Matthew Tarbard

March 2012

Matthew Tarbard Banach Spaces with Few Operators

Let X be a Banach Space. We say

Definition

- X has *few operators* if every operator from X to itself is of the form λ*l* + S, with S strictly singular.
- X has very few operators if every operator from X to itself is of the form λI + K, with K compact.

Let X be a Banach Space. We say

Definition

- X has *few operators* if every operator from X to itself is of the form λ*I* + S, with S strictly singular.
- X has very few operators if every operator from X to itself is of the form λI + K, with K compact.

Notation

ℕ₀

•
$$e_m^* = (0, 0, \dots, 1, 0 \dots).$$

- $\mathcal{L}(X)$
- $\mathcal{K}(X)$
- SS(X)

• Known that $\mathfrak{X}_{K}^{*} = \ell_{1}$.

3

- ₹ 🖬 🕨

- Known that $\mathfrak{X}_{K}^{*}=\ell_{1}.$
- Since ℓ_1 has Schur property, weakly compact and compact operators have to coincide.

- Known that $\mathfrak{X}_{K}^{*}=\ell_{1}.$
- Since ℓ_1 has Schur property, weakly compact and compact operators have to coincide.
- \bullet For this reason, \mathfrak{X}_K is a good candidate space for having very few operators.

- Known that $\mathfrak{X}_{K}^{*} = \ell_{1}$.
- Since ℓ_1 has Schur property, weakly compact and compact operators have to coincide.
- \bullet For this reason, \mathfrak{X}_K is a good candidate space for having very few operators.
- \bullet However, proof \mathfrak{X}_K has very few operators does not use the Schur property of $\ell_1.$

- Known that $\mathfrak{X}_{K}^{*} = \ell_{1}$.
- Since ℓ_1 has Schur property, weakly compact and compact operators have to coincide.
- \bullet For this reason, \mathfrak{X}_K is a good candidate space for having very few operators.
- \bullet However, proof \mathfrak{X}_K has very few operators does not use the Schur property of $\ell_1.$

Questions

• If X is an ℓ_1 predual, is $\mathcal{K}(X) = \mathcal{SS}(X)$?

- Known that $\mathfrak{X}_{K}^{*} = \ell_{1}$.
- Since ℓ_1 has Schur property, weakly compact and compact operators have to coincide.
- \bullet For this reason, \mathfrak{X}_K is a good candidate space for having very few operators.
- \bullet However, proof \mathfrak{X}_K has very few operators does not use the Schur property of $\ell_1.$

Questions

- If X is an ℓ_1 predual, is $\mathcal{K}(X) = \mathcal{SS}(X)$?
- If X satisfies the properties of \mathfrak{X}_K and has few operators, must it have very few operators?

Theorem

Given $k \in \mathbb{N}, k \ge 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_k with a basis such that

.= >

Theorem

Given $k \in \mathbb{N}, k \ge 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_k with a basis such that

1 \mathfrak{X}_k^* is isomorphic to ℓ_1

Theorem

Given $k \in \mathbb{N}, k \ge 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_k with a basis such that

- **1** \mathfrak{X}_k^* is isomorphic to ℓ_1
- ② There is a non-compact, strictly singular operator S: X_k → X_k with S^j ≠ 0 for 1 ≤ j ≤ k − 1 and S^k = 0.

Theorem

Given $k \in \mathbb{N}, k \ge 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_k with a basis such that

- $\textcircled{0} \ \mathfrak{X}_k^* \text{ is isomorphic to } \ell_1$
- ② There is a non-compact, strictly singular operator $S: \mathfrak{X}_k \to \mathfrak{X}_k \text{ with } S^j \neq 0 \text{ for } 1 \leq j \leq k-1 \text{ and } S^k = 0.$
- Moreover S^j (0 ≤ j ≤ k − 1) is not a compact perturbation of any linear combination of the operators S^l, l ≠ j. Equivalently, [S^j]_{j=0}^{k-1} are linearly independent vectors in L(X_k)/K(X_k).

