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Formulation of Main Question

In a joint work with Matt Daws, Richard Haydon, and Stuart White we
consider the following

Problem

Consider the Banach algebra ¢1(Z) (with convolution x).
Is the Banach algebraic predual E of ¢1(Z) unique?
How can we characterize these algebraic preduals ?

Preliminary Definition: A concrete algebraic predual of ¢{(Z) is a
closed subspace E of {,,(Z), so that E is shiftinvariant and E* is
isomorphic to ¢1(Z).
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Banach Algebras
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Banach Algebras

A Banach space X with a multiplication -, which turns X into an
associative algebra, and has the property that

-yl < Ux-llyll, xyeX

is called a Banach Algebra.
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Banach Algebras

A Banach space X with a multiplication -, which turns X into an
associative algebra, and has the property that

-yl < Ux-llyll, xyeX

is called a Banach Algebra.

@ Trivial Banach Algebra: Banach space X, with x-y =0, x, y e X,

@ Operator algebras: Closed subalgebras of L(X), for example
C*-algebras,

© Convolution algebras. G locally compact group, © Haar measure.
(a) M(G) space of finite Radon measure (b) L;(u),
both with convolution.
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Dual Banach Algebras
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Dual Banach Algebras

Assume (A, -) is a Banach algebra, and assume that there is a
subspace A, C A* which has the following two properties:
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Assume (A, -) is a Banach algebra, and assume that there is a
subspace A, C A* which has the following two properties:

@ The canonical operator
J:A— (A, ar [f— f(a)]

is a surjective isomorphism.
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Dual Banach Algebras

Assume (A, -) is a Banach algebra, and assume that there is a
subspace A, C A* which has the following two properties:

@ The canonical operator
J:A— (A, ar [f— f(a)]

is a surjective isomorphism.

@ A, is aclosed submodul of A*, i.e. if f € A, and a € A then ,f, f,
are also in A,, where

af :A—C, b~ f(ab), fa: A—C, b f(ba).
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Dual Banach Algebras

Assume (A, -) is a Banach algebra, and assume that there is a
subspace A, C A* which has the following two properties:

@ The canonical operator
J:A— (A, ar [f— f(a)]

is a surjective isomorphism.

@ A, is aclosed submodul of A*, i.e. if f € A, and a € A then ,f, f,
are also in A,, where

af :A—C, b~ f(ab), fa: A—C, b f(ba).

Then we say that A is a Dual Algebra and call A, a concrete
Predual of A.
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@ (1) simply means that as a Banach A is isomorphic to the dual of
a Banach space X. Indeed if X is Banach space and T : A — X*
is onto isomorphism, then consider T* : X** — A* and define

A = T*(«(X)) C A%, with. : X — X** canonical embedding,

and note that A, is a concrete predual of A.
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@ (1) simply means that as a Banach A is isomorphic to the dual of
a Banach space X. Indeed if X is Banach space and T : A — X*
is onto isomorphism, then consider T* : X** — A* and define

A = T*(«(X)) C A%, with. : X — X** canonical embedding,

and note that A, is a concrete predual of A.

@ Assuming A, satisfies (1). Then property (2) is equivalent with

-t Ax A— A, is separately w* = (A, A.)-continuous.
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Remarks

@ (1) simply means that as a Banach A is isomorphic to the dual of
a Banach space X. Indeed if X is Banach space and T : A — X*
is onto isomorphism, then consider T* : X** — A* and define

A = T*(«(X)) C A%, with. : X — X** canonical embedding,

and note that A, is a concrete predual of A.

@ Assuming A, satisfies (1). Then property (2) is equivalent with
-t Ax A— A, is separately w* = (A, A.)-continuous.

@ If Ais a trivial Banach algebra (2) is vacuous, and, thus a trivial
dual algebra is simply a Banach space which is isomorphic to a
dual space. Thus, in that case, preduals are in general Not
unique.
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The case of C*-algebras

Sakai (1956): If A is a C* algebra then (1) implies that A is a von
Neuman algebra and (2) is automatically satisfied for any concrete
predual. Moreover the predual is unique, up to isometry (but not up to
isomorphism: £, ~ L[0, 1]).
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The case of C*-algebras

Sakai (1956): If A is a C* algebra then (1) implies that A is a von
Neuman algebra and (2) is automatically satisfied for any concrete
predual. Moreover the predual is unique, up to isometry (but not up to
isomorphism: £, ~ L[0, 1]).

