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Formulation of Main Question

In a joint work with Matt Daws, Richard Haydon, and Stuart White we

consider the following

Problem

Consider the Banach algebra `1(Z) (with convolution ∗).

Is the Banach algebraic predual E of `1(Z) unique?

How can we characterize these algebraic preduals?

Preliminary Definition: A concrete algebraic predual of `1(Z) is a

closed subspace E of `∞(Z), so that E is shiftinvariant and E∗ is

isomorphic to `1(Z).
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Banach Algebras

Definition
A Banach space X with a multiplication ·, which turns X into an

associative algebra, and has the property that

‖x · y‖ ≤ ‖x‖ · ‖y‖, x , y ∈ X

is called a Banach Algebra.

Examples

1 Trivial Banach Algebra: Banach space X , with x ·y = 0, x , y ∈X ,

2 Operator algebras: Closed subalgebras of L(X ), for example

C∗-algebras,

3 Convolution algebras. G locally compact group, µ Haar measure.

(a) M(G) space of finite Radon measure (b) L1(µ),

both with convolution.
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Dual Banach Algebras

Definition

Assume (A, ·) is a Banach algebra, and assume that there is a

subspace A∗ ⊂ A∗ which has the following two properties:

1 The canonical operator

J : A → (A∗)∗, a 7→ [f 7→ f (a)]

is a surjective isomorphism.

2 A∗ is a closed submodul of A∗, i.e. if f ∈ A∗ and a ∈ A then af , fa
are also in A∗, where

af : A → C, b 7→ f (ab), fa : A → C, b 7→ f (ba).

Then we say that A is a Dual Algebra and call A∗ a concrete
Predual of A.
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Remarks

1 (1) simply means that as a Banach A is isomorphic to the dual of

a Banach space X. Indeed if X is Banach space and T : A → X ∗

is onto isomorphism, then consider T ∗ : X ∗∗ → A∗ and define

A∗ := T ∗(ι(X )) ⊂ A∗, with ι : X ↪→ X ∗∗ canonical embedding,

and note that A∗ is a concrete predual of A.

2 Assuming A∗ satisfies (1). Then property (2) is equivalent with

· : A×A → A, is separately w∗ = σ(A,A∗)-continuous.

3 If A is a trivial Banach algebra (2) is vacuous, and, thus a trivial

dual algebra is simply a Banach space which is isomorphic to a

dual space. Thus, in that case, preduals are in general Not
unique.
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The case of C∗-algebras

Sakai (1956): If A is a C∗ algebra then (1) implies that A is a von

Neuman algebra and (2) is automatically satisfied for any concrete

predual. Moreover the predual is unique, up to isometry (but not up to

isomorphism: `∞ ' L∞[0,1]).

Daws, Pham and White (2009): If A is a von Neuman algebra then A
(literally!) has a unique concrete algebraic predual, meaning any two

closed A-submoduls A(1)
∗ and A(2)

∗ of A∗ whose duals are

(canonically) isomorphic to A, are equal as vector spaces.
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Formulation of Main Question

Consider on `1(Z) the convolution ∗ : `1(Z)× `1(Z)→ `1(Z)

f ∗ g =
(∑

k∈Z

f (n − k)g(k) : n ∈ N
)

=
(∑

k∈N

f (k)g(n − k) : n ∈ N
)
,

for f = (f (n))n∈Z and g = (g(n))n∈Z in `1(Z).

Problem

Assume E ⊂ `∞(Z) is a (concrete) algebraic predual of `1(Z).

1 Does it follow that E = c0(Z) (literally)?

2 Does it follow that E is isomorphic c0(Z)?
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Main Results

1 Construction of a concrete algebraic predual Hλ ⊂ `∞(Z) of

`1(Z), for every λ ∈ C, |λ| > 0, of `1(Z) not equal to c0(Z), not

even isometric to c0, but isomorphic to c0.

2 Characterization of all algebraic preduals of `1(Z) as certain

quotients of C(S), where S is a semi-topological semi-group

compactification of Z.

3 Construction of an algebraic predual E of `1(Z) which is not

isomorphic to c0(Z).
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(en)n∈Z unit vector basis in c0(Z), (δn):n∈Z unit vector basis in `1(Z).

Since convolution by δ±1, induce the bilateral shift σ on `1(Z), and δ±1

generate the (commutative ) Banach algebra we deduce:

Lemma

For a subspace E ⊂ `∞(Z), which is a predual of `1(Z) the following

are equivalent

1 E is an algebraic predual of `1(Z),

2 E is invariant under bilateral shift,

3 Bilateral shift is w∗-continuous on `1(Z).
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First Example

Let λ ∈ C, |λ| > 1. For n ∈ N let b(n) be the number of 1’s in the

binary expansion of n, for n < 0 put b(n) =∞ and put

x0 = (λ−b(n) : n ∈ Z) = (...0,0,1, λ−1, λ−1, λ−2, λ−1, ....)

and

Hλ = span[σn(x0) : n ∈ Z].

