ¢; by
x*, y* etc.

Assuming | have a (special kind of) Schauder basis of /1, denote it
by (d)> ;. The biorthogonal vectors (d,)%2 ; form a basic
sequence in {,. Taking the closed linear span of the d,, we obtain
a Banach space X, with basis (d,)72 ;.

Follows from completely standard results that /; embeds
isomorphically into X* under the map ¢1 > x* — Jy, (x*)|x

The embedding is onto precisely when (d}}) is boundedly complete
basis for /1 <= (d,) is a shrinking basis for X.
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The Bourgain-Delbaen construction

We divide N into finite ‘intevals’ (A,)7%; in such a way that
maxA,+1=minA,;1.
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The Bourgain-Delbaen construction

We divide N into finite ‘intevals’ (A,)7%; in such a way that
maxA,+1=minA,;1.

We say a sequence (d},)%5_; in {1 is unit triangular if d;, = e}, for
all me Ay and, for me A,,n > 1, we have
dn,=en—cm

where supp ¢, C U" 1A Refer to the ¢}, vectors as BD
functionals.
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The Bourgain-Delbaen construction

We divide N into finite ‘intevals’ (A,)7%; in such a way that
maxA,+1=minA,;1.

We say a sequence (d},)%5_; in {1 is unit triangular if d;, = e}, for
all me Ay and, for me A,,n > 1, we have
dn,=en—cm

where supp ¢, C U" 1A Refer to the ¢}, vectors as BD
functionals.

Any such sequence is an algebraic basis for cpg. We can thus
define linear projections Py, : coo — " C {1 by

P*d*— d* if j<m
0 otherwise
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The Bourgain-Delbaen construction

We divide N into finite ‘intevals’ (A,)7%; in such a way that
maxA,+1=minA,;1.

We say a sequence (d},)%5_; in {1 is unit triangular if d;, = e}, for
all me Ay and, for me A,,n > 1, we have

dn,=en—cm

where supp ¢, C U" 1A Refer to the ¢}, vectors as BD
functionals.

Any such sequence is an algebraic basis for cpg. We can thus
define linear projections Py, : coo — " C {1 by

P*d*— d* if j<m
0 otherwise

The important part of the BD construction is to construct the c};

in such a way that the projections P} are uniformly bounded (and

consequently (d;)>° is a basis for /).
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Constructing interesting operators on BD spaces

@ Idea: Construct a linear map T on /1(N).
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Constructing interesting operators on BD spaces

@ Idea: Construct a linear map T on /1(N).

@ For T to be bounded, enough to show 3M such that
I Teplley < M ¥n.
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Constructing interesting operators on BD spaces

@ Idea: Construct a linear map T on /1(N).

@ For T to be bounded, enough to show 3M such that
I Teplley < M ¥n.

@ Restrict T*; get T*|: X — (.
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Constructing interesting operators on BD spaces

Idea: Construct a linear map T on ¢1(N).

@ For T to be bounded, enough to show 3M such that
I Teplley < M ¥n.

Restrict T*; get T*| : X — loo.
Look at behaviour of T on vectors d to determine if T¥|
actually maps into X.
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Construction of S

Construct maps F: N — N U {undefined} and $*: {1 — ¢1
inductively.
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Construction of S

Construct maps F: N — N U {undefined} and $*: {1 — ¢1
inductively.

Begin by defining F on A; (which for the space Xy of the theorem
is the set {1,2...k}) by F(j)=j — 1 for j > 2 and
F(1) = undefined.
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Construction of S

Construct maps F: N — N U {undefined} and $*: {1 — ¢1
inductively.

Begin by defining F on A; (which for the space Xy of the theorem
is the set {1,2...k}) by F(j)=j — 1 for j > 2 and
F(1) = undefined. We define S* on ¢1(A;) by

S*(et) = {e,"j-(m) if F(m) is defined

m 0 otherwise
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Construction of S

Construct maps F: N — N U {undefined} and $*: {1 — ¢1
inductively.