Daws, Pham and White (2009): If A is a von Neuman algebra then A
(literally!) has a unique concrete algebraic predual, meaning any two
closed A-submoduls A" and A® of A* whose duals are
(canonically) isomorphic to A, are equal as vector spaces.
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Formulation of Main Question

Consider on ¢1(Z) the convolution « : £1(Z) x ¢1(Z) — £1(Z)

f*g:(Zf(n—k)g(k):neN):(Zf neN)

kezZ keN

for f = (f(n))nez and g = (g(N))nez in ¢1(Z).
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Formulation of Main Question

Consider on ¢1(Z) the convolution « : £1(Z) x ¢1(Z) — £1(Z)

f*g:(Zf(n—k)g(k):neN):(Zf neN)

kezZ keN

for f = (f(n))nez and g = (g(N))nez in ¢1(Z).

Problem

Assume E C (. (Z) is a (concrete) algebraic predual of {1(Z).
@ Does it follow that E = co(Z) (literally)?
@ Does it follow that E is isomorphic co(Z) ?

Th. Schlumprecht Shift Invariant Preduals of £4 (Z)



Main Results

Th. Schlumprecht Shift Invariant Preduals of £4 ()



Main Results

@ Construction of a concrete algebraic predual Hy C (. (Z) of
01(Z), for every X € C, |A| > 0, of ¢1(Z) not equal to cy(Z), not
even isometric to ¢y, but isomorphic to ¢;.
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@ Construction of a concrete algebraic predual Hy C (. (Z) of
01(Z), for every X € C, |A| > 0, of ¢1(Z) not equal to cy(Z), not
even isometric to ¢y, but isomorphic to ¢;.

@ Characterization of all algebraic preduals of ¢1(Z) as certain
quotients of C(S), where S is a semi-topological semi-group
compactification of Z.
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Main Results

@ Construction of a concrete algebraic predual Hy C (. (Z) of
01(Z), for every X € C, |A| > 0, of ¢1(Z) not equal to cy(Z), not
even isometric to ¢y, but isomorphic to ¢;.

@ Characterization of all algebraic preduals of ¢1(Z) as certain
quotients of C(S), where S is a semi-topological semi-group
compactification of Z.

© Construction of an algebraic predual E of ¢1(Z) which is not
isomorphic to ¢y(Z).
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(en)nez unit vector basis in ¢y(Z),
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(en)nez unit vector basis in ¢o(Z), (dn):nez unit vector basis in ¢1(Z).
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(en)nez unit vector basis in ¢y(Z), (dn).nez unit vector basis in ¢1(Z).
Since convolution by ¢4, induce the bilateral shift o on ¢1(Z), and .
generate the (commutative ) Banach algebra we deduce:
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(en)nez unit vector basis in ¢y(Z), (dn).nez unit vector basis in ¢1(Z).
Since convolution by ¢4, induce the bilateral shift o on ¢1(Z), and .
generate the (commutative ) Banach algebra we deduce:

Lemma

For a subspace E C {.,(Z), which is a predual of ¢1(Z) the following
are equivalent

@ E is an algebraic predual of ¢+(Z),

@ E is invariant under bilateral shift,

© Bilateral shift is w*-continuous on ¢1(Z).
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First Example

Let A € C, |A| > 1. For n € N let b(n) be the number of 1’s in the
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Let A € C, |A| > 1. For n € N let b(n) be the number of 1’s in the
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First Example

Let A € C, |A| > 1. For n € N let b(n) be the number of 1’s in the
binary expansion of n, for n < 0 put b(n) = oo and put

o=\ nez)=(.0,0,1, A" AT A2 N L)

and

Hy = span[o"(xp) : n € Z].

