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A few words on Sturm-Liouville theory

A Sturm-Liouville differential expression is

ℓ :=
1
r

(

−
d
dx

p
d
dx

+ q
)

,

r , p−1, q ∈ L1
loc (a, b) real functions, r 6= 0 a.e.
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A Sturm-Liouville differential expression is

ℓ :=
1
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(
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d
dx

+ q
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r , p−1, q ∈ L1
loc (a, b) real functions, r 6= 0 a.e.

Schrödinger operators: −∆+ V , V (|x |) = V (s) in R
3.

L2(R3)=L2
r2(R+)⊗L2(S2) ⇒ −

d2

ds2+V (s)+
l(l + 1)

s2 in L2(R+)
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A few words on Sturm-Liouville theory

A Sturm-Liouville differential expression is

ℓ :=
1
r

(

−
d
dx

p
d
dx

+ q
)

,

r , p−1, q ∈ L1
loc (a, b) real functions, r 6= 0 a.e.

Schrödinger operators: −∆+ V , V (|x |) = V (s) in R
3.

L2(R3)=L2
r2(R+)⊗L2(S2) ⇒ −

d2

ds2+V (s)+
l(l + 1)

s2 in L2(R+)

PDEs: r(ν)∂Ψ
∂z (z, ν) =

∂
∂ν

p(ν)∂Ψ
∂ν

(z, ν)− q(ν)Ψ(z, ν).
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A few words on Sturm-Liouville theory

A Sturm-Liouville differential expression is

ℓ :=
1
r

(

−
d
dx

p
d
dx

+ q
)

,

r , p−1, q ∈ L1
loc (a, b) real functions, r 6= 0 a.e.

Schrödinger operators: −∆+ V , V (|x |) = V (s) in R
3.

L2(R3)=L2
r2(R+)⊗L2(S2) ⇒ −

d2

ds2+V (s)+
l(l + 1)

s2 in L2(R+)

PDEs: r(ν)∂Ψ
∂z (z, ν) =

∂
∂ν

p(ν)∂Ψ
∂ν

(z, ν)− q(ν)Ψ(z, ν).

Ψ(z, ν) = e−λz f (ν) ⇒
1
r

(

−
d

dν
p

d
dν

f + qf
)

= λf

Jussi Behrndt Spectral theory for differential operators with indefinite weights



Differential operators associated to ℓ = 1
r (−

d
dx p d

dx + q)
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Differential operators associated to ℓ = 1
r (−

d
dx p d

dx + q)

Weighted L2 Hilbert space :

L2
|r |(a, b) :=

{

f : (a, b) → C measurable :

∫ b

a
|f |2|r |dx < ∞

}

(f , g) :=
∫ b

a
f (x) g(x) |r(x)| dx .
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Differential operators associated to ℓ = 1
r (−

d
dx p d

dx + q)

Weighted L2 Hilbert space :

L2
|r |(a, b) :=

{

f : (a, b) → C measurable :

∫ b

a
|f |2|r |dx < ∞

}

(f , g) :=
∫ b

a
f (x) g(x) |r(x)| dx .

The maximal and minimal operator are defined as

Tmax f = ℓ(f ) =
1
r

(

−(pf ′)′ + qf
)

Dmax =
{

f ∈ L2
|r |(a, b) : f , pf ′ ∈ AC(a, b), ℓ(f ) ∈ L2

|r |(a, b)
}
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(
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Dmax =
{

f ∈ L2
|r |(a, b) : f , pf ′ ∈ AC(a, b), ℓ(f ) ∈ L2

|r |(a, b)
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Tmin f = ℓ(f ) ↾
{

f ∈ Dmax with compact support
}
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Differential operators associated to ℓ = 1
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Weighted L2 Hilbert space :

L2
|r |(a, b) :=

{

f : (a, b) → C measurable :

∫ b

a
|f |2|r |dx < ∞

}

(f , g) :=
∫ b

a
f (x) g(x) |r(x)| dx .

