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Background and Notations

This is a joint work with Peikee Lin and Bunyamin Sari.

A classical result of Calkin says that the only nontrivial proper
closed ideal in the algebra L(`2) of bounded linear operators on
a separable Hilbert space is the ideal of compact operators.
The same was shown to be true for `p (1 ≤ p <∞) an c0 by
Gohberg, Markus and Feldman. Apart from these, there are
only few Banach spaces for which the closed ideals in the
algebra of bounded linear operators are completely determined.
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Theorem (Argyros and Haydon, 2011)
There is a H.I. space X on which every bounded linear operator
is a scalar multiple of the identity plus a compact operator.
As a consequence, the only nontrivial norm closed ideal in L(X )
is the space of compact operators.

Theorem (Laustsen, Loy and Read, 2004)
Let X = (⊕`n2)c0 . Then there are exactly two nontrivial closed
ideals in L(X ), namely the ideal of compact operators and the
closure of the ideal of operators that factor through c0.
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Theorem (Laustsen, Schlumprecht and Zsak, 2006)
Let X = (⊕`n2)`1 . Then there are precisely two nontrivial closed
ideals in L(X ), namely the ideal of compact operators and the
closure of the ideal of operators that factor through `1.

Theorem (Gramsch, Luft and Daws)
Let I be an infinite set, and let X = `p(I) for 1 ≤ p <∞, or
X = c0(I). If J is a closed ideal in L(X ), then J = Kα(X ) for
some cardinal α.

An operator T ∈ L(X ) is in Kα(X ) if for every ε > 0, there is a
subset E of BX with |E | < α so that for all x ∈ BX

inf{‖Tx − Ty‖ : y ∈ E} < ε.

Theorem (Tarbard)
For each natural number n, there is a Banach space X so that
L(X ) contains exactly n nontrivial closed ideals generated by
the powers of a single nilpotent, strictly singular, non-compact
operator.
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Although it is extremely difficult to classify all norm closed
ideals in the Banach algebra of bounded linear operators on a
given Banach space, it is possible to find the maximal ideals
which turn out to be crucial in characterizing commutators in
the algebra.

Let X be a Banach space. We denote by MX the set of all
bounded linear operators T on X so that the identity operator
on X does not factor through T . There are quite a number of
spaces for which MX is the unique maximal ideal. The following
is a list of spaces recently found to be in the family.

1. Lp (1 ≤ p <∞) (Dosev, Johnson and Schechtman, 2011)
2. C([0, ω1]) (Kania and Laustsen, 2011)
3. (
∑
`q)`p (1 ≤ q < p <∞) (Chen, Johnson and Zheng, 2011)

4. dw ,p (1 ≤ p <∞,w1 = 1,wn → 0,
∑∞

i=1 wi =∞) (Kaminska,
Popov, Spinu, Tcaciuc and Troisky, 2011)
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Recall that an Orlicz function M : R+ → R+ is a continuous
non-decreasing and convex function such that M(0) = 0 and
limt→∞ M(t) =∞.

To any Orlicz function M we associate a sequence space `M of
all sequences of scalars x = (a1,a2, . . .) such that∑∞

n=1 M(|an|/ρ) <∞ for some ρ > 0. The space `M equipped
with the norm

‖x‖ = inf
{
ρ > 0 :

∞∑
n=1

M(|an|/ρ) ≤ 1
}

is a Banach space usually called an Orlicz sequence space.

An Orlicz function M is said to satisfy the ∆2-condition if
sup0<t<1 M(2t)/M(t) <∞.
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Let M be an Orlicz function. Then the following are equivalent.
1. M satisfies the ∆2 condition.

2. `M is separable.
3. `M contains no copy of `∞.
4. The unit vector basis of `M is a symmetric basis for `M .

Recall that for Λ > 0, CM,Λ is the norm-closed convex hull in
C[0,1] of the set

EM,Λ =

{
M(λt)
M(λ)

; 0 < λ < Λ

}
.

We let EM =
⋂

Λ>0 EM,Λ and CM =
⋂

Λ>0 CM,Λ.

If M satisfies the ∆2-condition then an Orlicz sequence space
`N is isomorphic to a subspace of `M if and only if N is
equivalent to some function in CM,1.
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Let 1 < p <∞ and let M be an Orlicz function. We say that the
Orlicz sequence space `M is close to `p if the following
conditions hold:

(1) The unit vector basis of `M and the unit vector basis of `p are
the only, up to equivalence, symmetric basic sequences in `M ;

(2) Normalized block basic sequences of `M uniformly dominate
the unit vector basis of `p; i.e. there is a C > 0 so that every
normalized block bases (xi) of `M satisfies for all (ai) ⊂ R

‖
∑

aixi‖ ≥ C(
∑
|ai |p)1/p.

