Banach Spaces with Few Operators

Matthew Tarbard

March 2012

Banach Spaces with Few Operators

Let X be a Banach Space. We say

Definition

- X has few operators if every operator from X to itself is of the form $\lambda I+S$, with S strictly singular.
- X has very few operators if every operator from X to itself is of the form $\lambda I+K$, with K compact.

Banach Spaces with Few Operators

Let X be a Banach Space. We say

Definition

- X has few operators if every operator from X to itself is of the form $\lambda I+S$, with S strictly singular.
- X has very few operators if every operator from X to itself is of the form $\lambda I+K$, with K compact.

Notation

- \mathbb{N}_{0}
- $e_{m}^{*}=(0,0, \ldots, 1,0 \ldots)$.
- $\mathcal{L}(X)$
- $\mathcal{K}(X)$
- $\mathcal{S S}(X)$

Banach Spaces with Few Operators

- Known that $\mathfrak{X}_{\mathrm{K}}^{*}=\ell_{1}$.

Banach Spaces with Few Operators

- Known that $\mathfrak{X}_{\mathrm{K}}^{*}=\ell_{1}$.
- Since ℓ_{1} has Schur property, weakly compact and compact operators have to coincide.

Banach Spaces with Few Operators

- Known that $\mathfrak{X}_{\mathrm{K}}^{*}=\ell_{1}$.
- Since ℓ_{1} has Schur property, weakly compact and compact operators have to coincide.
- For this reason, $\mathfrak{X}_{\mathrm{K}}$ is a good candidate space for having very few operators.

Banach Spaces with Few Operators

- Known that $\mathfrak{X}_{\mathrm{K}}^{*}=\ell_{1}$.
- Since ℓ_{1} has Schur property, weakly compact and compact operators have to coincide.
- For this reason, $\mathfrak{X}_{\mathrm{K}}$ is a good candidate space for having very few operators.
- However, proof $\mathfrak{X}_{\mathrm{K}}$ has very few operators does not use the Schur property of ℓ_{1}.

Banach Spaces with Few Operators

- Known that $\mathfrak{X}_{\mathrm{K}}^{*}=\ell_{1}$.
- Since ℓ_{1} has Schur property, weakly compact and compact operators have to coincide.
- For this reason, $\mathfrak{X}_{\mathrm{K}}$ is a good candidate space for having very few operators.
- However, proof $\mathfrak{X}_{\mathrm{K}}$ has very few operators does not use the Schur property of ℓ_{1}.

Questions

- If X is an ℓ_{1} predual, is $\mathcal{K}(X)=\mathcal{S S}(X)$?

Banach Spaces with Few Operators

- Known that $\mathfrak{X}_{\mathrm{K}}^{*}=\ell_{1}$.
- Since ℓ_{1} has Schur property, weakly compact and compact operators have to coincide.
- For this reason, $\mathfrak{X}_{\mathrm{K}}$ is a good candidate space for having very few operators.
- However, proof $\mathfrak{X}_{\mathrm{K}}$ has very few operators does not use the Schur property of ℓ_{1}.

Questions

- If X is an ℓ_{1} predual, is $\mathcal{K}(X)=\mathcal{S S}(X)$?
- If X satisfies the properties of $\mathfrak{X}_{\mathrm{K}}$ and has few operators, must it have very few operators?

Banach Spaces With Few Operators

Theorem

Given $k \in \mathbb{N}, k \geq 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_{k} with a basis such that

Banach Spaces With Few Operators

Theorem

Given $k \in \mathbb{N}, k \geq 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_{k} with a basis such that
(1) \mathfrak{X}_{k}^{*} is isomorphic to ℓ_{1}

Banach Spaces With Few Operators

Theorem

Given $k \in \mathbb{N}, k \geq 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_{k} with a basis such that
(1) \mathfrak{X}_{k}^{*} is isomorphic to ℓ_{1}
(2) There is a non-compact, strictly singular operator $S: \mathfrak{X}_{k} \rightarrow \mathfrak{X}_{k}$ with $S^{j} \neq 0$ for $1 \leq j \leq k-1$ and $S^{k}=0$.

Banach Spaces With Few Operators

Theorem

Given $k \in \mathbb{N}, k \geq 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_{k} with a basis such that
(1) \mathfrak{X}_{k}^{*} is isomorphic to ℓ_{1}
(2) There is a non-compact, strictly singular operator $S: \mathfrak{X}_{k} \rightarrow \mathfrak{X}_{k}$ with $S^{j} \neq 0$ for $1 \leq j \leq k-1$ and $S^{k}=0$.
(3) Moreover $S^{j}(0 \leq j \leq k-1)$ is not a compact perturbation of any linear combination of the operators $S^{\prime}, I \neq j$. Equivalently, $\left[S^{j}\right]_{j=0}^{k-1}$ are linearly independent vectors in $\mathcal{L}\left(\mathfrak{X}_{k}\right) / \mathcal{K}\left(\mathfrak{X}_{k}\right)$.