The maximal and minimal operator are defined as

Tmax f = ℓ(f ) =
1
r

(

−(pf ′)′ + qf
)

Dmax =
{

f ∈ L2
|r |(a, b) : f , pf ′ ∈ AC(a, b), ℓ(f ) ∈ L2

|r |(a, b)
}

Tmin f = ℓ(f ) ↾
{

f ∈ Dmax with compact support
}

r > 0
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Differential operators associated to ℓ = 1
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Weighted L2 Hilbert space :

L2
|r |(a, b) :=

{

f : (a, b) → C measurable :

∫ b

a
|f |2|r |dx < ∞

}

(f , g) :=
∫ b

a
f (x) g(x) |r(x)| dx .

The maximal and minimal operator are defined as

Tmax f = ℓ(f ) =
1
r

(

−(pf ′)′ + qf
)

Dmax =
{

f ∈ L2
|r |(a, b) : f , pf ′ ∈ AC(a, b), ℓ(f ) ∈ L2

|r |(a, b)
}

Tmin f = ℓ(f ) ↾
{

f ∈ Dmax with compact support
}

r > 0: (Tmin f , g) = (f ,Tmin g),
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Weighted L2 Hilbert space :

L2
|r |(a, b) :=

{

f : (a, b) → C measurable :

∫ b

a
|f |2|r |dx < ∞

}

(f , g) :=
∫ b

a
f (x) g(x) |r(x)| dx .

The maximal and minimal operator are defined as

Tmax f = ℓ(f ) =
1
r

(

−(pf ′)′ + qf
)

Dmax =
{

f ∈ L2
|r |(a, b) : f , pf ′ ∈ AC(a, b), ℓ(f ) ∈ L2

|r |(a, b)
}

Tmin f = ℓ(f ) ↾
{

f ∈ Dmax with compact support
}

r > 0: (Tmin f , g) = (f ,Tmin g), Tmin ⊂ T ∗
min ,T

∗
min = Tmax

r 6> 0: Tmin NOT symmetric in Hilbert space L2
|r |(a, b)
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r > 0 - A brief review
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r > 0 - A brief review

Theorem: Regular case - (a, b) finite, r , p−1, q ∈ L1(a, b)
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r > 0 - A brief review

Theorem: Regular case - (a, b) finite, r , p−1, q ∈ L1(a, b)

TΘf =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
f (b)

)

= Θ
(

−pf ′(a)
pf ′(b)

)}

selfadjoint in L2
|r |(a, b) for Θ = Θ∗,

Jussi Behrndt Spectral theory for differential operators with indefinite weights



r > 0 - A brief review

Theorem: Regular case - (a, b) finite, r , p−1, q ∈ L1(a, b)

TΘf =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
f (b)

)

= Θ
(

−pf ′(a)
pf ′(b)

)}

selfadjoint in L2
|r |(a, b) for Θ = Θ∗, and (TΘ − λ)−1 compact.

Jussi Behrndt Spectral theory for differential operators with indefinite weights



r > 0 - A brief review

Theorem: Regular case - (a, b) finite, r , p−1, q ∈ L1(a, b)

TΘf =
1
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(
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)

↾
{
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r > 0 - A brief review

Theorem: Regular case - (a, b) finite, r , p−1, q ∈ L1(a, b)

TΘf =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
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)
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(

−pf ′(a)
pf ′(b)

)}

selfadjoint in L2
|r |(a, b) for Θ = Θ∗, and (TΘ − λ)−1 compact.

σ(TΘ) = σp(TΘ)
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Theorem: Singular case on R, limx→±∞ q(x) = q±∞, p > 0
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r > 0 - A brief review

Theorem: Regular case - (a, b) finite, r , p−1, q ∈ L1(a, b)

TΘf =
1
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(

−(pf ′)′ + qf
)

↾
{
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f (a)
f (b)

)
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(
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)}

selfadjoint in L2
|r |(a, b) for Θ = Θ∗, and (TΘ − λ)−1 compact.

σ(TΘ) = σp(TΘ)
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Theorem: Singular case on R, limx→±∞ q(x) = q±∞, p > 0
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r > 0 - A brief review

Theorem: Regular case - (a, b) finite, r , p−1, q ∈ L1(a, b)

TΘf =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
f (b)

)

= Θ
(

−pf ′(a)
pf ′(b)

)}

selfadjoint in L2
|r |(a, b) for Θ = Θ∗, and (TΘ − λ)−1 compact.

