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Markov Chain Monte Carlo (MCMC)

Have a complicated, high-dimensional target distribution π(·).

Define an ergodic Markov chain (random process) X0, X1, X2, . . .,
which converges in distribution to π(·).

Then for “large enough” n, L(Xn) ≈ π(·), so Xn, Xn+1, . . . are
approximate samples from π(·), and e.g.

Eπ(h) ≈ 1

m

n+m∑
i=n+1

h(Xi) , etc.

Extremely popular: Bayesian inference, computer science, statis-
tical physics, finance, . . .

How to find the good chains among the bad ones?
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Ex.: Random-Walk Metropolis Algorithm (1953)

This algorithm defines the chain X0, X1, X2, . . . as follows.

Given Xn−1:

• Propose a new state Yn ∼ Q(Xn−1, ·), e.g. Yn ∼ N(Xn−1, Σp).

• Let α = min
[
1, π(Yn)

π(Xn−1)

]
.

• With probability α, accept the proposal (set Xn = Yn).

• Else, with prob. 1− α, reject the proposal (set Xn = Xn−1).

But what is a smart choice of proposal covariance Σp?

Even if Σp = σ I , how large should σ be?

Important – can vary from efficient to infeasible!
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Adaptive MCMC

Suppose have a family {Pγ}γ∈Y of possible Markov chains, each
with stationary distribution π(·). How to choose among them?

Trial and error? No, let the computer decide!

At iteration n, use Markov chain PΓn, where Γn ∈ Y chosen ac-
cording to some adaptive rules (depending on chain’s history, etc.).

Can this help us to find better Markov chains? (Yes!)

On the other hand, the Markov property, stationarity, etc. are all
destroyed by using an adaptive scheme.

Is the resulting algorithm still ergodic? (Sometimes!)

(3/21)



Example: High-Dimensional Adaptive Metropolis

Dim d = 100, with target π(·) having target covariance Σt.

Here Σt is 100× 100 (i.e., 5,050 distinct entries).

Known (Roberts-Gelman-Gilks 1997, Roberts-R. 2001, Bédard
2006) that “optimal” Gaussian RWM proposal isN(x, (2.38)2 d−1 Σt).

But usually Σt unknown. Instead use empirical estimate, Σn. Let

Qn(x, ·) = (1−β)N(x, (2.38)2 d−1 Σn) + β N(x, (0.1)2 d−1 Id) .

(Slight variant of the algorithm of Haario et al., Bernoulli 2001.)

Let’s try it . . .
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High-Dimensional Adaptive Metropolis (cont’d)

Plot of first coord. Takes about 300,000 iterations, then “finds”
good proposal covariance and starts mixing well.
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High-Dimensional Adaptive Metropolis (cont’d)

Plot of sub-optimality factor bn ≡ d
(∑d
i=1 λ

−2
in / (∑di=1 λ

−1
in )2

)
,

where {λin} eigenvals of Σ1/2
n Σ−1/2. Starts large, converges to 1.
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Even Higher-Dimensional Adaptation

In dimension 200, takes about 2,000,000 iterations, then finds good
proposal covariance and starts mixing well.
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Example: Adaptive Metropolis-within-Gibbs

Propose increment N(0, e2 lsi) for ith coordinate, leaving the other
coordinates fixed; then repeat for different i.

Choice of lsi??

Known that acceptance rate 0.44 is approximately optimal for
one-dimensional Metropolis proposals. So:

Start with lsi ≡ 0 (say).

Adapt each lsi, in batches, to seek 0.44 acceptance rate:

After the jth batch of 100 (say) iterations, decrease each lsi by 1/j
if acceptance rate of ith coordinate proposals is < 0.44, otherwise
increase it by 1/j.

Let’s try it . . .
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Adaptive Metropolis-within-Gibbs (cont’d)

Test on Variance Components Model, with K = 500 (dim=503),
Ji chosen with 5 ≤ Ji ≤ 500, and simulated data {Yij}.