Banach Spaces With Few Operators

Theorem

Given $k \in \mathbb{N}, k \geq 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_{k} with a basis such that
(1) \mathfrak{X}_{k}^{*} is isomorphic to ℓ_{1}
(2) There is a non-compact, strictly singular operator $S: \mathfrak{X}_{k} \rightarrow \mathfrak{X}_{k}$ with $S^{j} \neq 0$ for $1 \leq j \leq k-1$ and $S^{k}=0$.
(3) Moreover $S^{j}(0 \leq j \leq k-1)$ is not a compact perturbation of any linear combination of the operators $S^{\prime}, I \neq j$. Equivalently, $\left[S^{j}\right]_{j=0}^{k-1}$ are linearly independent vectors in $\mathcal{L}\left(\mathfrak{X}_{k}\right) / \mathcal{K}\left(\mathfrak{X}_{k}\right)$.
(9) Whenever $T: \mathfrak{X}_{k} \rightarrow \mathfrak{X}_{k}$ is an operator on \mathfrak{X}_{k}, there are (unique) $\lambda_{i} \in \mathbb{R}$ and a compact operator $K \in \mathcal{K}\left(\mathfrak{X}_{k}\right)$ such that

$$
T=\sum_{i=0}^{k-1} \lambda_{i} S^{i}+K
$$

One further 'generalisation'

Theorem

There is a separable \mathscr{L}_{∞} space with a basis, \mathfrak{X}_{∞}; the space has ℓ_{1} dual and there exists a non-compact operator $S: \mathfrak{X}_{\infty} \rightarrow \mathfrak{X}_{\infty}$ satisfying the following properties:

- The sequence of vectors $\left(\left[S^{j}\right]\right)_{j=0}^{\infty}$ is a basic sequence in the Calkin algebra isometrically equivalent to the canonical basis of $\ell_{1}\left(\mathbb{N}_{0}\right)$.
- If $T \in \mathcal{L}\left(\mathfrak{X}_{\infty}\right)$ then there are unique scalars $\left(\lambda_{i}\right)_{i=0}^{\infty}$ and a compact operator $K \in \mathcal{L}\left(\mathfrak{X}_{\infty}\right)$ with $\sum_{i=0}^{\infty}\left|\lambda_{i}\right|<\infty$ and

$$
T=\sum_{i=0}^{\infty} \lambda_{i} S^{i}+K
$$

Calkin Algebras

- Note the Calkin algebra $\mathcal{L}\left(\mathfrak{X}_{k}\right) / \mathcal{K}\left(\mathfrak{X}_{k}\right)$ is isomorphic to the algebra \mathcal{A} of $k \times k$ upper-triangular-Toeplitz matrices.

Calkin Algebras

- Note the Calkin algebra $\mathcal{L}\left(\mathfrak{X}_{k}\right) / \mathcal{K}\left(\mathfrak{X}_{k}\right)$ is isomorphic to the algebra \mathcal{A} of $k \times k$ upper-triangular-Toeplitz matrices.
- Explicit isomorphism given by $\psi: \mathcal{L}\left(\mathfrak{X}_{k}\right) / \mathcal{K}\left(\mathfrak{X}_{k}\right) \rightarrow \mathcal{A}$

$$
\sum_{j=0}^{k-1} \lambda_{j} S^{j}+\mathcal{K}\left(\mathfrak{X}_{k}\right) \mapsto\left(\begin{array}{cccccc}
\lambda_{0} & \lambda_{1} & \lambda_{2} & \cdots & \cdots & \lambda_{k-1} \\
0 & \lambda_{0} & \lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-2} \\
0 & 0 & \lambda_{0} & \lambda_{1} & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \lambda_{0}
\end{array}\right)
$$

Calkin Algebras

- Note the Calkin algebra $\mathcal{L}\left(\mathfrak{X}_{k}\right) / \mathcal{K}\left(\mathfrak{X}_{k}\right)$ is isomorphic to the algebra \mathcal{A} of $k \times k$ upper-triangular-Toeplitz matrices.
- Explicit isomorphism given by $\psi: \mathcal{L}\left(\mathfrak{X}_{k}\right) / \mathcal{K}\left(\mathfrak{X}_{k}\right) \rightarrow \mathcal{A}$

$$
\sum_{j=0}^{k-1} \lambda_{j} S^{j}+\mathcal{K}\left(\mathfrak{X}_{k}\right) \mapsto\left(\begin{array}{cccccc}
\lambda_{0} & \lambda_{1} & \lambda_{2} & \cdots & \cdots & \lambda_{k-1} \\
0 & \lambda_{0} & \lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-2} \\
0 & 0 & \lambda_{0} & \lambda_{1} & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \lambda_{0}
\end{array}\right)
$$