Begin by defining F on A; (which for the space Xy of the theorem
is the set {1,2...k}) by F(j)=j — 1 for j > 2 and
F(1) = undefined. We define S* on ¢1(A;) by

S*(et) = {e,"j-(m) if F(m) is defined

m 0 otherwise

Since for m € A1 we have d* = e* we also have the formula
1 m m

di(my I F(m) is defined

0 otherwise

S*(dp) = {
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Construction of S

Construct maps F: N — N U {undefined} and $*: {1 — ¢1
inductively.

Begin by defining F on A; (which for the space Xy of the theorem
is the set {1,2...k}) by F(j)=j — 1 for j > 2 and
F(1) = undefined. We define S* on ¢1(A;) by

S*(et) = {e,"j-(m) if F(m) is defined

m 0 otherwise

Since for m € A1 we have dj, = e}, we also have the formula

di(my I F(m) is defined

S*(dy) = .
0 otherwise

Notice also that when F(m) is defined, the image of m under F is

still in A1. More generally, given j € NN A, we will say F

preserves the rank of j if either F(j) is undefined, or, F(j) € A,
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Construction of S

We suppose inductively that F has been defined on I'; := U;j<,A;
such that F preserves rank for all m € I, and §* is defined on
¢1(T"p) such that the previous formulae hold for the e*'s and d*'s.
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Construction of S

We suppose inductively that F has been defined on I'; := U;j<,A;
such that F preserves rank for all m € I, and §* is defined on
¢1(T"p) such that the previous formulae hold for the e*'s and d*'s.

We want to extend our definition of F to include natural numbers
in Apy1 and also extend the definition of S* to ¢1(,41).
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Construction of S

We suppose inductively that F has been defined on I'; := U;j<,A;
such that F preserves rank for all m € I, and §* is defined on
¢1(T"p) such that the previous formulae hold for the e*'s and d*'s.

We want to extend our definition of F to include natural numbers
in Apy1 and also extend the definition of S* to ¢1(,41).

Consider an m € A,41 and recall we have d};, = e, — ¢, where
supp ¢, € [',. Thus S*cy;, is already defined. So in order to

m
preserve linearity, we are only free to define one of $*d};, or S*ef,.
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Construction of S

We suppose inductively that F has been defined on I'; := U;j<,A;
such that F preserves rank for all m € I, and §* is defined on
¢1(T"p) such that the previous formulae hold for the e*'s and d*'s.

We want to extend our definition of F to include natural numbers
in Apy1 and also extend the definition of S* to ¢1(,41).

Consider an m € A,41 and recall we have d};, = e, — ¢, where
supp ¢, € [',. Thus S*cy;, is already defined. So in order to
preserve linearity, we are only free to define one of $*d};, or S*ef,.

The c*'s are carefully chosen so that either S*c;, = ¢, where
m' € Apy1, in which case define F(m) = m’, or S*c;, = 0 in which
case set F(m) = undefined.
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Construction of S

We suppose inductively that F has been defined on I'; := U;j<,A;
such that F preserves rank for all m € I, and §* is defined on
¢1(T"p) such that the previous formulae hold for the e*'s and d*'s.

We want to extend our definition of F to include natural numbers
in Apy1 and also extend the definition of S* to ¢1(,41).

Consider an m € A,41 and recall we have d};, = e, — ¢, where
supp ¢, € [',. Thus S*cy;, is already defined. So in order to

preserve linearity, we are only free to define one of $*d};, or S*ef,.

The c*'s are carefully chosen so that either S*c;, = ¢, where
m' € Apy1, in which case define F(m) = m’, or S*c;, = 0 in which
case set F(m) = undefined.

Easily checked that we can extend definition of S* to ¢1(In41)
satisfying the required formulae.
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Construction of S

Easily seen that S* defines a bounded linear map from /7 to itself,
since S*e; = er(n or 0 for all n.
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Construction of S

Easily seen that S* defines a bounded linear map from /7 to itself,
since S*e; = er(n or 0 for all n.

Since

S (gt = di(my If F(m) is defined
( m) - .
0 otherwise

it is easy to show that the dual map S: /o (N) — (o (N) acts on
the biorthogonal vectors by the formula

Sd, = Z dpm

meF—

Matthew Tarbard Banach Spaces with Few Operators



Construction of S

Easily seen that S* defines a bounded linear map from /7 to itself,
since S*e; = er(n or 0 for all n.