Put also

Ey = {(X(n) tneZ): lim x(r+2") = %x(r) forall r e Z}.

n—oo
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First Example

Let A € C, |A| > 1. For n € N let b(n) be the number of 1’s in the
binary expansion of n, for n < 0 put b(n) = oo and put

o=\ nez)=(.0,0,1, A" AT A2 N L)

and

Hy = span[o"(xp) : n € Z].

Put also
. n 1
E/\:{(X(n):HEZ)I lim X(r+2 ):XX(f)fora”rEZ}.

n—oo

It is clear that H, C E, and that both spaces are invariant under o.
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First Example

Let A € C, |A| > 1. For n € N let b(n) be the number of 1’s in the
binary expansion of n, for n < 0 put b(n) = oo and put

o=\ nez)=(.0,0,1, A" AT A2 N L)

and

Hy = span[o"(xp) : n € Z].

Put also

Ey = {(X(n) tneZ): lim x(r+2") = %x(r) forall r e Z}.

n—oo

It is clear that H, C E, and that both spaces are invariant under o.
We claim that Hy = E, and that H, is a predual of ¢1(Z).
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First Example

Let A € C, |A| > 1. For n € N let b(n) be the number of 1’s in the
binary expansion of n, for n < 0 put b(n) = oo and put

o=\ nez)=(.0,0,1, A" AT A2 N L)

and

Hy = span[o"(xp) : n € Z].
Put also

Ey = {(X(n) tneZ): lim x(r+2") = %x(r) forall r e Z}.

n—oo

It is clear that H, C E, and that both spaces are invariant under o.
We claim that Hy = E, and that H, is a predual of ¢1(Z).
For simplicity we set \=2and H=H,, E=E> .
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It is enough to show that
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It is enough to show that

For each f € ¢41(Z) \ {0} thereis a h € H so that (h, f) # 0, (1)
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For each € E* thereis an f € ¢4(Z) so that (u,-) = (f,-) on E. (2)
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It is enough to show that

For each f € ¢41(Z) \ {0} thereis a h € H so that (h, f) # 0, (1)
For each € E* thereis an f € ¢4(Z) so that (u,-) = (f,-) on E. (2)

Then both, E and H, satisfy (1) and (2), and the canonical operators
by — E*, f— Flg, and ¢y — H*,f — f|y

are injective and surjective, and thus, by the Closed Graph Theorem
isomorphism.
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It is enough to show that

For each f € ¢41(Z) \ {0} thereis a h € H so that (h, f) # 0, (1)
For each € E* thereis an f € ¢4(Z) so that (u,-) = (f,-) on E. (2)

Then both, E and H, satisfy (1) and (2), and the canonical operators
by — E*, f— Flg, and ¢y — H*,f — f|y

are injective and surjective, and thus, by the Closed Graph Theorem
isomorphism. Thus E and H are both concrete algebraic preduals.
Since H C E, an application of the Hahn Banach Theorem shows that
both spaces are equal.
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In order to show (1) let f = (f(n) : n € Z) € ¢1(Z) with f(mg) # 0.

Th. Schlumprecht Shift Invariant Preduals of £4 ()



In order to show (1) let f = (f(n) : n € Z) € ¢1(Z) with f(mg) # 0.

x(n/2) if neven

Put 7 : 0o (Z) — £oo(Z), with T(x)(n) = {
0 if n odd.
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In order to show (1) let f = (f(n) : n € Z) € ¢4(Z) with f(mo) # 0.

Put 7 : 0o (Z) — Loo(Z), with 7(

(Z)
n/2 if n even
if n odd.

Then, after some computations, we obtain

2

= (1-5) (1300 = X, (1o n
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Put 7 : 0o (Z) — Loo(Z), with 7(

(Z)
n/2 if n even
if n odd.

Then, after some computations, we obtain

2

= (1-5) (1300 = X, (1o n

meaning that 7|g is an operator on E (into E)
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In order to show (1) let f = (f(n) : n € Z) € ¢4(Z) with f(mo) # 0.

Put 7 : 0o (Z) — Loo(Z), with 7(

(Z)
n/2 if n even
if n odd.