Theorem

Given $k \in \mathbb{N}, k \ge 2$, there is a (HI), separable \mathscr{L}_{∞} space \mathfrak{X}_k with a basis such that

- **①** \mathfrak{X}_k^* is isomorphic to ℓ_1
- ② There is a non-compact, strictly singular operator $S: \mathfrak{X}_k \to \mathfrak{X}_k \text{ with } S^j \neq 0 \text{ for } 1 \leq j \leq k-1 \text{ and } S^k = 0.$
- Moreover S^j (0 ≤ j ≤ k − 1) is not a compact perturbation of any linear combination of the operators S^l, l ≠ j. Equivalently, [S^j]_{j=0}^{k-1} are linearly independent vectors in L(X_k)/K(X_k).
- Whenever T: X_k → X_k is an operator on X_k, there are (unique) λ_i ∈ ℝ and a compact operator K ∈ K(X_k) such that

$$T = \sum_{i=0}^{k-1} \lambda_i S^i + K$$

Theorem

There is a separable \mathscr{L}_{∞} space with a basis, \mathfrak{X}_{∞} ; the space has ℓ_1 dual and there exists a non-compact operator $S : \mathfrak{X}_{\infty} \to \mathfrak{X}_{\infty}$ satisfying the following properties:

- The sequence of vectors $([S^j])_{j=0}^{\infty}$ is a basic sequence in the Calkin algebra isometrically equivalent to the canonical basis of $\ell_1(\mathbb{N}_0)$.
- If $T \in \mathcal{L}(\mathfrak{X}_{\infty})$ then there are unique scalars $(\lambda_i)_{i=0}^{\infty}$ and a compact operator $K \in \mathcal{L}(\mathfrak{X}_{\infty})$ with $\sum_{i=0}^{\infty} |\lambda_i| < \infty$ and

$$T = \sum_{i=0}^{\infty} \lambda_i S^i + K$$

Calkin Algebras

Note the Calkin algebra \$\mathcal{L}(\mathcal{X}_k)/\mathcal{K}(\mathcal{X}_k)\$ is isomorphic to the algebra \$\mathcal{A}\$ of \$k \times k\$ upper-triangular-Toeplitz matrices.

Calkin Algebras

- Note the Calkin algebra \$\mathcal{L}(\mathcal{X}_k) / \mathcal{K}(\mathcal{X}_k)\$ is isomorphic to the algebra \$\mathcal{A}\$ of \$k \times k\$ upper-triangular-Toeplitz matrices.
- Explicit isomorphism given by $\psi \colon \mathcal{L}(\mathfrak{X}_k) / \mathcal{K}(\mathfrak{X}_k) \to \mathcal{A}$

$$\sum_{j=0}^{k-1} \lambda_j S^j + \mathcal{K}(\mathfrak{X}_k) \mapsto \begin{pmatrix} \lambda_0 & \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} \\ 0 & \lambda_0 & \lambda_1 & \lambda_2 & \cdots & \lambda_{k-2} \\ 0 & 0 & \lambda_0 & \lambda_1 & \ddots & \vdots \\ \vdots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \lambda_0 \end{pmatrix}$$

Calkin Algebras

- Note the Calkin algebra \$\mathcal{L}(\mathcal{X}_k)/\mathcal{K}(\mathcal{X}_k)\$ is isomorphic to the algebra \$\mathcal{A}\$ of \$k \times k\$ upper-triangular-Toeplitz matrices.
- Explicit isomorphism given by $\psi \colon \mathcal{L}(\mathfrak{X}_k) / \mathcal{K}(\mathfrak{X}_k) \to \mathcal{A}$

$$\sum_{j=0}^{k-1} \lambda_j S^j + \mathcal{K}(\mathfrak{X}_k) \mapsto \begin{pmatrix} \lambda_0 & \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} \\ 0 & \lambda_0 & \lambda_1 & \lambda_2 & \cdots & \lambda_{k-2} \\ 0 & 0 & \lambda_0 & \lambda_1 & \ddots & \vdots \\ \vdots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \lambda_0 \end{pmatrix}$$