- Norm closed ideals in $\mathcal{L}\left(\mathfrak{X}_{k}\right)$:

$$
\mathcal{K}\left(\mathfrak{X}_{k}\right) \subsetneq\left\langle S^{k-1}\right\rangle \subsetneq\left\langle S^{k-2}\right\rangle \ldots\langle S\rangle \subsetneq \mathcal{L}\left(X_{k}\right)
$$

Calkin algebras

The Calkin algebra of \mathfrak{X}_{∞} is (isometric) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ under

$$
\ell_{1}\left(\mathbb{N}_{0}\right) \ni\left(a_{n}\right)_{n=0}^{\infty} \mapsto \sum_{j=0}^{\infty} a_{j} S^{j}+\mathcal{K}\left(\mathfrak{X}_{\infty}\right)
$$

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then X is indecomposable.

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then X is indecomposable.

Proof.

- If P is a projection on X, then $[P] \leftrightarrow\left(a_{i}\right)_{i=0}^{\infty} \in \ell_{1}\left(\mathbb{N}_{0}\right)$ is an idempotent.

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then X is indecomposable.

Proof.

- If P is a projection on X, then $[P] \leftrightarrow\left(a_{i}\right)_{i=0}^{\infty} \in \ell_{1}\left(\mathbb{N}_{0}\right)$ is an idempotent.
- Only idempotents in $\ell_{1}\left(\mathbb{N}_{0}\right)$ are 0 and $(1,0,0, \ldots)$.

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then X is indecomposable.

Proof.

- If P is a projection on X, then $[P] \leftrightarrow\left(a_{i}\right)_{i=0}^{\infty} \in \ell_{1}\left(\mathbb{N}_{0}\right)$ is an idempotent.
- Only idempotents in $\ell_{1}\left(\mathbb{N}_{0}\right)$ are 0 and $(1,0,0, \ldots)$.
- So P is compact or $P=I+K$. In either case, P is certainly a trivial projection.

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then the strictly singular and compact operators on X coincide.

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then the strictly singular and compact operators on X coincide.

Proof.

- If T is strictly singular, then
$\lim _{n \rightarrow \infty}\left\|[T]^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|T^{n}+\mathcal{K}(X)\right\|^{\frac{1}{n}}=0$

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then the strictly singular and compact operators on X coincide.

Proof.

- If T is strictly singular, then
$\lim _{n \rightarrow \infty}\left\|[T]^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|T^{n}+\mathcal{K}(X)\right\|^{\frac{1}{n}}=0$
- If $\mathbf{a}=\left(a_{0}, a_{1}, \ldots\right) \in \ell_{1}\left(\mathbb{N}_{0}\right) \backslash\{0\}$, let k be minimal such that $a_{k} \neq 0$. Easy computation gives $\left\|\mathbf{a}^{n}\right\|_{\ell_{1}} \geq\left|a_{k}\right|^{n}$, so that $\lim _{n \rightarrow \infty}\left\|\mathbf{a}^{n}\right\|^{\frac{1}{n}} \geq\left|a_{k}\right|$.

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then the strictly singular and compact operators on X coincide.

Proof.

- If T is strictly singular, then $\lim _{n \rightarrow \infty}\left\|[T]^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|T^{n}+\mathcal{K}(X)\right\|^{\frac{1}{n}}=0$
- If $\mathbf{a}=\left(a_{0}, a_{1}, \ldots\right) \in \ell_{1}\left(\mathbb{N}_{0}\right) \backslash\{0\}$, let k be minimal such that $a_{k} \neq 0$. Easy computation gives $\left\|\mathbf{a}^{n}\right\|_{\ell_{1}} \geq\left|a_{k}\right|^{n}$, so that $\lim _{n \rightarrow \infty}\left\|\mathbf{a}^{n}\right\|^{\frac{1}{n}} \geq\left|a_{k}\right|$.
- Since Calkin algebra is $\ell_{1}\left(\mathbb{N}_{0}\right)$, we see T strictly singular implies $[T]=0$.

Interesting properties of \mathfrak{X}_{∞}

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_{1}\left(\mathbb{N}_{0}\right)$ then the strictly singular and compact operators on X coincide.

Proof.

- If T is strictly singular, then
$\lim _{n \rightarrow \infty}\left\|[T]^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|T^{n}+\mathcal{K}(X)\right\|^{\frac{1}{n}}=0$
- If $\mathbf{a}=\left(a_{0}, a_{1}, \ldots\right) \in \ell_{1}\left(\mathbb{N}_{0}\right) \backslash\{0\}$, let k be minimal such that $a_{k} \neq 0$. Easy computation gives $\left\|\mathbf{a}^{n}\right\|_{\ell_{1}} \geq\left|a_{k}\right|^{n}$, so that $\lim _{n \rightarrow \infty}\left\|\mathbf{a}^{n}\right\|^{\frac{1}{n}} \geq\left|a_{k}\right|$.
- Since Calkin algebra is $\ell_{1}\left(\mathbb{N}_{0}\right)$, we see T strictly singular implies $[T]=0$.
- So, T strictly singular $\Longrightarrow T$ compact.