Then, after some computations, we obtain

2

= (1-5) (1300 = X, (1o n

meaning that 7|g is an operator on E (into E)
Thus

(@™ 0 7"(x0), f) = (T(x0), 0~ ™(f)) =00 X0(0)f(mo) = f(mo) # 0.
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In order to show (2) we first identify E with a subspace of C(3Z),
where GZ are the ultrafilters on Z.
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In order to show (2) we first identify E with a subspace of C(3Z),
where GZ are the ultrafilters on Z.
PutZ*=pZ\Zandfork e Nandr e Z

X ={Uez  :vmeN {r+2m+2% ... 2% :m<ni<...neN} €U}
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In order to show (2) we first identify E with a subspace of C(3Z),
where GZ are the ultrafilters on Z.
PutZ*=pZ\Zandfork e Nandr e Z

X ={Uez  :vmeN {r+2m+2% ... 2% :m<ni<...neN} €U}

[e'e) * k
X() =7 \UkeN,,er,( ).
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In order to show (2) we first identify E with a subspace of C(3Z),
where GZ are the ultrafilters on Z.
PutZ*=pZ\Zandfork e Nandr e Z

XY = {Uezr . YmeN {r+2m42% 2% .m<n;<...neN} €U}
X() = 77\ Uken.rez X" Then E can be written as

E={feC(): fU)= 2-k¢(n), fortt e XM, rez, keN, and fxo) = 0}.
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In order to show (2) we first identify E with a subspace of C(3Z),
where GZ are the ultrafilters on Z.
PutZ*=pZ\Zandfork e Nandr e Z

X ={Uez  :vmeN {r+2m+2% ... 2% :m<ni<...neN} €U}
X = Z*\ Ugenrez X). Then E can be written as
E={feC(): fU)= 2-k¢(n), fortte X, rez, keN, and fxo) = 0}.

Now let n € E*,i.e. u = ji|g with i € ¢ (Z) = M(5Z) and put

f=(f(0): tez) = (A({th + 3 %ﬁ(ka))) € (4(2).

keN
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In order to show (2) we first identify E with a subspace of C(3Z),
where GZ are the ultrafilters on Z.
PutZ*=pZ\Zandfork e Nandr e Z

={UeZ" :VmeN {r+2M+2™ .. 2% :m<n <...nkeN} eU}
X = 27\ Ugen.rez X Then E can be written as
E={feC(@z): f(U)=27"r), fortt e XM, rez, keN, and flyw) = 0}.

Now let n € E*,i.e. u = ji|g with i € ¢ (Z) = M(5Z) and put

= (f(t): te z) = (A({t)) + Y %ﬁ(ka))) € (4(2).

keN
It follows for x € E C C((Z)

(1 %) = Y At +ZZ/ — (F.x).

tez teZ keZ
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H, is isomorphic to ¢y
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H, is isomorphic to ¢y

Benyamini (1973): If X ¢ C(K), K compact, G-space (Grothendieck)
is a closed separable subspace, for which there are families (x;);c/,
(¥i)ier € K, (Aj) C C so that

X = {f e C(K): f(x;)) = Nif(yi), i € I},

Then X is isomorphic to a C(K) space.
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H, is isomorphic to ¢y

Benyamini (1973): If X ¢ C(K), K compact, G-space (Grothendieck)
is a closed separable subspace, for which there are families (x;);c/,
(¥i)ier € K, (Aj) C C so that

X = {f e C(K): f(x;)) = Nif(yi), i € I},

Then X is isomorphic to a C(K) space.

Thus H, is a C(K) space, K countable compact. It is therefore
enough to show that Szlenk index of H, is w. For that the following
observation is crucial:
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H, is isomorphic to ¢y

Benyamini (1973): If X ¢ C(K), K compact, G-space (Grothendieck)
is a closed separable subspace, for which there are families (x;);c/,
(¥i)ier € K, (Aj) C C so that

X = {f e C(K): f(x;)) = Nif(yi), i € I},

Then X is isomorphic to a C(K) space.