• Norm closed ideals in $\mathcal{L}(\mathfrak{X}_k)$:

$$\mathcal{K}(\mathfrak{X}_k) \subsetneq \langle S^{k-1} \rangle \subsetneq \langle S^{k-2} \rangle \dots \langle S \rangle \subsetneq \mathcal{L}(X_k).$$

The Calkin algebra of \mathfrak{X}_{∞} is (isometric) to $\ell_1(\mathbb{N}_0)$ under

$$\ell_1(\mathbb{N}_0) \ni (a_n)_{n=0}^{\infty} \mapsto \sum_{j=0}^{\infty} a_j S^j + \mathcal{K}(\mathfrak{X}_{\infty})$$

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then X is indecomposable.

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then X is indecomposable.

Proof.

If P is a projection on X, then [P] ↔ (a_i)[∞]_{i=0} ∈ ℓ₁(N₀) is an idempotent.

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then X is indecomposable.

- If P is a projection on X, then [P] ↔ (a_i)[∞]_{i=0} ∈ ℓ₁(N₀) is an idempotent.
- Only idempotents in $\ell_1(\mathbb{N}_0)$ are 0 and (1, 0, 0, ...).

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then X is indecomposable.

- If P is a projection on X, then [P] ↔ (a_i)[∞]_{i=0} ∈ ℓ₁(N₀) is an idempotent.
- Only idempotents in $\ell_1(\mathbb{N}_0)$ are 0 and (1, 0, 0, ...).
- So P is compact or P = I + K. In either case, P is certainly a trivial projection.

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then the strictly singular and compact operators on X coincide.

Interesting properties of \mathfrak{X}_∞

Lemma

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then the strictly singular and compact operators on X coincide.

Proof.

• If T is strictly singular, then $\lim_{n\to\infty} \|[T]^n\|^{\frac{1}{n}} = \lim_{n\to\infty} \|T^n + \mathcal{K}(X)\|^{\frac{1}{n}} = 0$

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then the strictly singular and compact operators on X coincide.

- If T is strictly singular, then $\lim_{n\to\infty} \|[T]^n\|^{\frac{1}{n}} = \lim_{n\to\infty} \|T^n + \mathcal{K}(X)\|^{\frac{1}{n}} = 0$
- If $\mathbf{a} = (a_0, a_1, \dots) \in \ell_1(\mathbb{N}_0) \setminus \{0\}$, let k be minimal such that $a_k \neq 0$. Easy computation gives $\|\mathbf{a}^n\|_{\ell_1} \ge |a_k|^n$, so that $\lim_{n\to\infty} \|\mathbf{a}^n\|_{\frac{1}{n}}^{\frac{1}{n}} \ge |a_k|$.

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then the strictly singular and compact operators on X coincide.

- If T is strictly singular, then $\lim_{n\to\infty} \|[T]^n\|^{\frac{1}{n}} = \lim_{n\to\infty} \|T^n + \mathcal{K}(X)\|^{\frac{1}{n}} = 0$
- If $\mathbf{a} = (a_0, a_1, \dots) \in \ell_1(\mathbb{N}_0) \setminus \{0\}$, let k be minimal such that $a_k \neq 0$. Easy computation gives $\|\mathbf{a}^n\|_{\ell_1} \ge |a_k|^n$, so that $\lim_{n\to\infty} \|\mathbf{a}^n\|^{\frac{1}{n}} \ge |a_k|$.
- Since Calkin algebra is ℓ₁(ℕ₀), we see T strictly singular implies [T] = 0.

If X is a Banach space for which the Calkin algebra is isomorphic (as a Banach algebra) to $\ell_1(\mathbb{N}_0)$ then the strictly singular and compact operators on X coincide.

- If T is strictly singular, then $\lim_{n\to\infty} \|[T]^n\|^{\frac{1}{n}} = \lim_{n\to\infty} \|T^n + \mathcal{K}(X)\|^{\frac{1}{n}} = 0$
- If $\mathbf{a} = (a_0, a_1, \dots) \in \ell_1(\mathbb{N}_0) \setminus \{0\}$, let k be minimal such that $a_k \neq 0$. Easy computation gives $\|\mathbf{a}^n\|_{\ell_1} \ge |a_k|^n$, so that $\lim_{n\to\infty} \|\mathbf{a}^n\|^{\frac{1}{n}} \ge |a_k|$.
- Since Calkin algebra is ℓ₁(ℕ₀), we see T strictly singular implies [T] = 0.
- So, T strictly singular \implies T compact.