Adaption seems to find “good” values for the lsi values.
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Metropolis-within-Gibbs: Comparisons

Variable Ji Algorithm lsi ACT Avr Sq Dist
θ1 5 Adaptive 2.4 2.59 14.932
θ1 5 Fixed 0 31.69 0.863
θ2 50 Adaptive 1.2 2.72 1.508
θ2 50 Fixed 0 7.33 0.581
θ3 500 Adaptive 0.1 2.72 0.150
θ3 500 Fixed 0 2.67 0.147

The Adaptive algorithm mixes much more efficiently than the
Fixed algorithm, with smaller integrated autocorrelation time (good)
and larger average squared jumping distance (good).

And coordinates (e.g. θ3) that started good, stay good.
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Great . . . but is it Ergodic?

So, adaptive MCMC seems to work well in practice.

But will it be ergodic, i.e. converge to π(·)?
Ordinary MCMC algorithms, i.e. with fixed choice of γ, are auto-
matically ergodic by standard Markov chain theory (since they’re
irreducible and aperiodic and leave π(·) stationary).

But adaptive algorithms are more subtle, since the Markov prop-
erty and stationarity are destroyed by using an adaptive scheme.

e.g. if the adaption of γ is such that Pγ moves slower when x
is in a certain subset X0 ⊆ X , then the algorithm will tend
to spend much more than π(X0) of the time inside X0 (see e.g.
www.probability.ca/adaptjava).
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Ergodicity of Adaptive MCMC

Formally, suppose {Pγ}γ∈Y is a family of Markov chains, with π(·)
stationary for each Pγ, and adaption algorithm is defined by:

P[Xn+1 ∈ A |Xn = x,Γn = γ,Gn−1] = Pγ(x,A) .

WANT: Simple conditions guaranteeing ‖L(Xn)− π(·)‖ → 0,

where ‖L(Xn)− π(·)‖ ≡ sup
A⊆X
|P(Xn ∈ A)− π(A)|.

Many recent results, by many smart people, e.g.:

Finnish: Haario, Saksman, Tamminen, Vihola, . . .

French: Andrieu, Moulines, Robert, Fort, Atchadé, . . .

Australian: Kohn, Giordani, Nott, . . .
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One Simple Convergence Theorem

THEOREM [Roberts and R., J.A.P. 2007]: An adaptive scheme
using {Pγ}γ∈Y will converge, i.e. limn→∞ ‖L(Xn)− π(·)‖ = 0, if:

(a) [Diminishing Adaptation] Adapt less and less as the algorithm
proceeds. Formally, supx∈X ‖PΓn+1(x, ·)−PΓn(x, ·)‖ → 0 in prob.
[Can always be made to hold, since adaption is user controlled.]

(b) [Containment] Times to stationary from Xn, if fix γ = Γn,
remain bounded in probability as n → ∞. [Technical condition,
to avoid “escape to infinity”. Holds if e.g. X and Y finite, or
compact, or sub-exponential tails, or . . . (Bai, Roberts, and R.,
Adv. Appl. Stat. 2011). And always seems to hold in practice.]

(Also guarantees WLLN for bounded functionals. Various other
results about LLN / CLT under stronger assumptions.)
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Implications of Theorem

Adaptive Metropolis algorithm:

• Empirical estimates satisfy Diminishing Adaptation.

• And, Containment easily guaranteed if we assume π(·) has
bounded support (Haario et al., 2001), or sub-exponential tails
(Bai, Roberts, and R., 2011).

• So, Adaptive Metropolis is ergodic under such conditions.

Adaptive Metropolis-within-Gibbs algorithm:

• Satisfies Diminishing Adaption, since adjustments ±1/j → 0.

• Satisfies Containment under boundedness or tail conditions.

• Hence, is also ergodic under such conditions.

Good! (14/21)



Choosing Which Coordinates to Update When

S. Richardson (statistical geneticist):

Successfully ran adaptive Metropolis-within-Gibbs algorithm on
genetic data with thousands of coordinates (Turro, Bochkina, Hein,
and Richardson, BMC Bioinformatics 2007). Good!

