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2
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2 2 .
ekt > ¢k+2 but C(e) exponentially large.

T. Gallay was stopping the numerical simulation when ||e =t u|| < ||u|| but
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B ( m? X
= Equilibrium M(x,v) = e 2 (% #V0)

Natural examples
e u—c,M|| < Q(m,B,70,w, t)e

where w = w(70, 8, m) is related to the spectral gap of some
Witten Laplacian and @ is an algebraic expression.

m K is not sectorial but hypoelliptic estimates allow resolvent
estimates and contour deformations in the complex plane.
For the refined analysis of the low-lying spectrum, the
“PT"-symmetry is important.
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m Resonances are unveiled by a complex deformation parametrized
by 6 € iR which makes o(iH"(0)) C {Rz > 0} and
gess(iH"(0)) \ {0} C {Rz > 0}.

m The imaginary parts of resonances= life-time of quantum
metastable states = eigenvalues of H"(0) are O(e~ 7).

e m Time-adiabatic evolution of resonances
e = iedu = [~ A + V(x, t)]u or iedrug = H'(0, t)up , when ug(0)

is a resonant state and e = e~ 7 .

m Adiabatic evolution justified under well controlled estimates for
| Us(t,s)|| with icd:Ug(t,s) = H"(6,t) and Up(s,s) =1d.
H"(6) non-selfadjoint makes it almost impossible.
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e We decided to introduce an additional deformation of H" by
modifying —A:

We proved

m Introducing the new parameter 6, bring O(6y) relative errors on
all the relevant quantities (including the imaginary parts of
resonances) and to some extent uniform in time small error on
the dynamics.

et m When 6y = 6 = iT with 7 € R the equation

i€0:Ugy 0(t, s) = Hg (0, t) U, o(t, s) defines a dyn. syst. of

contractions

examples

||Ui-,—7i7—(t,5)|| <1 ,Vvt>s;

— good adiabatic evolution of (modified) resonant states.
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dX; = —(I + N)SX{dt + V2dW; Jt = —J
in the linear case with 1o (x) = % -
Avtficia By setting £, = —((/ + J)5x).V + A the problem is about the
optimization of (As(J) and Cs(J)) w.r.t J for

examples

" u — (/RN Uhoo )ool 2(pm ) < Cs(S)e™ O ul 12040 o)

while £, is no more self-adjoint for J #£ 0.
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decay of

sem\'grt‘)Fup(si with Results
senerator m The optimum value \s = TrN[S] can be reached by constructing
J=8Y2)st2 = —Jt and Q = Q¢ > 0 s.t.
“““ - - 2Tr [S
JQ - QJ=-Q5—-5Q+ ,rv[ lq.

m The constant Cs(J) is bounded by Cyx(S)7/? where
Avrtifici‘a\ /Q(S) = ||5||||5_1|| and Cy = O(N3).
S This estimate uses some bosonic QFT inequality:

k%
E A,-7J-,k7gaj a;akag >0
1<i,j,k,L<N

when A € L(CM’) satisfies A= Af > 0.
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