The Bourgain-Delbaen construction

The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis for $\ell_{1}=\ell_{1}(\mathbb{N})$.

The essential idea is to construct a special kind of Schauder basis for $\ell_{1}=\ell_{1}(\mathbb{N})$.

Since ℓ_{1} turns out to be the dual of all the spaces we construct, we think of elements of ℓ_{1} as functionals and denote vectors of ℓ_{1} by x^{*}, y^{*} etc.

The essential idea is to construct a special kind of Schauder basis for $\ell_{1}=\ell_{1}(\mathbb{N})$.

Since ℓ_{1} turns out to be the dual of all the spaces we construct, we think of elements of ℓ_{1} as functionals and denote vectors of ℓ_{1} by x^{*}, y^{*} etc.

Assuming I have a (special kind of) Schauder basis of ℓ_{1}, denote it by $\left(d_{n}^{*}\right)_{n=1}^{\infty}$. The biorthogonal vectors $\left(d_{n}\right)_{n=1}^{\infty}$ form a basic sequence in ℓ_{∞}. Taking the closed linear span of the d_{n} we obtain a Banach space X, with basis $\left(d_{n}\right)_{n=1}^{\infty}$.

The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis for $\ell_{1}=\ell_{1}(\mathbb{N})$.

Since ℓ_{1} turns out to be the dual of all the spaces we construct, we think of elements of ℓ_{1} as functionals and denote vectors of ℓ_{1} by x^{*}, y^{*} etc.

Assuming I have a (special kind of) Schauder basis of ℓ_{1}, denote it by $\left(d_{n}^{*}\right)_{n=1}^{\infty}$. The biorthogonal vectors $\left(d_{n}\right)_{n=1}^{\infty}$ form a basic sequence in ℓ_{∞}. Taking the closed linear span of the d_{n} we obtain a Banach space X, with basis $\left(d_{n}\right)_{n=1}^{\infty}$.

Follows from completely standard results that ℓ_{1} embeds isomorphically into X^{*} under the map $\left.\ell_{1} \ni x^{*} \mapsto J_{\ell_{1}}\left(x^{*}\right)\right|_{X}$

The Bourgain-Delbaen construction

The essential idea is to construct a special kind of Schauder basis for $\ell_{1}=\ell_{1}(\mathbb{N})$.

Since ℓ_{1} turns out to be the dual of all the spaces we construct, we think of elements of ℓ_{1} as functionals and denote vectors of ℓ_{1} by x^{*}, y^{*} etc.

Assuming I have a (special kind of) Schauder basis of ℓ_{1}, denote it by $\left(d_{n}^{*}\right)_{n=1}^{\infty}$. The biorthogonal vectors $\left(d_{n}\right)_{n=1}^{\infty}$ form a basic sequence in ℓ_{∞}. Taking the closed linear span of the d_{n} we obtain a Banach space X, with basis $\left(d_{n}\right)_{n=1}^{\infty}$.

Follows from completely standard results that ℓ_{1} embeds isomorphically into X^{*} under the map $\left.\ell_{1} \ni x^{*} \mapsto J_{\ell_{1}}\left(x^{*}\right)\right|_{X}$

The embedding is onto precisely when $\left(d_{n}^{*}\right)$ is boundedly complete basis for $\ell_{1} \Longleftrightarrow\left(d_{n}\right)$ is a shrinking basis for X.

The Bourgain-Delbaen construction
We divide \mathbb{N} into finite 'intevals' $\left(\Delta_{n}\right)_{n=1}^{\infty}$ in such a way that $\max \Delta_{n}+1=\min \Delta_{n+1}$.

We divide \mathbb{N} into finite 'intevals' $\left(\Delta_{n}\right)_{n=1}^{\infty}$ in such a way that $\max \Delta_{n}+1=\min \Delta_{n+1}$.

We say a sequence $\left(d_{m}^{*}\right)_{m=1}^{\infty}$ in ℓ_{1} is unit triangular if $d_{m}^{*}=e_{m}^{*}$ for all $m \in \Delta_{1}$ and, for $m \in \Delta_{n}, n>1$, we have

$$
d_{m}^{*}=e_{m}^{*}-c_{m}^{*}
$$

where supp $c_{m}^{*} \subseteq \cup_{j=1}^{n-1} \Delta_{j}$. Refer to the c_{m}^{*} vectors as $B D$ functionals.

The Bourgain-Delbaen construction

We divide \mathbb{N} into finite 'intevals' $\left(\Delta_{n}\right)_{n=1}^{\infty}$ in such a way that $\max \Delta_{n}+1=\min \Delta_{n+1}$.