Matthew Tarbard Banach Spaces with Few Operators

The essential idea is to construct a special kind of Schauder basis for $\ell_1 = \ell_1(\mathbb{N})$.

The essential idea is to construct a special kind of Schauder basis for $\ell_1 = \ell_1(\mathbb{N})$.

Since ℓ_1 turns out to be the dual of all the spaces we construct, we think of elements of ℓ_1 as functionals and denote vectors of ℓ_1 by x^*, y^* etc.

The essential idea is to construct a special kind of Schauder basis for $\ell_1 = \ell_1(\mathbb{N})$.

Since ℓ_1 turns out to be the dual of all the spaces we construct, we think of elements of ℓ_1 as functionals and denote vectors of ℓ_1 by x^*, y^* etc.

Assuming I have a (special kind of) Schauder basis of ℓ_1 , denote it by $(d_n^*)_{n=1}^{\infty}$. The biorthogonal vectors $(d_n)_{n=1}^{\infty}$ form a basic sequence in ℓ_{∞} . Taking the closed linear span of the d_n we obtain a Banach space X, with basis $(d_n)_{n=1}^{\infty}$.

The essential idea is to construct a special kind of Schauder basis for $\ell_1 = \ell_1(\mathbb{N})$.

Since ℓ_1 turns out to be the dual of all the spaces we construct, we think of elements of ℓ_1 as functionals and denote vectors of ℓ_1 by x^*, y^* etc.

Assuming I have a (special kind of) Schauder basis of ℓ_1 , denote it by $(d_n^*)_{n=1}^{\infty}$. The biorthogonal vectors $(d_n)_{n=1}^{\infty}$ form a basic sequence in ℓ_{∞} . Taking the closed linear span of the d_n we obtain a Banach space X, with basis $(d_n)_{n=1}^{\infty}$.

Follows from completely standard results that ℓ_1 embeds isomorphically into X^* under the map $\ell_1 \ni x^* \mapsto J_{\ell_1}(x^*)|_X$ The essential idea is to construct a special kind of Schauder basis for $\ell_1 = \ell_1(\mathbb{N})$.

Since ℓ_1 turns out to be the dual of all the spaces we construct, we think of elements of ℓ_1 as functionals and denote vectors of ℓ_1 by x^*, y^* etc.

Assuming I have a (special kind of) Schauder basis of ℓ_1 , denote it by $(d_n^*)_{n=1}^{\infty}$. The biorthogonal vectors $(d_n)_{n=1}^{\infty}$ form a basic sequence in ℓ_{∞} . Taking the closed linear span of the d_n we obtain a Banach space X, with basis $(d_n)_{n=1}^{\infty}$.

Follows from completely standard results that ℓ_1 embeds isomorphically into X^* under the map $\ell_1 \ni x^* \mapsto J_{\ell_1}(x^*)|_X$

The embedding is onto precisely when (d_n^*) is boundedly complete basis for $\ell_1 \iff (d_n)$ is a shrinking basis for X.

We divide \mathbb{N} into finite 'intevals' $(\Delta_n)_{n=1}^{\infty}$ in such a way that $\max \Delta_n + 1 = \min \Delta_{n+1}$.

We divide \mathbb{N} into finite 'intevals' $(\Delta_n)_{n=1}^{\infty}$ in such a way that $\max \Delta_n + 1 = \min \Delta_{n+1}$.

We say a sequence $(d_m^*)_{m=1}^{\infty}$ in ℓ_1 is *unit triangular* if $d_m^* = e_m^*$ for all $m \in \Delta_1$ and, for $m \in \Delta_n$, n > 1, we have

$$d_m^* = e_m^* - c_m^*$$

where $\operatorname{supp} c_m^* \subseteq \bigcup_{j=1}^{n-1} \Delta_j$. Refer to the c_m^* vectors as *BD* functionals.