Put also

Eλ =
{(

x(n) : n ∈ Z
)

: lim
n→∞

x(r + 2n) =
1
λ

x(r) for all r ∈ Z
}
.

It is clear that Hλ ⊂ Eλ and that both spaces are invariant under σ.

We claim that Hλ = Eλ and that Hλ is a predual of `1(Z).

For simplicity we set λ = 2 and H = H2, E = E2 .
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It is enough to show that

For each f ∈ `1(Z) \ {0} there is a h ∈ H so that 〈h, f 〉 6= 0, (1)

For each µ∈E∗ there is an f ∈ `1(Z) so that 〈µ, ·〉 = 〈f , ·〉 on E .

(2)

Then both, E and H, satisfy (1) and (2), and the canonical operators

`1 → E∗, f 7→ F |E , and `1 → H∗, f 7→ f |H

are injective and surjective, and thus, by the Closed Graph Theorem

isomorphism. Thus E and H are both concrete algebraic preduals.

Since H ⊂ E , an application of the Hahn Banach Theorem shows that

both spaces are equal.
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In order to show (1) let f = (f (n) : n ∈ Z) ∈ `1(Z) with f (m0) 6= 0.

Put τ : `∞(Z)→ `∞(Z), with τ(x)(n) =

x(n/2) if n even

0 if n odd.

Then, after some computations, we obtain

τ(x0) =
(

1− σ2

4

)−1(
1− σ

2

)
(x0) =

∞∑
j=0

σ2j

4j

(
1− σ

2

)
(x0) ∈ H.

meaning that τ |E is an operator on E (into E)

Thus

〈σm0 ◦ τ k (x0), f 〉 = 〈τ k (x0), σ−m0 (f )〉 →k→∞ x0(0)f (m0) = f (m0) 6= 0.
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In order to show (2) we first identify E with a subspace of C(βZ),

where βZ are the ultrafilters on Z.

Put Z∗ = βZ \ Z and for k ∈ N and r ∈ Z

X (k)
r =

{
U ∈Z∗ : ∀m∈N {r +2n1 +2n2 . . . 2nk : m<n1<. . . nk ∈N} ∈ U

}
X (∞) = Z∗ \

⋃
k∈N,r∈Z X (k)

r . Then E can be written as

E =
{

f ∈C(βZ) : f (U) = 2−k f (r), for U ∈X (k)
r , r ∈Z, k ∈N, and f |X (∞) ≡ 0

}
.

Now let µ ∈ E∗, i.e. µ = µ̃|E with µ̃ ∈ `∗∞(Z) = M(βZ) and put

f = (f (t) : t ∈ Z) =
(
µ̃({t}) +

∑
k∈N

1
2−k µ̃(X (k)

t )
)
∈ `1(Z).

It follows for x ∈ E ⊂ C(βZ)

〈µ, x〉 = 〈µ̃, x〉 =
∑
t∈Z

f (t)µ̃({t}) +
∑
t∈Z

∑
k∈Z

∫
X (k)

t

f (U) d µ̃(U) = 〈f , x〉.
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Hλ is isomorphic to c0

Benyamini (1973): If X ⊂ C(K ), K compact, G-space (Grothendieck)

is a closed separable subspace, for which there are families (xi )i∈I ,

(yi )i∈I ⊂ K , (λi ) ⊂ C so that

X = {f ∈ C(K ) : f (xi ) = λi f (yi ), i ∈ I},

Then X is isomorphic to a C(K ) space.

Thus Hλ is a C(K ) space, K countable compact. It is therefore

enough to show that Szlenk index of Hλ is ω. For that the following

observation is crucial:

Lemma

Assume y ∈ `∞(Z) has finite support. Then there is an x ∈ Hλ, so

that

x |supp(y) = y |supp(y) and ‖x |Z\supp(y)‖∞ ≤ λ−1‖y‖∞.
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Assume y ∈ `∞(Z) has finite support. Then there is an x ∈ Hλ, so

that

x |supp(y) = y |supp(y) and ‖x |Z\supp(y)‖∞ ≤ λ−1‖y‖∞.
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Characterization of algebraic preduals of `1(Z)

Theorem

A closed subspace E ⊂ `∞(Z) is a Banach algebraic predual of `1(Z)

if and only if:

There is a semitopological semigroup compactification S of Z
(Meaning: S is a compact space containing Z as a dense subset,

admitting an operation +, which extends + on Z, so that (S,+) is a

semigroup, and which is separately continuous)

and a bounded projection and homomorphism with respect to

convolution

Θ : M(S)→ `1(Z),

so that Ker(Θ) is w∗-closed (w∗ = σ(M(S),C(S)) and

E =⊥ Ker(Θ) =
{

f ∈C(S) : ∀µ∈Ker(Θ) 〈µ, f 〉 = 0
}
.