We say a sequence $\left(d_{m}^{*}\right)_{m=1}^{\infty}$ in ℓ_{1} is unit triangular if $d_{m}^{*}=e_{m}^{*}$ for all $m \in \Delta_{1}$ and, for $m \in \Delta_{n}, n>1$, we have

$$
d_{m}^{*}=e_{m}^{*}-c_{m}^{*}
$$

where supp $c_{m}^{*} \subseteq \cup_{j=1}^{n-1} \Delta_{j}$. Refer to the c_{m}^{*} vectors as $B D$ functionals.

Any such sequence is an algebraic basis for c_{00}. We can thus define linear projections $P_{m}^{*}: c_{00} \rightarrow \ell_{1}^{m} \subseteq \ell_{1}$ by

$$
P_{m}^{*} d_{j}^{*}= \begin{cases}d_{j}^{*} & \text { if } j \leq m \\ 0 & \text { otherwise }\end{cases}
$$

The Bourgain-Delbaen construction

We divide \mathbb{N} into finite 'intevals' $\left(\Delta_{n}\right)_{n=1}^{\infty}$ in such a way that $\max \Delta_{n}+1=\min \Delta_{n+1}$.

We say a sequence $\left(d_{m}^{*}\right)_{m=1}^{\infty}$ in ℓ_{1} is unit triangular if $d_{m}^{*}=e_{m}^{*}$ for all $m \in \Delta_{1}$ and, for $m \in \Delta_{n}, n>1$, we have

$$
d_{m}^{*}=e_{m}^{*}-c_{m}^{*}
$$

where supp $c_{m}^{*} \subseteq \cup_{j=1}^{n-1} \Delta_{j}$. Refer to the c_{m}^{*} vectors as $B D$ functionals.

Any such sequence is an algebraic basis for c_{00}. We can thus define linear projections $P_{m}^{*}: c_{00} \rightarrow \ell_{1}^{m} \subseteq \ell_{1}$ by

$$
P_{m}^{*} d_{j}^{*}= \begin{cases}d_{j}^{*} & \text { if } j \leq m \\ 0 & \text { otherwise }\end{cases}
$$

The important part of the BD construction is to construct the c_{n}^{*} in such a way that the projections P_{n}^{*} are uniformly bounded (and consequently $\left(d_{n}^{*}\right)_{n=1}^{\infty}$ is a basis for $\left.\ell_{1}\right)$.

Constructing interesting operators on BD spaces

- Idea: Construct a linear map T on $\ell_{1}(\mathbb{N})$.

Constructing interesting operators on BD spaces

- Idea: Construct a linear map T on $\ell_{1}(\mathbb{N})$.
- For T to be bounded, enough to show $\exists M$ such that $\left\|T e_{n}^{*}\right\|_{\ell_{1}} \leq M \forall n$.

Constructing interesting operators on BD spaces

- Idea: Construct a linear map T on $\ell_{1}(\mathbb{N})$.
- For T to be bounded, enough to show $\exists M$ such that $\left\|T e_{n}^{*}\right\|_{\ell_{1}} \leq M \forall n$.
- Restrict T^{*}; get $T^{*} \mid: X \rightarrow \ell_{\infty}$.

Constructing interesting operators on BD spaces

- Idea: Construct a linear map T on $\ell_{1}(\mathbb{N})$.
- For T to be bounded, enough to show $\exists M$ such that $\left\|T e_{n}^{*}\right\|_{\ell_{1}} \leq M \forall n$.
- Restrict T^{*}; get $T^{*} \mid: X \rightarrow \ell_{\infty}$.
- Look at behaviour of T on vectors d_{n}^{*} to determine if $T^{*} \mid$ actually maps into X.

Construction of S

Construct maps $F: \mathbb{N} \rightarrow \mathbb{N} \cup\{$ undefined $\}$ and $S^{*}: \ell_{1} \rightarrow \ell_{1}$ inductively.

Construction of S

Construct maps $F: \mathbb{N} \rightarrow \mathbb{N} \cup\{$ undefined $\}$ and $S^{*}: \ell_{1} \rightarrow \ell_{1}$ inductively.

Begin by defining F on Δ_{1} (which for the space \mathfrak{X}_{k} of the theorem is the set $\{1,2 \ldots k\})$ by $F(j)=j-1$ for $j \geq 2$ and $F(1)=$ undefined.

Construction of S

Construct maps $F: \mathbb{N} \rightarrow \mathbb{N} \cup\{$ undefined $\}$ and $S^{*}: \ell_{1} \rightarrow \ell_{1}$ inductively.

Begin by defining F on Δ_{1} (which for the space \mathfrak{X}_{k} of the theorem is the set $\{1,2 \ldots k\})$ by $F(j)=j-1$ for $j \geq 2$ and $F(1)=$ undefined. We define S^{*} on $\ell_{1}\left(\Delta_{1}\right)$ by

$$
S^{*}\left(e_{m}^{*}\right)= \begin{cases}e_{F(m)}^{*} & \text { if } F(m) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

Construction of S

Construct maps $F: \mathbb{N} \rightarrow \mathbb{N} \cup\{$ undefined $\}$ and $S^{*}: \ell_{1} \rightarrow \ell_{1}$ inductively.