The Bourgain-Delbaen construction

We divide \mathbb{N} into finite 'intevals' $(\Delta_n)_{n=1}^{\infty}$ in such a way that $\max \Delta_n + 1 = \min \Delta_{n+1}$.

We say a sequence $(d_m^*)_{m=1}^{\infty}$ in ℓ_1 is *unit triangular* if $d_m^* = e_m^*$ for all $m \in \Delta_1$ and, for $m \in \Delta_n$, n > 1, we have

$$d_m^* = e_m^* - c_m^*$$

where $\operatorname{supp} c_m^* \subseteq \bigcup_{j=1}^{n-1} \Delta_j$. Refer to the c_m^* vectors as *BD* functionals.

Any such sequence is an algebraic basis for c_{00} . We can thus define linear projections P_m^* : $c_{00} \to \ell_1^m \subseteq \ell_1$ by

$$P_m^* d_j^* = egin{cases} d_j^* & ext{if } j \leq m \ 0 & ext{otherwise} \end{cases}$$

The Bourgain-Delbaen construction

We divide \mathbb{N} into finite 'intevals' $(\Delta_n)_{n=1}^{\infty}$ in such a way that $\max \Delta_n + 1 = \min \Delta_{n+1}$.

We say a sequence $(d_m^*)_{m=1}^{\infty}$ in ℓ_1 is *unit triangular* if $d_m^* = e_m^*$ for all $m \in \Delta_1$ and, for $m \in \Delta_n$, n > 1, we have

$$d_m^* = e_m^* - c_m^*$$

where $\operatorname{supp} c_m^* \subseteq \bigcup_{j=1}^{n-1} \Delta_j$. Refer to the c_m^* vectors as *BD* functionals.

Any such sequence is an algebraic basis for c_{00} . We can thus define linear projections P_m^* : $c_{00} \to \ell_1^m \subseteq \ell_1$ by

$$P_m^*d_j^* = egin{cases} d_j^* & ext{if } j \leq m \ 0 & ext{otherwise} \end{cases}$$

The important part of the BD construction is to construct the c_n^* in such a way that the projections P_n^* are uniformly bounded (and consequently $(d_n^*)_{n=1}^{\infty}$ is a basis for ℓ_1).

• Idea: Construct a linear map T on $\ell_1(\mathbb{N})$.

- Idea: Construct a linear map T on $\ell_1(\mathbb{N})$.
- For T to be bounded, enough to show $\exists M$ such that $\|Te_n^*\|_{\ell_1} \leq M \ \forall n.$

- Idea: Construct a linear map T on $\ell_1(\mathbb{N})$.
- For T to be bounded, enough to show $\exists M$ such that $\|Te_n^*\|_{\ell_1} \leq M \ \forall n.$
- Restrict T^* ; get $T^*|: X \to \ell_{\infty}$.

- Idea: Construct a linear map T on $\ell_1(\mathbb{N})$.
- For T to be bounded, enough to show $\exists M$ such that $\|Te_n^*\|_{\ell_1} \leq M \ \forall n.$
- Restrict T^* ; get $T^*|: X \to \ell_{\infty}$.
- Look at behaviour of T on vectors d^{*}_n to determine if T^{*}| actually maps into X.

Construct maps $F \colon \mathbb{N} \to \mathbb{N} \cup \{\text{undefined}\}\ \text{and}\ S^* \colon \ell_1 \to \ell_1$ inductively.

Construct maps $F \colon \mathbb{N} \to \mathbb{N} \cup \{ \text{undefined} \}$ and $S^* \colon \ell_1 \to \ell_1$ inductively.

Begin by defining F on Δ_1 (which for the space \mathfrak{X}_k of the theorem is the set $\{1, 2 \dots k\}$) by F(j) = j - 1 for $j \ge 2$ and F(1) = undefined.

Construct maps $F : \mathbb{N} \to \mathbb{N} \cup \{ \text{undefined} \}$ and $S^* : \ell_1 \to \ell_1$ inductively.