Thus H, is a C(K) space, K countable compact. It is therefore
enough to show that Szlenk index of H, is w. For that the following
observation is crucial:

Assume y € ((Z) has finite support. Then there is an x € Hy, so
that

X|supp(y) = Y|supp(y) and HX‘Z\supp(y)Hoo < )‘_1 ||y||<>o
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Characterization of algebraic preduals of ¢1(Z)
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Characterization of algebraic preduals of ¢1(Z)

A closed subspace E C (,(Z) is a Banach algebraic predual of {1(Z)
if and only if:

Th. Schlumprecht Shift Invariant Preduals of £4 (Z)



Characterization of algebraic preduals of ¢1(Z)

A closed subspace E C (,(Z) is a Banach algebraic predual of {1(Z)
if and only if:
There is a semitopological semigroup compactification S of 7.
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Characterization of algebraic preduals of ¢1(Z)

Theorem
A closed subspace E C (,(Z) is a Banach algebraic predual of {1(Z)
if and only if:

There is a semitopological semigroup compactification S of 7.
(Meaning: S is a compact space containing 7 as a dense subset,
admitting an operation +, which extends + on Z, so that (S, +) is a
semigroup, and which is separately continuous)

Th. Schlumprecht Shift Invariant Preduals of £4 (Z)



Characterization of algebraic preduals of ¢1(Z)

Theorem

A closed subspace E C (,(Z) is a Banach algebraic predual of {1(Z)
if and only if:

There is a semitopological semigroup compactification S of 7.

and a bounded projection and homomorphism with respect to
convolution

0 : M(S) — t1(Z),
so that Ker(®©) is w*-closed (w* = o(M(S), C(S)) and

E =* Ker(©) = {fe C(S) : YueKer(®©) (u,f) = 0}.
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Characterization of algebraic preduals of ¢1(Z)

Theorem
A closed subspace E C (,(Z) is a Banach algebraic predual of {1(Z)
if and only if:

There is a semitopological semigroup compactification S of 7.
and a bounded projection and homomorphism with respect to
convolution

0 : M(S) — t1(2),

so that Ker(®©) is w*-closed (w* = o(M(S), C(S)) and
E =* Ker(©) = {fe C(S) : YueKer(®©) (u,f) = 0}.

Moreover in that case the pair (S, ©) can be chosen to be minimal,
meaning that

S — li(Z), s— ©(ds) is injective.
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Sketch for “<":
© x-homorphism = Ker(©) c M(S) ideal = E ¢4-submodul.
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Sketch for “<=”:
© x-homorphism = Ker(©) c M(S) ideal = E ¢4-submodul.
Secondly consider (identify E with subspace of /,,(Z)):

e 0(Z) — E*, ,a~— ale.
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Sketch for “<”:
© x-homorphism = Ker(©) c M(S) ideal = E ¢4-submodul.
Secondly consider (identify E with subspace of /,,(Z)):

e 0(Z) — E*, ,a~— ale.

Injectivity: if a € ¢1(Z) with (a, x) = 0 for all x € E, and thus

ac (+Ker(©))*. Since Ker(©) is o(M(S), C(S))-closed it follows that
a e (tKer(©))* = Ker(©).

But ©(a) = a, and thus a = 0.
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Sketch for “<”:
© x-homorphism = Ker(©) c M(S) ideal = E ¢4-submodul.
Secondly consider (identify E with subspace of /,,(Z)):

e 0(Z) — E*, ,a~— ale.

Injectivity: if a € ¢1(Z) with (a, x) = 0 for all x € E, and thus

ac (+Ker(©))*. Since Ker(©) is o(M(S), C(S))-closed it follows that
a e (tKer(©))* = Ker(©).

But ©(a) = a, and thus a = 0.

Surjectvity: if u € E*, extend pto i € M(S), then ji — ©(ji) € Ker(©),
and thus for x € E =+ Ker(©)
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Construction of other Examples

We choose: § = Z x Ng U {oo}.
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Construction of other Examples

We choose: S =7Z x No U {0}
On ZxNgp usual semigroup structure and y+oo = co+7y = co+oo = co.
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Construction of other Examples

We choose: § = Z x Ng U {oo}.
On ZxNgp usual semigroup structure and y+oo = co+7y = co+oo = co.
We identify Z = Z x {0}, Ng = {0} x Np and put e = (0, 1).
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Construction of other Examples

We choose: S =7Z x No U {0}

On ZxNgp usual semigroup structure and y+oo = co+7y = co+oo = co.
We identify Z = Z x {0}, No = {0} x Np and put e = (0, 1).