But many of the coordinates are binary and usually do not change.

She asked: Do we need to visit every coordinate equally often,
or can we gradually “learn” which ones usually don’t change and
downweight them?

Good question – how to proceed?
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Adapting the Gibbs Sampler Coordinate Weights

Consider “adaptive random-scan Gibbs samplers” (or “adaptive
random-scan Metropolis-within-Gibbs algorithms”):

• At iteration n, choose coordinate i with probability αn,i.

• Then, update coordinate i, either by proposing a move and then
accepting/rejecting it (Metropolis-within-Gibbs), or by replacing
its current value by a draw from its full conditional distribution
(Gibbs Sampler).

• Allow the random-scan coordinate weights, {αn,i}, to be adapted,
depending on the chain’s history (e.g. gradually lower αn,i if coor-
dinate i seems to change less often).

What conditions ensure ergodicity?
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Ergodicity of Adaptively Weighted Gibbs Samplers?

Claim [J. Mult. Anal. 97 (2006), p. 2075]: suffices that limn→∞ αn,i =
α∗i , where the Gibbs sampler with fixed weights {α∗i} is ergodic.

Really??

Proof seemed questionable . . . but was result true?

Counter-example! (K. Latuszyński and R., 2009)

As follows . . .
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X = {(i, j) ∈ N×N : i = j or i = j+1} (“Stairway to Heaven”).

Target π(i, j) = C/j2, with adaptive coordinate weights given by:

αn,1 =


(1/2) + εn , Xn,1 = Xn,2

(1/2)− εn , Xn,1 = Xn,2 + 1

and αn,2 = 1− αn,1, where εn ↘ 0 sufficiently slowly. (18/21)



Summary: X = {(i, j) ∈ N×N : i = j or i = j + 1}, and

αn,1 =


(1/2) + εn , Xn,1 = Xn,2

(1/2)− εn , Xn,1 = Xn,2 + 1

and αn,2 = 1− αn,1, where εn ↘ 0 sufficiently slowly.

Clearly αn,i → 1/2 =: α∗i . And, the Gibbs sampler with fixed
weights (1/2, 1/2) is indeed ergodic (easy: usual MCMC).

So, the conditions of the previous “theorem” are satisfied.

However, the extra εn provides just enough outward “kick” that
P(Xn → ∞) > 0, i.e. chain is transient and does not converge.
Contradiction! “Theorem” is false!

So, we had better be smarter than that . . .
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Ergodicity with Adaptive Coordinate Weights

We proved (Latuszynski, Roberts, and R., Ann. Appl. Prob., to
appear) that adaptively weighted samplers are ergodic if either:

(i) some choice of weights {α∗i} make it uniformly ergodic, or

(ii) there is simultaneous inward drift for all the kernels Pγ, i.e.
there is V : X → [1,∞) with

lim sup
|x|→∞

sup
γ∈Y

(PγV )(x)

V (x)
< 1 .

For the above counter-example, (i) fails because of the infinite
tails, and (ii) fails because of the slight outward kick.

But if careful about continuity, boundedness, etc., then can guar-
antee ergodicity in many cases, including for high-dimensional ge-
netics data (Richardson, Bottolo, R., Valencia 2010). (20/21)



Summary

Adaptive MCMC tries to “learn” how to sample better. Good.

Works well in examples like Adaptive Metropolis (200 × 200 co-
variance matrix) and Metropolis-within-Gibbs (503 dimensions).

But must be done carefully, or it will destroy stationarity. Bad.

To converge to π(·), suffices to have stationarity of each Pγ, plus
(a) Diminishing Adaptation (important), and (b) Containment
(technical condition, usually satisfied). Good.

For Gibbs and Metropolis-within-Gibbs samplers, can also adapt
the coordinate weights αn,i, but only if the target distribution
satisfies certain uniformity or tail conditions. Good.

All my papers, applets, software: probability.ca/jeff
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