Begin by defining F on Δ_{1} (which for the space \mathfrak{X}_{k} of the theorem is the set $\{1,2 \ldots k\})$ by $F(j)=j-1$ for $j \geq 2$ and $F(1)=$ undefined. We define S^{*} on $\ell_{1}\left(\Delta_{1}\right)$ by

$$
S^{*}\left(e_{m}^{*}\right)= \begin{cases}e_{F(m)}^{*} & \text { if } F(m) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

Since for $m \in \Delta_{1}$ we have $d_{m}^{*}=e_{m}^{*}$ we also have the formula

$$
S^{*}\left(d_{m}^{*}\right)= \begin{cases}d_{F(m)}^{*} & \text { if } F(m) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

Construction of S

Construct maps $F: \mathbb{N} \rightarrow \mathbb{N} \cup\{$ undefined $\}$ and $S^{*}: \ell_{1} \rightarrow \ell_{1}$ inductively.

Begin by defining F on Δ_{1} (which for the space \mathfrak{X}_{k} of the theorem is the set $\{1,2 \ldots k\})$ by $F(j)=j-1$ for $j \geq 2$ and $F(1)=$ undefined. We define S^{*} on $\ell_{1}\left(\Delta_{1}\right)$ by

$$
S^{*}\left(e_{m}^{*}\right)= \begin{cases}e_{F(m)}^{*} & \text { if } F(m) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

Since for $m \in \Delta_{1}$ we have $d_{m}^{*}=e_{m}^{*}$ we also have the formula

$$
S^{*}\left(d_{m}^{*}\right)= \begin{cases}d_{F(m)}^{*} & \text { if } F(m) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

Notice also that when $F(m)$ is defined, the image of m under F is still in Δ_{1}. More generally, given $j \in \mathbb{N} \cap \Delta_{n}$ we will say F preserves the rank of j if either $F(j)$ is undefined, or, $F(j) \in \Delta_{n}$

Construction of S

We suppose inductively that F has been defined on $\Gamma_{n}:=\cup_{j \leq n} \Delta_{j}$ such that F preserves rank for all $m \in \Gamma_{n}$ and S^{*} is defined on $\ell_{1}\left(\Gamma_{n}\right)$ such that the previous formulae hold for the $e^{* ' s}$ and d^{*} 's.

Construction of S

We suppose inductively that F has been defined on $\Gamma_{n}:=\cup_{j \leq n} \Delta_{j}$ such that F preserves rank for all $m \in \Gamma_{n}$ and S^{*} is defined on $\ell_{1}\left(\Gamma_{n}\right)$ such that the previous formulae hold for the $e^{* ' s}$ and $d^{* ' s}$.

We want to extend our definition of F to include natural numbers in Δ_{n+1} and also extend the definition of S^{*} to $\ell_{1}\left(\Gamma_{n+1}\right)$.

Construction of S

We suppose inductively that F has been defined on $\Gamma_{n}:=\cup_{j \leq n} \Delta_{j}$ such that F preserves rank for all $m \in \Gamma_{n}$ and S^{*} is defined on $\ell_{1}\left(\Gamma_{n}\right)$ such that the previous formulae hold for the $e^{*} s$ and d^{*} 's.

We want to extend our definition of F to include natural numbers in Δ_{n+1} and also extend the definition of S^{*} to $\ell_{1}\left(\Gamma_{n+1}\right)$.

Consider an $m \in \Delta_{n+1}$ and recall we have $d_{m}^{*}=e_{m}^{*}-c_{m}^{*}$ where $\operatorname{supp} c_{m}^{*} \subseteq \Gamma_{n}$. Thus $S^{*} c_{m}^{*}$ is already defined. So in order to preserve linearity, we are only free to define one of $S^{*} d_{m}^{*}$ or $S^{*} e_{m}^{*}$.

Construction of S

We suppose inductively that F has been defined on $\Gamma_{n}:=\cup_{j \leq n} \Delta_{j}$ such that F preserves rank for all $m \in \Gamma_{n}$ and S^{*} is defined on $\ell_{1}\left(\Gamma_{n}\right)$ such that the previous formulae hold for the $e^{*} s$ and d^{*} 's.

We want to extend our definition of F to include natural numbers in Δ_{n+1} and also extend the definition of S^{*} to $\ell_{1}\left(\Gamma_{n+1}\right)$.

Consider an $m \in \Delta_{n+1}$ and recall we have $d_{m}^{*}=e_{m}^{*}-c_{m}^{*}$ where $\operatorname{supp} c_{m}^{*} \subseteq \Gamma_{n}$. Thus $S^{*} c_{m}^{*}$ is already defined. So in order to preserve linearity, we are only free to define one of $S^{*} d_{m}^{*}$ or $S^{*} e_{m}^{*}$.