σ(TΘ) = σp(TΘ)

R

Theorem: Singular case on R, limx→±∞ q(x) = q±∞, p > 0

Tf =
1
r

(

−(pf ′)′ + qf
)

↾ Dmax selfadjoint

q−∞

q+∞
R

′′2 ×′′ σess(T )r = p = 1 at ±∞
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r 6> 0 - Indefinite Sturm-Liouville operators
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r 6> 0 - Indefinite Sturm-Liouville operators

ℓ =
1
r

(

−
d
dx

p
d
dx

+ q
)

r , p−1, q real, p > 0,

r 6= 0 a.e. changes sign, r >> 0 at b und r << 0 at a
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r 6> 0 - Indefinite Sturm-Liouville operators

ℓ =
1
r

(

−
d
dx

p
d
dx

+ q
)

r , p−1, q real, p > 0,

r 6= 0 a.e. changes sign, r >> 0 at b und r << 0 at a

R

r
a

b
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r 6> 0 - Indefinite Sturm-Liouville operators

ℓ =
1
r

(

−
d
dx

p
d
dx

+ q
)

r , p−1, q real, p > 0,

r 6= 0 a.e. changes sign, r >> 0 at b und r << 0 at a

R

r
a

b

Amin f =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax compact support
}
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r 6> 0 - Indefinite Sturm-Liouville operators

ℓ =
1
r

(

−
d
dx

p
d
dx

+ q
)

r , p−1, q real, p > 0,

r 6= 0 a.e. changes sign, r >> 0 at b und r << 0 at a

R

r
a

b

Amin f =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax compact support
}

Amin symmetric w.r.t. INDEFINITE inner product

[f , g] :=
∫ b

a
f (x) g(x) r(x) dx , f , g ∈ L2

|r |(a, b)
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r 6> 0 - Indefinite Sturm-Liouville operators

ℓ =
1
r

(

−
d
dx

p
d
dx

+ q
)

r , p−1, q real, p > 0,

r 6= 0 a.e. changes sign, r >> 0 at b und r << 0 at a

R

r
a

b

Amin f =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax compact support
}

Amin symmetric w.r.t. INDEFINITE inner product

[f , g] :=
∫ b

a
f (x) g(x) r(x) dx , f , g ∈ L2

|r |(a, b)

L2
r (a, b) := (L2

|r |(a, b), [·, ·]) is a Krein space
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Regular indefinite Sturm-Liouville operators

Regular case: (a, b) finite interval, 1
p , q, r ∈ L1(a, b)
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Regular indefinite Sturm-Liouville operators

Regular case: (a, b) finite interval, 1
p , q, r ∈ L1(a, b)

Proposition

For 2 × 2-matrices Θ = Θ∗,

AΘf =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
f (b)

)

= Θ
(

−pf ′(a)
pf ′(b)

)}

is selfadjoint in the Krein space L2
r (a, b): AΘ = A+

Θ.

Jussi Behrndt Spectral theory for differential operators with indefinite weights



Regular indefinite Sturm-Liouville operators

Regular case: (a, b) finite interval, 1
p , q, r ∈ L1(a, b)

Proposition

For 2 × 2-matrices Θ = Θ∗,

AΘf =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
f (b)

)

= Θ
(

−pf ′(a)
pf ′(b)

)}

is selfadjoint in the Krein space L2
r (a, b): AΘ = A+

Θ.

Note: For arbitrary B = B+ in Krein space
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Regular indefinite Sturm-Liouville operators

Regular case: (a, b) finite interval, 1
p , q, r ∈ L1(a, b)

Proposition

For 2 × 2-matrices Θ = Θ∗,

AΘf =
1
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(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
f (b)

)

= Θ
(

−pf ′(a)
pf ′(b)

)}

is selfadjoint in the Krein space L2
r (a, b): AΘ = A+

Θ.

Note: For arbitrary B = B+ in Krein space

σ(B) ⊂ R NOT true

Jussi Behrndt Spectral theory for differential operators with indefinite weights



Regular indefinite Sturm-Liouville operators

Regular case: (a, b) finite interval, 1
p , q, r ∈ L1(a, b)

Proposition

For 2 × 2-matrices Θ = Θ∗,

AΘf =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
f (b)

)

= Θ
(

−pf ′(a)
pf ′(b)

)}

is selfadjoint in the Krein space L2
r (a, b): AΘ = A+

Θ.