Moreover in that case the pair (S,Θ) can be chosen to be minimal,

meaning that

S → `1(Z), s 7→ Θ(δs) is injective.
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Sketch for “⇐”:

Θ ∗-homorphism⇒ Ker(Θ) ⊂ M(S) ideal⇒ E `1-submodul.

Secondly consider (identify E with subspace of `∞(Z)):

ιE : `1(Z)→ E∗, ,a 7→ a|E .

Injectivity: if a ∈ `1(Z) with 〈a, x〉 = 0 for all x ∈ E , and thus

a ∈ (⊥Ker(Θ))⊥. Since Ker(Θ) is σ(M(S),C(S))-closed it follows that

a ∈ (⊥Ker(Θ))⊥ = Ker(Θ).

But Θ(a) = a, and thus a = 0.

Surjectvity: if µ ∈ E∗, extend µ to µ̃ ∈ M(S), then µ̃−Θ(µ̃) ∈ Ker(Θ),

and thus for x ∈ E =⊥ Ker(Θ)

ιE (Θ(µ̃))(x) = Θ(µ̃)(x) = µ̃(x) = µ(x).
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Construction of other Examples

We choose: S = Z× N0 ∪ {∞}.

On Z×N0 usual semigroup structure and γ+∞ =∞+γ =∞+∞ =∞.

We identify Z ≡ Z× {0}, N0 = {0} × N0 and put e = (0,1).

Each µ ∈ `1(S) can be written as

µ = µ∞δ∞ +
∑
n∈N0

µn ∗ δn, with µn ∈ `1(Z), n ∈ N0.

A projection Θ : `1(S)→ `1(Z), which is also a ∗-homemorphsim is

uniquely determined by a = Θ(e) ∈ `1(Z). Then

Θ
(
µ∞δ∞+

∑
n∈N0

µn∗δn

)
=
∑
n∈N0

µn∗an, with an = a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
n times

, µn ∈ `1(Z).

In order for Θ to be bounded we need: supn→∞ ‖an‖1 <∞.

We also need still to choose an appropriate topology on S.
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Lemma

If limn→∞ ‖an‖∞ = 0, then, regardless of the compact Hausdorff

topology on S, it follows that Ker(Θ) is σ(`1(S),C(S))-closed in `1(S).

Lemma
It is enough to define a local compact topology on T = Z× N0, which

turns T to a semi topological semi group. Then the one-point

compactification on S = T ∪ {∞} is also a semi-topological

semi-group.

Construction: We let J = {2j : j ∈ N}
Important property: J is additively sparse:

∀s 6= t ∈ N : (s + J) ∩ (t + J) is finite.
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We will define topology on T (and thus on S) so that

lim
j∈J,j→∞

(j ,0) = (0,1), and thus lim
j∈J,j→∞

(j+z,n) = (z,n+1), (z,n) ∈ T .

For γ = (z,n) ∈ Z× N0, a countable neighborhood basis Vk ∈ N of γ

is defined by

Vγ,k =
{(

z +
n−m∑
r=1

2sr ,m
)

: 0 ≤ m ≤ n, k < s1 < s2 < . . . < sn−m

}
.

For example:

V(z,0),k = {(z,0)}

V(z,1),k = {(z,1)} ∪
{

(z + 2s,0) : k < s
}

V(z,2),k = {(z,2)} ∪
{

(z + 2s,1) : k < s
}
∪
{

(z + 2s1 + 2s2 ,0) : k < s
}

...
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n−m∑
r=1

2sr ,m
)

: 0 ≤ m ≤ n, k < s1 < s2 < . . . < sn−m

}
.

For example:

V(z,0),k = {(z,0)}

V(z,1),k = {(z,1)} ∪
{

(z + 2s,0) : k < s
}

V(z,2),k = {(z,2)} ∪
{

(z + 2s,1) : k < s
}
∪
{

(z + 2s1 + 2s2 ,0) : k < s
}

...
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We still need to choose a := Θ(e) ∈ `1(Z).

If a = 0 then E = c0(Z),

If a = 1
λδ0,|λ| < 1, then we recapture first example Hλ,

But if we choose

a ∈ `1(Z) so that 1 = ‖a‖1 = ‖an‖, but on the other hand we still

have limn→∞ ‖an‖∞ = 0 (needed to ensure that Ker(Θ) is

w∗-closed) then it follows that Szlenk index of E is ω2.

Thus choose for example a = 1
2δ0 + 1

2δ1, in order to get algebraic

predual of `1 which is not isomorphic to c0.
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