Each p € ¢4(S) can be written as

= Mhooloo + Z tn * 0p, With i € €4(Z), n € No.
neNy
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Construction of other Examples

We choose: § = Z x Ng U {oo}.

On ZxNgp usual semigroup structure and y+oo = co+7y = co+oo = co.
We identify Z = Z x {0}, No = {0} x Np and put e = (0, 1).

Each p € ¢4(S) can be written as

= fooloo + Z tn * 0p, With i € €4(Z), n € No.

neNy

A projection © : ¢4(S) — ¢1(Z), which is also a x-homemorphsim is
uniquely determined by a = ©(e) € ¢1(Z). Then

9(u00500+z un*én) = Z unxd’, with @" = ax ax...x a, un € (1(Z).

neNy neNy ntimes
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Construction of other Examples

We choose: S =7Z x No U {0}

On ZxNgp usual semigroup structure and y+oo = co+7y = co+oo = co.
We identify Z = Z x {0}, No = {0} x Np and put e = (0, 1).

Each p € ¢4(S) can be written as

= fooloo + Z tn * 0p, With i € €4(Z), n € No.

neNy
A projection © : ¢4(S) — ¢1(Z), which is also a x-homemorphsim is

uniquely determined by a = ©(e) € ¢1(Z). Then

9(u00500+z un*én) = Z unxd’, with @" = ax ax...x a, un € (1(Z).

neNy neNy ntimes

In order for © to be bounded we need: sup,,_, . [|a"||1 < cc.
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Construction of other Examples

We choose: S =7Z x No U {0}

On ZxNgp usual semigroup structure and y+oo = co+7y = co+oo = co.
We identify Z = Z x {0}, No = {0} x Np and put e = (0, 1).

Each p € ¢4(S) can be written as

= fooloo + Z tn * 0p, With i € €4(Z), n € No.
neNy

A projection © : ¢4(S) — ¢1(Z), which is also a x-homemorphsim is
uniquely determined by a = ©(e) € ¢1(Z). Then

9(u00500+z un*én) = Z unxd’, with @" = ax ax...x a, un € (1(Z).

neNy neNy ntimes

In order for © to be bounded we need: sup,,_, . [|a"||1 < cc.
We also need still to choose an appropriate topology on S.
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Iflimy— ||@"]|cc = O, then, regardless of the compact Hausdorff
topology on S, it follows that Ker(©) is o(¢1(S), C(S))-closed in £1(S).
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Lemma

Iflimp_. ||2"||« = O, then, regardless of the compact Hausdorff
topology on S, it follows that Ker(©) is o(¢1(S), C(S))-closed in £1(S).

Lemma

It is enough to define a local compact topology on T = 7 x Ny, which
turns T to a semi topological semi group. Then the one-point
compactification on S = 7 U {oo} is also a semi-topological

semi-group.

\
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Lemma

Iflimp_. ||2"||« = O, then, regardless of the compact Hausdorff
topology on S, it follows that Ker(©) is o(¢1(S), C(S))-closed in £1(S).

Lemma

It is enough to define a local compact topology on T = 7 x Ny, which
turns T to a semi topological semi group. Then the one-point
compactification on S = 7 U {oo} is also a semi-topological
semi-group.

\

Construction: We let J = {2/ : j € N}
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Lemma

Iflimp_. ||2"||« = O, then, regardless of the compact Hausdorff
topology on S, it follows that Ker(©) is o(¢1(S), C(S))-closed in £1(S).

Lemma

It is enough to define a local compact topology on T = 7 x Ny, which
turns T to a semi topological semi group. Then the one-point
compactification on S = 7 U {oo} is also a semi-topological

semi-group.