The c^{*} 's are carefully chosen so that either $S^{*} c_{m}^{*}=c_{m^{\prime}}^{*}$ where $m^{\prime} \in \Delta_{n+1}$, in which case define $F(m)=m^{\prime}$, or $S^{*} c_{m}^{*}=0$ in which case set $F(m)=$ undefined.

Construction of S

We suppose inductively that F has been defined on $\Gamma_{n}:=\cup_{j \leq n} \Delta_{j}$ such that F preserves rank for all $m \in \Gamma_{n}$ and S^{*} is defined on $\ell_{1}\left(\Gamma_{n}\right)$ such that the previous formulae hold for the $e^{*} s$ and d^{*} 's.

We want to extend our definition of F to include natural numbers in Δ_{n+1} and also extend the definition of S^{*} to $\ell_{1}\left(\Gamma_{n+1}\right)$.

Consider an $m \in \Delta_{n+1}$ and recall we have $d_{m}^{*}=e_{m}^{*}-c_{m}^{*}$ where $\operatorname{supp} c_{m}^{*} \subseteq \Gamma_{n}$. Thus $S^{*} c_{m}^{*}$ is already defined. So in order to preserve linearity, we are only free to define one of $S^{*} d_{m}^{*}$ or $S^{*} e_{m}^{*}$.

The c^{*} 's are carefully chosen so that either $S^{*} c_{m}^{*}=c_{m^{\prime}}^{*}$ where $m^{\prime} \in \Delta_{n+1}$, in which case define $F(m)=m^{\prime}$, or $S^{*} c_{m}^{*}=0$ in which case set $F(m)=$ undefined.

Easily checked that we can extend definition of S^{*} to $\ell_{1}\left(\Gamma_{n+1}\right)$ satisfying the required formulae.

Construction of S

Easily seen that S^{*} defines a bounded linear map from ℓ_{1} to itself, since $S^{*} e_{n}^{*}=e_{F(n)}^{*}$ or 0 for all n.

Construction of S

Easily seen that S^{*} defines a bounded linear map from ℓ_{1} to itself, since $S^{*} e_{n}^{*}=e_{F(n)}^{*}$ or 0 for all n.

Since

$$
S^{*}\left(d_{m}^{*}\right)= \begin{cases}d_{F(m)}^{*} & \text { if } F(m) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

it is easy to show that the dual map $S: \ell_{\infty}(\mathbb{N}) \rightarrow \ell_{\infty}(\mathbb{N})$ acts on the biorthogonal vectors by the formula

$$
S d_{n}=\sum_{m \in F^{-1}(n)} d_{m}
$$

Construction of S

Easily seen that S^{*} defines a bounded linear map from ℓ_{1} to itself, since $S^{*} e_{n}^{*}=e_{F(n)}^{*}$ or 0 for all n.

Since

$$
S^{*}\left(d_{m}^{*}\right)= \begin{cases}d_{F(m)}^{*} & \text { if } F(m) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

it is easy to show that the dual map $S: \ell_{\infty}(\mathbb{N}) \rightarrow \ell_{\infty}(\mathbb{N})$ acts on the biorthogonal vectors by the formula

$$
S d_{n}=\sum_{m \in F^{-1}(n)} d_{m}
$$

Consequently, S restricts to give a bounded linear map $S \mid$ on the B-D space to itself. It turns out that the dual of $S \mid$ is precisely S^{*} ! So, it is easy to see that S can't be compact, because certainly S^{*} isn't!

Construction of S

Easily seen that S^{*} defines a bounded linear map from ℓ_{1} to itself, since $S^{*} e_{n}^{*}=e_{F(n)}^{*}$ or 0 for all n.

Since

$$
S^{*}\left(d_{m}^{*}\right)= \begin{cases}d_{F(m)}^{*} & \text { if } F(m) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

it is easy to show that the dual map $S: \ell_{\infty}(\mathbb{N}) \rightarrow \ell_{\infty}(\mathbb{N})$ acts on the biorthogonal vectors by the formula

$$
S d_{n}=\sum_{m \in F^{-1}(n)} d_{m}
$$

Consequently, S restricts to give a bounded linear map $S \mid$ on the B-D space to itself. It turns out that the dual of $S \mid$ is precisely S^{*} ! So, it is easy to see that S can't be compact, because certainly S^{*} isn't!

Showing that $S \mid$ is strictly singular is harder!

Further Research

Theorem (Daws, Haydon, Schlumprecht, White)

Let E be the space generated by the closed linear span in $\ell_{\infty}(\mathbb{Z})$ of the vector

$$
x_{0}=\left(\ldots, 0,0,1,2^{-1}, 2^{-1}, 2^{-2}, 2^{-1}, 2^{-2}, 2^{-2}, 2^{-3}, 2^{-1}, \ldots\right)
$$

and its bilateral shifts. The space E is is a (shift invariant) concrete predual of $\ell_{1}(\mathbb{Z})$ isomorphic to c_{0} that induces a non-canonical weak* topology on $\ell_{1}(\mathbb{Z})$.