Since

S (gt = di(my If F(m) is defined
( m) - .
0 otherwise

it is easy to show that the dual map S: /o (N) — (o (N) acts on
the biorthogonal vectors by the formula

Sd, = Z dpm
meF—

Consequently, S restricts to give a bounded linear map S| on the
B-D space to itself. It turns out that the dual of S| is precisely S*!
So, it is easy to see that S can’t be compact, because certainly S*
isn't!
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Construction of S

Easily seen that S* defines a bounded linear map from /7 to itself,
since S*e; = er(n or 0 for all n.

Since
S*(dz) = de(my I F(m) is defined
0 otherwise

it is easy to show that the dual map S: /o (N) — (o (N) acts on
the biorthogonal vectors by the formula

Sd, = Z dpm

meF—

Consequently, S restricts to give a bounded linear map S| on the
B-D space to itself. It turns out that the dual of S| is precisely S*!
So, it is easy to see that S can’t be compact, because certainly S*
isn't!

Showing that S| is strictly singular is harder!
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Further Research

Theorem (Daws, Haydon, Schlumprecht, White)

Let E be the space generated by the closed linear span in (o (Z) of
the vector

x0={(...,0,0,1,271 271 272 o071 =2 »=2 p=3 >=1 )

and its bilateral shifts. The space E is is a (shift invariant)
concrete predual of ¢1(7Z) isomorphic to ¢y that induces a
non-canonical weak* topology on (1(Z).

Here, xg is the vector with 1 in the zero'th component and for
n > 0, the n'th component of xg is 272" where b(n) is the
number of 1's in the binary expansion of n.

Matthew Tarbard Banach Spaces with Few Operators



Connection to BD spaces

A ‘one-sided’ version of the space E just defined can be obtained
as follows. We work with No = N U {0}.
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Connection to BD spaces

A ‘one-sided’ version of the space E just defined can be obtained
as follows. We work with No = N U {0}.

o Define ¢ =0 € ¢1(Np) and for n > 0, write n = 2K + m,
where m < 2K and set ¢ = 3ey, € (1(Np).
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Connection to BD spaces

A ‘one-sided’ version of the space E just defined can be obtained
as follows. We work with No = N U {0}.

o Define ¢ =0 € ¢1(Np) and for n > 0, write n = 2K + m,
where m < 2K and set ¢ = 3ey, € (1(Np).

@ Forall n€ Ny set df = e} — ch.
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Connection to BD spaces

A ‘one-sided’ version of the space E just defined can be obtained
as follows. We work with No = N U {0}.

o Define ¢ =0 € ¢1(Np) and for n > 0, write n = 2K + m,
where m < 2K and set ¢ = 3ey, € (1(Np).

@ Forall n€ Ny set df = e} — ch.
e Easy to see [d} : n € Ng| = ¢1(Np).
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Connection to BD spaces

A ‘one-sided’ version of the space E just defined can be obtained
as follows. We work with No = N U {0}.

o Define ¢ =0 € ¢1(Np) and for n > 0, write n = 2K + m,
where m < 2K and set ¢ = 3ey, € (1(Np).

@ Forall n€ Ny set df = e} — ch.

e Easy to see [d} : n € Ng| = ¢1(Np).

@ In fact, this fits entirely into the framework of the BD
construction so that, in particular (d}) is a Schauder basis for

?1(Np). The biorthogonal vectors [d,: n € Ng| generate a
(BD) (sub)space of /.
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Connection to BD spaces

A ‘one-sided’ version of the space E just defined can be obtained
as follows. We work with No = N U {0}.

o Define ¢ =0 € ¢1(Np) and for n > 0, write n = 2K + m,
where m < 2K and set ¢ = 3ey, € (1(Np).

@ Forall n€ Ny set df = e} — ch.

e Easy to see [d} : n € Ng| = ¢1(Np).

@ In fact, this fits entirely into the framework of the BD
construction so that, in particular (d}) is a Schauder basis for
?1(Np). The biorthogonal vectors [d,: n € Ng| generate a
(BD) (sub)space of /.

o Turns out dp = (1,271,271,272 271 22 22 >=3 )
Also, [d,: n € Np] is the same as the closed linear span of dj
and all its right shifts.
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Thank you.
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