M is said to be p-regular if limλ→0
M(λt)
M(λ) = tp,0 < t ≤ 1.
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Remark. It immediate from the definition that if `M is close to `p,
then M satisfies the ∆2-condition and `M is reflexive. Actually
since `M does not contain c0, M satisfies the ∆2-condition.
Since `M does not contain `1, `M is reflexive. Moreover, if M is
p-regular, then EM = CM = {tp}.

Theorem (Lin, Sari and Zheng, 2012)
Let 1 < p <∞. Let `M be an Orlicz space close to `p and M be
p-regular. Then M`M is the unique maximal ideal in L(`M).
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Lemma (1)
Let 1 < p <∞ and `M be an Orlicz sequence space close to `p.
Let (uj) be a normalized block basis in `M . Then (ui) is
K -dominated by the unit vector basis of `M for some constant K
independent of (ui) and there exists a subsequence of (uj)
which is either equivalent to the unit vector basis of `M or to the
unit vector basis of `p. If, in addition, M is regular, and
limj ‖uj‖∞ = 0, then a subsequence of (uj) is equivalent to the
unit vector basis of `p.

Lemma (2)
Let 1 < p <∞. Suppose that `M is an Orlicz sequence space
close to `p, and M is p-regular. Let (ui) be a normalized block
basis of `M which is either equivalent to the unit vector basis of
`p or the unit vector basis of `M . Then [(ui)] is complemented in
`M .



Lemma (1)
Let 1 < p <∞ and `M be an Orlicz sequence space close to `p.
Let (uj) be a normalized block basis in `M . Then (ui) is
K -dominated by the unit vector basis of `M for some constant K
independent of (ui) and there exists a subsequence of (uj)
which is either equivalent to the unit vector basis of `M or to the
unit vector basis of `p. If, in addition, M is regular, and
limj ‖uj‖∞ = 0, then a subsequence of (uj) is equivalent to the
unit vector basis of `p.

Lemma (2)
Let 1 < p <∞. Suppose that `M is an Orlicz sequence space
close to `p, and M is p-regular. Let (ui) be a normalized block
basis of `M which is either equivalent to the unit vector basis of
`p or the unit vector basis of `M . Then [(ui)] is complemented in
`M .



Lemma (3)
Let 1 < p <∞. Let `M be an Orlicz space close to `p and M be
p-regular. Then M`M is an ideal in L(`M).

Proof. An operator T is in M`M if and only if T does not
preserve a copy of `M (i.e. T is `M -strictly singular).
Let S and T be two `M -strictly singular operators. Suppose that
S + T is not `M -strictly singular. Then we can find a normalized
sequence (xi) in `M so that both (xi) and (Sxi + Txi) are
equivalent to the unit vector basis of `M . By passing to a
subsequence of (xi) and perturbing, without loss of generality
we assume that both (xi) and (Sxi + Txi) are block bases in `M .
By Lemma (1), there exists a δ > 0 so that ‖Sxi + Txi‖∞ > δ.
By passing to a further subsequence (yi) of (xi), we get either
‖Syi‖∞ > δ/2 for all i ∈ N or ‖Tyi‖∞ > δ/2 for all i ∈ N. But this
implies that either (Syi) or (Tyi) is equivalent to the unit vector
basis of `M since the unit vector basis of `M dominates every
block basis of `M (by Lemma (1) again). Hence either S or T is
preserve a copy of `M which contradicts our hypothesis.
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Let `M be an Orlicz space. We use Γ`p to denote the ideal of all
operators in L(`M) which factor through `p. Let Γ̄`p be the
closure of Γ`p .

Theorem
Let 1 < p ≤ 2 and M be p-regular. Let `M be an Orlicz
sequence space close to `p but not isomorphic to `p. Then Γ̄`p

is a proper subset of M`M .

Lemma (4)
Let 1 ≤ p <∞ and let X be a complemented subspace of an
Orlicz space `M and let P be a projection from `M onto X. If P
is in Γ̄`p , then X is isomorphic to `p.
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Let I`M→`p be the formal identity from `M into `p. By composing
with an isomorphic embedding of `p into `M , it is considered as
an operator on `M . It is easy to prove that if `M is close to `p,
then the closed ideal Γ̄I`M→`p generated by I`M→`p is an
immediate successor of the compacts.

Theorem
Let `M be an Orlicz space close to `p. If T ∈ L(`M) is not
compact, then Γ̄I`M→`p is a subspace of Γ̄T .

Question: Is Γ̄I`M→`p a proper subspace of Γ̄`p?
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