Note: For arbitrary B = B+ in Krein space

σ(B) ⊂ R NOT true

ρ(B) = ∅ can happen
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Regular indefinite Sturm-Liouville operators

Regular case: (a, b) finite interval, 1
p , q, r ∈ L1(a, b)

Proposition

For 2 × 2-matrices Θ = Θ∗,

AΘf =
1
r

(

−(pf ′)′ + qf
)

↾
{

f ∈ Dmax :
(

f (a)
f (b)

)

= Θ
(

−pf ′(a)
pf ′(b)

)}

is selfadjoint in the Krein space L2
r (a, b): AΘ = A+

Θ.

Note: For arbitrary B = B+ in Krein space

σ(B) ⊂ R NOT true

ρ(B) = ∅ can happen

λ ∈ σ(B) ⇒ λ̄ ∈ σ(B)
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Spectra of regular indefinite Sturm-Liouville operators

We would like to know, e.g.,

is ρ(AΘ) 6= ∅ ?

does σ(AΘ) consist only of eigenvalues ?
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Spectra of regular indefinite Sturm-Liouville operators

We would like to know, e.g.,

is ρ(AΘ) 6= ∅ ?

does σ(AΘ) consist only of eigenvalues ?

Theorem [Curgus, H. Langer 89]: YES. YES.

R

[gµ, gµ] > 0[fλ, fλ] < 0

[hν , hν ] = 0

Jussi Behrndt Spectral theory for differential operators with indefinite weights
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R
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[hν , hν ] = 0

σp(AΘ) accumulates to +∞ and −∞
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Spectra of regular indefinite Sturm-Liouville operators

We would like to know, e.g.,

is ρ(AΘ) 6= ∅ ?

does σ(AΘ) consist only of eigenvalues ?

Theorem [Curgus, H. Langer 89]: YES. YES.

R

[gµ, gµ] > 0[fλ, fλ] < 0

[hν , hν ] = 0

σp(AΘ) accumulates to +∞ and −∞

Eigenfunctions at +∞ are [·, ·]-positive
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Spectra of regular indefinite Sturm-Liouville operators

We would like to know, e.g.,

is ρ(AΘ) 6= ∅ ?

does σ(AΘ) consist only of eigenvalues ?

Theorem [Curgus, H. Langer 89]: YES. YES.

R

[gµ, gµ] > 0[fλ, fλ] < 0

[hν , hν ] = 0

σp(AΘ) accumulates to +∞ and −∞

Eigenfunctions at +∞ are [·, ·]-positive

Eigenfunctions at −∞ are [·, ·]-negative

Only finitely many nonreal eigenvalues, egfcts. [·, ·]-neutral
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Singular indefinite Sturm-Liouville operators on R

A = 1
r (−

d
dx (p

d
dx ) + q) with limx→±∞ q(x) = q±∞
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Singular indefinite Sturm-Liouville operators on R

A = 1
r (−

d
dx (p

d
dx ) + q) with limx→±∞ q(x) = q±∞

Theorem [B. 07] The case q+∞ < −q−∞,
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(E(∆+)L2
r (R),+[·, ·]), (E(∆−)L2

r (R),−[·, ·]) Hilbert spaces
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The special case Af = sgn (·)(−f ′′ + qf )

Corollary [B. 07] If limx→±0 q(x) = 0, then

[Curgus,Najman 95],[Karabash,Malamud 07],[Karabash,Trunk 08]
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The special case Af = sgn (·)(−f ′′ + qf )

Corollary [B. 07] If limx→±0 q(x) = 0, then

[Curgus,Najman 95],[Karabash,Malamud 07],[Karabash,Trunk 08]

Theorem [B., Katatbeh and Trunk 09]

q continuous, |q(x)| ≤ 1
4x2 for x at ±∞.
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q continuous, |q(x)| ≤ 1
4x2 for x at ±∞. Then

Nonreal EVs do NOT accumulate to 0
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The special case Af = sgn (·)(−f ′′ + qf )

Corollary [B. 07] If limx→±0 q(x) = 0, then

[Curgus,Najman 95],[Karabash,Malamud 07],[Karabash,Trunk 08]

Theorem [B., Katatbeh and Trunk 09]

q continuous, |q(x)| ≤ 1
4x2 for x at ±∞. Then

Nonreal EVs do NOT accumulate to 0

No real embedded EVs
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The special case Af = sgn (·)(−f ′′ + qf )