Begin by defining F on Δ_1 (which for the space \mathfrak{X}_k of the theorem is the set $\{1, 2 \dots k\}$) by F(j) = j - 1 for $j \ge 2$ and F(1) = undefined. We define S^* on $\ell_1(\Delta_1)$ by

$$S^*(e_m^*) = egin{cases} e_{F(m)}^* & ext{if } F(m) ext{ is defined} \ 0 & ext{otherwise} \end{cases}$$

Construct maps $F \colon \mathbb{N} \to \mathbb{N} \cup \{ \text{undefined} \}$ and $S^* \colon \ell_1 \to \ell_1$ inductively.

Begin by defining F on Δ_1 (which for the space \mathfrak{X}_k of the theorem is the set $\{1, 2 \dots k\}$) by F(j) = j - 1 for $j \ge 2$ and F(1) = undefined. We define S^* on $\ell_1(\Delta_1)$ by

$$S^*(e_m^*) = egin{cases} e_{F(m)}^* & ext{if } F(m) ext{ is defined} \ 0 & ext{otherwise} \end{cases}$$

Since for $m\in \Delta_1$ we have $d_m^*=e_m^*$ we also have the formula

$$S^*(d_m^*) = \begin{cases} d_{F(m)}^* & \text{if } F(m) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

Construct maps $F \colon \mathbb{N} \to \mathbb{N} \cup \{ \text{undefined} \}$ and $S^* \colon \ell_1 \to \ell_1$ inductively.

Begin by defining F on Δ_1 (which for the space \mathfrak{X}_k of the theorem is the set $\{1, 2 \dots k\}$) by F(j) = j - 1 for $j \ge 2$ and F(1) = undefined. We define S^* on $\ell_1(\Delta_1)$ by

$$S^*(e_m^*) = egin{cases} e_{F(m)}^* & ext{if } F(m) ext{ is defined} \ 0 & ext{otherwise} \end{cases}$$

Since for $m\in \Delta_1$ we have $d_m^*=e_m^*$ we also have the formula

$$S^*(d_m^*) = \begin{cases} d_{F(m)}^* & \text{if } F(m) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

Notice also that when F(m) is defined, the image of m under F is still in Δ_1 . More generally, given $j \in \mathbb{N} \cap \Delta_n$ we will say F preserves the rank of j if either F(j) is undefined, or, $F(j) \in \Delta_n$

We suppose inductively that F has been defined on $\Gamma_n := \bigcup_{j \le n} \Delta_j$ such that F preserves rank for all $m \in \Gamma_n$ and S^* is defined on $\ell_1(\Gamma_n)$ such that the previous formulae hold for the e^* 's and d^* 's.

We suppose inductively that F has been defined on $\Gamma_n := \bigcup_{j \le n} \Delta_j$ such that F preserves rank for all $m \in \Gamma_n$ and S^* is defined on $\ell_1(\Gamma_n)$ such that the previous formulae hold for the e^* 's and d^* 's.

We want to extend our definition of F to include natural numbers in Δ_{n+1} and also extend the definition of S^* to $\ell_1(\Gamma_{n+1})$.

We suppose inductively that F has been defined on $\Gamma_n := \bigcup_{j \le n} \Delta_j$ such that F preserves rank for all $m \in \Gamma_n$ and S^* is defined on $\ell_1(\Gamma_n)$ such that the previous formulae hold for the e^* 's and d^* 's.

We want to extend our definition of F to include natural numbers in Δ_{n+1} and also extend the definition of S^* to $\ell_1(\Gamma_{n+1})$.

Consider an $m \in \Delta_{n+1}$ and recall we have $d_m^* = e_m^* - c_m^*$ where $\operatorname{supp} c_m^* \subseteq \Gamma_n$. Thus $S^* c_m^*$ is already defined. So in order to preserve linearity, we are only free to define one of $S^* d_m^*$ or $S^* e_m^*$.

We suppose inductively that F has been defined on $\Gamma_n := \bigcup_{j \le n} \Delta_j$ such that F preserves rank for all $m \in \Gamma_n$ and S^* is defined on $\ell_1(\Gamma_n)$ such that the previous formulae hold for the e^* 's and d^* 's.