Here, x_{0} is the vector with 1 in the zero'th component and for $n>0$, the n 'th component of x_{0} is $2^{-b(n)}$ where $b(n)$ is the number of 1 's in the binary expansion of n.

Connection to BD spaces

A 'one-sided' version of the space E just defined can be obtained as follows. We work with $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

Connection to BD spaces

A 'one-sided' version of the space E just defined can be obtained as follows. We work with $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

- Define $c_{0}^{*}=0 \in \ell_{1}\left(\mathbb{N}_{0}\right)$ and for $n>0$, write $n=2^{k}+m$, where $m<2^{k}$ and set $c_{n}^{*}=\frac{1}{2} e_{m}^{*} \in \ell_{1}\left(\mathbb{N}_{0}\right)$.

Connection to BD spaces

A 'one-sided' version of the space E just defined can be obtained as follows. We work with $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

- Define $c_{0}^{*}=0 \in \ell_{1}\left(\mathbb{N}_{0}\right)$ and for $n>0$, write $n=2^{k}+m$, where $m<2^{k}$ and set $c_{n}^{*}=\frac{1}{2} e_{m}^{*} \in \ell_{1}\left(\mathbb{N}_{0}\right)$.
- For all $n \in \mathbb{N}_{0}$ set $d_{n}^{*}=e_{n}^{*}-c_{n}^{*}$.

Connection to BD spaces

A 'one-sided' version of the space E just defined can be obtained as follows. We work with $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

- Define $c_{0}^{*}=0 \in \ell_{1}\left(\mathbb{N}_{0}\right)$ and for $n>0$, write $n=2^{k}+m$, where $m<2^{k}$ and set $c_{n}^{*}=\frac{1}{2} e_{m}^{*} \in \ell_{1}\left(\mathbb{N}_{0}\right)$.
- For all $n \in \mathbb{N}_{0}$ set $d_{n}^{*}=e_{n}^{*}-c_{n}^{*}$.
- Easy to see $\left[d_{n}^{*}: n \in \mathbb{N}_{0}\right]=\ell_{1}\left(\mathbb{N}_{0}\right)$.

Connection to BD spaces

A 'one-sided' version of the space E just defined can be obtained as follows. We work with $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

- Define $c_{0}^{*}=0 \in \ell_{1}\left(\mathbb{N}_{0}\right)$ and for $n>0$, write $n=2^{k}+m$, where $m<2^{k}$ and set $c_{n}^{*}=\frac{1}{2} e_{m}^{*} \in \ell_{1}\left(\mathbb{N}_{0}\right)$.
- For all $n \in \mathbb{N}_{0}$ set $d_{n}^{*}=e_{n}^{*}-c_{n}^{*}$.
- Easy to see $\left[d_{n}^{*}: n \in \mathbb{N}_{0}\right]=\ell_{1}\left(\mathbb{N}_{0}\right)$.
- In fact, this fits entirely into the framework of the BD construction so that, in particular $\left(d_{n}^{*}\right)$ is a Schauder basis for $\ell_{1}\left(\mathbb{N}_{0}\right)$. The biorthogonal vectors [$d_{n}: n \in \mathbb{N}_{0}$] generate a (BD) (sub)space of ℓ_{∞}.

Connection to BD spaces

A 'one-sided' version of the space E just defined can be obtained as follows. We work with $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

- Define $c_{0}^{*}=0 \in \ell_{1}\left(\mathbb{N}_{0}\right)$ and for $n>0$, write $n=2^{k}+m$, where $m<2^{k}$ and set $c_{n}^{*}=\frac{1}{2} e_{m}^{*} \in \ell_{1}\left(\mathbb{N}_{0}\right)$.
- For all $n \in \mathbb{N}_{0}$ set $d_{n}^{*}=e_{n}^{*}-c_{n}^{*}$.
- Easy to see $\left[d_{n}^{*}: n \in \mathbb{N}_{0}\right]=\ell_{1}\left(\mathbb{N}_{0}\right)$.
- In fact, this fits entirely into the framework of the BD construction so that, in particular $\left(d_{n}^{*}\right)$ is a Schauder basis for $\ell_{1}\left(\mathbb{N}_{0}\right)$. The biorthogonal vectors [$d_{n}: n \in \mathbb{N}_{0}$] generate a (BD) (sub)space of ℓ_{∞}.
- Turns out $d_{0}=\left(1,2^{-1}, 2^{-1}, 2^{-2}, 2^{-1}, 2^{-2}, 2^{-2}, 2^{-3}, \ldots\right)$. Also, $\left[d_{n}: n \in \mathbb{N}_{0}\right]$ is the same as the closed linear span of d_{0} and all its right shifts.

Thank you.