Corollary [B. 07] If limx→±0 q(x) = 0, then

[Curgus,Najman 95],[Karabash,Malamud 07],[Karabash,Trunk 08]

Theorem [B., Katatbeh and Trunk 09]

q continuous, |q(x)| ≤ 1
4x2 for x at ±∞. Then

Nonreal EVs do NOT accumulate to 0

No real embedded EVs

Number of nonreal EVs can be described exactly with
Titchmarsh-Weyl functions
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Examples: Nonreal eigenvalues [B., Katatbeh, Trunk 08]

Af = sgn (·)
(

−f ′′ + qf
)

T f = −f ′′ + qf
, q(x) =

−1
1 + |x |

-0.01 0.01
Re

-0.0005

0.0005

Im
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Examples: Nonreal eigenvalues [B., Katatbeh, Trunk 08]

Af = sgn (·)
(

−f ′′ + qf
)

, q(x) =

{

−1
1+|x | blue
−5

1+|x | purple

-0.01 0.01
Re

-0.0005

0.0005

Im
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Examples: Nonreal eigenvalues [B., Katatbeh, Trunk 08]

Af = sgn (·)
(

−f ′′ + qf
)

, q(x) =

{

−1
1+|x | x > 0
−5

1+|x | x < 0

-0.01 0.01
Re

-0.0002

-0.0001

0.0001

0.0002
Im
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Examples: Nonreal eigenvalues [B., Katatbeh, Trunk 08]

Af = sgn (·)
(

−f ′′ + qf
)

, q(x) = −n(n + 1)
2

ex + e−x

-25 -20 -15 -10 -5 5 10
Re

-6

-4

-2

2

4

6
Im

Five Pairs of Complex Eigenvalues

-500 500
Re

-20

-10

10

20

Im

Thirty Pairs of Complex Eigenvalues

• Blue points: Nonreal eigenvalues of A for n = 5 and n = 30

• Purple points: Negative eigenvalues of Tf = −f ′′ + qf
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Spectrum of A = 1
r (−

d
dx (p

d
dx ) + q) with gap

Theorem: [Curgus,Langer 89], [B.,Möws,Trunk 11]

If limx→±∞ q(x) = q±∞ satisfy −q−∞ < q+∞,
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If limx→±∞ q(x) = q±∞ satisfy −q−∞ < q+∞, then

−q−∞ q+∞

Here, in addition, to the previous statements

σ(A) ∩ C\R finitely many [·, ·]-neutral EVs
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If limx→±∞ q(x) = q±∞ satisfy −q−∞ < q+∞, then

−q−∞ q+∞

Here, in addition, to the previous statements

σ(A) ∩ C\R finitely many [·, ·]-neutral EVs

σ(A) ∩ (−q−∞, q+∞) discrete set of EVs with −q−∞ and
q+∞ as only possible accumulation points

⇐⇒-criteria for finitely many EVs in the gap (−q−∞, q+∞)

Jussi Behrndt Spectral theory for differential operators with indefinite weights



Spectrum of A = 1
r (−

d
dx (p

d
dx ) + q) with gap

Theorem: [Curgus,Langer 89], [B.,Möws,Trunk 11]

If limx→±∞ q(x) = q±∞ satisfy −q−∞ < q+∞, then
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Here, in addition, to the previous statements
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Spectrum of A = 1
r (−

d
dx (p

d
dx ) + q) with gap

Theorem: [Curgus,Langer 89], [B.,Möws,Trunk 11]

If limx→±∞ q(x) = q±∞ satisfy −q−∞ < q+∞, then

−q−∞ q+∞

Here, in addition, to the previous statements

σ(A) ∩ C\R finitely many [·, ·]-neutral EVs

σ(A) ∩ (−q−∞, q+∞) discrete set of EVs with −q−∞ and
q+∞ as only possible accumulation points

⇐⇒-criteria for finitely many EVs in the gap (−q−∞, q+∞)

upper bounds on the number of EVs in (−q−∞, q+∞)

[Curgus,Najman 95],[Binding,Browne 99],[Binding,Browne,Watson 02] [Karabash 06]
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Typical spectra: Definite vs. indefinite case

Typical spectrum of Tf = 1
|r |

(

−(pf ′)′ + qf
)

q−∞

q+∞
R

′′2 ×′′ σess (T )|r | = p = 1 at ±∞

limx→±∞ q(x) = q±∞

Typical spectrum of Af = 1
r

(

−(pf ′)′ + qf
)

q+∞ −q−∞

∆+∆−

[h, h] = 0

0 < [f , f ]

[g, g] < 0

p = 1, r = ±1 at ±∞

limx→±∞ q(x) = q±∞
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Connection of spectra of T and A ?
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Connection of spectra of T and A ?