We want to extend our definition of F to include natural numbers in Δ_{n+1} and also extend the definition of S^* to $\ell_1(\Gamma_{n+1})$.

Consider an $m \in \Delta_{n+1}$ and recall we have $d_m^* = e_m^* - c_m^*$ where $\operatorname{supp} c_m^* \subseteq \Gamma_n$. Thus $S^* c_m^*$ is already defined. So in order to preserve linearity, we are only free to define one of $S^* d_m^*$ or $S^* e_m^*$.

The c^* 's are carefully chosen so that either $S^*c_m^* = c_{m'}^*$ where $m' \in \Delta_{n+1}$, in which case define F(m) = m', or $S^*c_m^* = 0$ in which case set F(m) = undefined.

• • = • • = •

We suppose inductively that F has been defined on $\Gamma_n := \bigcup_{j \le n} \Delta_j$ such that F preserves rank for all $m \in \Gamma_n$ and S^* is defined on $\ell_1(\Gamma_n)$ such that the previous formulae hold for the e^* 's and d^* 's.

We want to extend our definition of F to include natural numbers in Δ_{n+1} and also extend the definition of S^* to $\ell_1(\Gamma_{n+1})$.

Consider an $m \in \Delta_{n+1}$ and recall we have $d_m^* = e_m^* - c_m^*$ where $\operatorname{supp} c_m^* \subseteq \Gamma_n$. Thus $S^* c_m^*$ is already defined. So in order to preserve linearity, we are only free to define one of $S^* d_m^*$ or $S^* e_m^*$.

The c^* 's are carefully chosen so that either $S^*c_m^* = c_{m'}^*$ where $m' \in \Delta_{n+1}$, in which case define F(m) = m', or $S^*c_m^* = 0$ in which case set F(m) = undefined.

Easily checked that we can extend definition of S^* to $\ell_1(\Gamma_{n+1})$ satisfying the required formulae.

Easily seen that S^* defines a bounded linear map from ℓ_1 to itself, since $S^*e_n^* = e_{F(n)}^*$ or 0 for all n.

Easily seen that S^* defines a bounded linear map from ℓ_1 to itself, since $S^*e_n^* = e_{F(n)}^*$ or 0 for all n.

Since

$$S^*(d_m^*) = \begin{cases} d_{F(m)}^* & \text{if } F(m) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

it is easy to show that the dual map $S \colon \ell_\infty(\mathbb{N}) \to \ell_\infty(\mathbb{N})$ acts on the biorthogonal vectors by the formula

$$Sd_n = \sum_{m \in F^{-1}(n)} d_m$$

Easily seen that S^* defines a bounded linear map from ℓ_1 to itself, since $S^*e_n^* = e_{F(n)}^*$ or 0 for all n.

Since

$$S^*(d_m^*) = \begin{cases} d_{F(m)}^* & \text{if } F(m) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

it is easy to show that the dual map $S \colon \ell_\infty(\mathbb{N}) \to \ell_\infty(\mathbb{N})$ acts on the biorthogonal vectors by the formula

$$Sd_n = \sum_{m \in F^{-1}(n)} d_m$$

Consequently, S restricts to give a bounded linear map S| on the B-D space to itself. It turns out that the dual of S| is precisely $S^*!$ So, it is easy to see that S can't be compact, because certainly S^* isn't!

Easily seen that S^* defines a bounded linear map from ℓ_1 to itself, since $S^*e_n^* = e_{F(n)}^*$ or 0 for all n.

Since

$$S^*(d_m^*) = \begin{cases} d_{F(m)}^* & \text{if } F(m) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

it is easy to show that the dual map $S \colon \ell_\infty(\mathbb{N}) \to \ell_\infty(\mathbb{N})$ acts on the biorthogonal vectors by the formula

$$Sd_n = \sum_{m \in F^{-1}(n)} d_m$$

Consequently, S restricts to give a bounded linear map S| on the B-D space to itself. It turns out that the dual of S| is precisely $S^*!$ So, it is easy to see that S can't be compact, because certainly S^* isn't!