\

Construction: We let J = {2/ : j € N}
Important property: J is additively sparse:
Vs#teN:(s+J)N(t+J) is finite.
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We will define topology on 7 (and thus on S) so that

lim (j,0)=(0,1), andthus I|im (j+z,n)=(z,n+1), (z,n)eT.
jedj—o0 jedsj—oo
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We will define topology on 7 (and thus on S) so that

lim (j,0)=(0,1), andthus I|im (j+z,n)=(z,n+1), (z,n)eT.
jedj—o0 jedsj—oo

For v = (z, n) € Z x Ny, a countable neighborhood basis V| € N of v
is defined by

Th. Schlumprecht Shift Invariant Preduals of £4 ()



We will define topology on 7 (and thus on S) so that

lim (j,0)=(0,1), andthus I|im (j+z,n)=(z,n+1), (z,n)eT.
jedj—o0 jedsj—oo

For v = (z, n) € Z x Ny, a countable neighborhood basis V| € N of v
is defined by

7k_{(quZZS' ):0§m§n,k<s1<sz<...<s,,,m}.

For example:
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We will define topology on 7 (and thus on S) so that
lim (j,0)=(0,1), andthus I|im (j+z,n)=(z,n+1), (z,n)eT.

J€J j—o0 jeJ,j—o0

For v = (z,n) € Z x Ny, a countable neighborhood basis Vi € N of v
is defined by

7k_{(quZZS' ):0§m§n,k<s1 <sz<...<s,,,m}.
For example:

Vizo)k = {(2,0)}

Th. Schlumprecht Shift Invariant Preduals of £4 (Z)



We will define topology on 7 (and thus on S) so that
lim (j,0) = (0,1), and thus IGJim (j+z,n) = (z,n+1), (z,n)eT.
jedj—oo

JjE€J,j—00

For v = (z, n) € Z x Ny, a countable neighborhood basis V| € N of v
is defined by

7k_{(quZZS' ):0§m§n,k<s1 <sz<...<s,,,m}.
For example:

Vizoyk = {(2,0)}
Viznk=1{(z,1)}U {(Z+ 2°.0): k< s}
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We will define topology on 7 (and thus on S) so that

lim (j,0)=(0,1), andthus I|im (j+z,n)=(z,n+1), (z,n)eT.
jed,j—oo j€J,j—o0

For v = (z, n) € Z x Ny, a countable neighborhood basis V| € N of v
is defined by

7k_{(quZZS' ):0§m§n,k<s1 <sz<...<s,,,m}.
For example:

Vizoyk = {(2,0)}
Viznk=1{(z,1)}U {(Z+ 2°.0): k< s}
V(z,2),k = {(272)} U {(Z+25, 1) k< S} U {(z—|-231 _|_232’0) k< S}
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We still need to choose a := ©(e) € (1(Z).
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We still need to choose a := ©(e) € (1(Z).
o If a=0then E = ¢(Z),
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We still need to choose a := ©(e) € (1(Z).
o If a=0then E = ¢(Z),

o lfa= 1X(So,|/\| < 1, then we recapture first example H,,
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We still need to choose a := ©(e) € (1(Z).
o If a=0then E = ¢(Z),
o lfa= 1X(So,|/\| < 1, then we recapture first example H,,

But if we choose
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We still need to choose a := ©(e) € (1(Z).

o If a=0then E = ¢(Z),

o lfa= 1X(So,|/\| < 1, then we recapture first example H,,
But if we choose

@ ac (i(Z)sothat1 = |al|1 =] &"|, but on the other hand we still
have lim,_, |||« = 0 (needed to ensure that Ker(©) is
w*-closed) then it follows that Szlenk index of E is w?.
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We still need to choose a := ©(e) € (1(Z).

o If a=0then E = ¢(Z),

o lfa= 1X(So,|/\| < 1, then we recapture first example H,,
But if we choose

@ ac (i(Z)sothat1 = |al|1 =] &"|, but on the other hand we still
have lim,_, |||« = 0 (needed to ensure that Ker(©) is
w*-closed) then it follows that Szlenk index of E is w?.

Thus choose for example a = 16, + 361, in order to get algebraic
predual of ¢1 which is not isomorphic to cy.
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