Anton Zettl, Sturm-Liouville Theory, AMS 2005

“It would be desirable to have an estimate of the magnitude of
the nonreal eigenvalues of A, or at least of their imaginary
parts, in terms of the negative eigenvalues of T “
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Anton Zettl, Sturm-Liouville Theory, AMS 2005

“It would be desirable to have an estimate of the magnitude of
the nonreal eigenvalues of A, or at least of their imaginary
parts, in terms of the negative eigenvalues of T “

Conjecture

σ(A) ∩ C\R can be estimated in terms of min σ(T )
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Connection of spectra of T and A ?

Anton Zettl, Sturm-Liouville Theory, AMS 2005

“It would be desirable to have an estimate of the magnitude of
the nonreal eigenvalues of A, or at least of their imaginary
parts, in terms of the negative eigenvalues of T “

Conjecture

σ(A) ∩ C\R can be estimated in terms of min σ(T )

Abstract scheme and main difficulty

T = T ∗ in Hilbert space, J = J∗ = J−1 (e.g. J = sgn r )

A = JT

Multiplication with J is unusual, particularly bad type of
perturbation;
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Connection of spectra of T and A ?

Anton Zettl, Sturm-Liouville Theory, AMS 2005

“It would be desirable to have an estimate of the magnitude of
the nonreal eigenvalues of A, or at least of their imaginary
parts, in terms of the negative eigenvalues of T “

Conjecture

σ(A) ∩ C\R can be estimated in terms of min σ(T )

Abstract scheme and main difficulty

T = T ∗ in Hilbert space, J = J∗ = J−1 (e.g. J = sgn r )

A = JT

Multiplication with J is unusual, particularly bad type of
perturbation; σ(T ) and σ(A) very unstable under J
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Connection of spectra of T and A ?

Anton Zettl, Sturm-Liouville Theory, AMS 2005

“It would be desirable to have an estimate of the magnitude of
the nonreal eigenvalues of A, or at least of their imaginary
parts, in terms of the negative eigenvalues of T “

Conjecture

σ(A) ∩ C\R can be estimated in terms of min σ(T )

Abstract scheme and main difficulty

T = T ∗ in Hilbert space, J = J∗ = J−1 (e.g. J = sgn r )

A = JT

Multiplication with J is unusual, particularly bad type of
perturbation; σ(T ) and σ(A) very unstable under J

Nevertheless, it turns out that the Conjecture is true
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Location of nonreal eigenvalues

Tf = −f ′′ + qf and Af = sgn (·)
(
−f ′′ + qf )

Theorem [B., Philipp and Trunk 12]

Let q ∈ L∞(R) and d = essinf q < 0. Then σ(A) ∩ C\R is in{
λ ∈ C : dist

(
λ, (d ,−d)

)
≤ 5‖q‖∞, |Imλ| ≤ 2‖q‖∞

}
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Abstract result

Theorem [B., Philipp and Trunk 12]

A0 selfadjoint in Krein space (H, [·, ·]) and [·, ·]-nonnegative

,
0,∞ not singular critical points, V ∈ L(H) [·, ·]-selfadjoint

If V is [·, ·]-nonnegative, then σ(A0 + V ) ∩ C\R = ∅
If V is not [·, ·]-nonnegative, then

σ(A0 + V ) ∩ C\R ⊂
{
λ ∈ C : dist

(
λ, (d ,−d)

)
≤ 1+τ0

2 ‖V‖
}

where d = 1+τ0
2 min σ(JV ) and

τ0 =
1
π

lim sup
n→∞

∥∥∥∥∥
∫ n

1/n

(
(A0 + it)−1 + (A0 − it)−1dt

)∥∥∥∥∥
...can also be applied to elliptic PDOs with indefinite weights...
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