Showing that S| is strictly singular is harder!

Theorem (Daws, Haydon, Schlumprecht, White)

Let E be the space generated by the closed linear span in $\ell_\infty(\mathbb{Z})$ of the vector

$$x_0 = (\dots, 0, 0, 1, 2^{-1}, 2^{-1}, 2^{-2}, 2^{-1}, 2^{-2}, 2^{-2}, 2^{-3}, 2^{-1}, \dots)$$

and its bilateral shifts. The space E is is a (shift invariant) concrete predual of $\ell_1(\mathbb{Z})$ isomorphic to c_0 that induces a non-canonical weak* topology on $\ell_1(\mathbb{Z})$.

Here, x_0 is the vector with 1 in the zero'th component and for n > 0, the *n*'th component of x_0 is $2^{-b(n)}$ where b(n) is the number of 1's in the binary expansion of *n*.

< ∃ >

• Define $c_0^* = 0 \in \ell_1(\mathbb{N}_0)$ and for n > 0, write $n = 2^k + m$, where $m < 2^k$ and set $c_n^* = \frac{1}{2}e_m^* \in \ell_1(\mathbb{N}_0)$.

• Define $c_0^* = 0 \in \ell_1(\mathbb{N}_0)$ and for n > 0, write $n = 2^k + m$, where $m < 2^k$ and set $c_n^* = \frac{1}{2}e_m^* \in \ell_1(\mathbb{N}_0)$.

• For all $n \in \mathbb{N}_0$ set $d_n^* = e_n^* - c_n^*$.

• Define $c_0^* = 0 \in \ell_1(\mathbb{N}_0)$ and for n > 0, write $n = 2^k + m$, where $m < 2^k$ and set $c_n^* = \frac{1}{2}e_m^* \in \ell_1(\mathbb{N}_0)$.

• For all
$$n \in \mathbb{N}_0$$
 set $d_n^* = e_n^* - c_n^*$.

• Easy to see
$$[d_n^*: n \in \mathbb{N}_0] = \ell_1(\mathbb{N}_0).$$

- Define $c_0^* = 0 \in \ell_1(\mathbb{N}_0)$ and for n > 0, write $n = 2^k + m$, where $m < 2^k$ and set $c_n^* = \frac{1}{2}e_m^* \in \ell_1(\mathbb{N}_0)$.
- For all $n \in \mathbb{N}_0$ set $d_n^* = e_n^* c_n^*$.
- Easy to see $[d_n^*: n \in \mathbb{N}_0] = \ell_1(\mathbb{N}_0).$
- In fact, this fits entirely into the framework of the BD construction so that, in particular (d^{*}_n) is a Schauder basis for ℓ₁(N₀). The biorthogonal vectors [d_n: n ∈ N₀] generate a (BD) (sub)space of ℓ_∞.

• Define $c_0^* = 0 \in \ell_1(\mathbb{N}_0)$ and for n > 0, write $n = 2^k + m$, where $m < 2^k$ and set $c_n^* = \frac{1}{2}e_m^* \in \ell_1(\mathbb{N}_0)$.

• For all
$$n \in \mathbb{N}_0$$
 set $d_n^* = e_n^* - c_n^*$.

• Easy to see
$$[d_n^*: n \in \mathbb{N}_0] = \ell_1(\mathbb{N}_0).$$

- In fact, this fits entirely into the framework of the BD construction so that, in particular (d^{*}_n) is a Schauder basis for ℓ₁(N₀). The biorthogonal vectors [d_n: n ∈ N₀] generate a (BD) (sub)space of ℓ_∞.
- Turns out $d_0 = (1, 2^{-1}, 2^{-1}, 2^{-2}, 2^{-1}, 2^{-2}, 2^{-2}, 2^{-3}, ...)$. Also, $[d_n: n \in \mathbb{N}_0]$ is the same as the closed linear span of d_0 and all its right shifts.

Thank you.

æ

_ र ≣ ≯

▲□ ▶ ▲ 目