Interactive Information Gathering and Statistical Learning
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First question: Who are the players in the network?

“Drosophila RNAI screen identifies host genes important for influenza virus
replication,” Nature 2008. How do they confidently determine the ~100 out of
13K genes hijacked for virus replication from extremely noisy data?

Sequential Experimental Design:

Stage 1: assay all 13K strains, twice; keep all with significant
fluorescence in one or both assays for 2nd stage (13K — 1K)

Stage 2: assay remaining 1K strains, 6-12 times; retain only
those with statistically significant fluorescence (1K — 100)

vastly more efficient that replicating all 13K experiments many times
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Goal: Infer the correct model x € X from measurements y(x), y € Y
Information: samples of the form y;(z),...,y,(x)

Non-Adaptive Information: yi,ys, - - € Y non-adaptively
chosen (deterministically or randomly) independent of x

Adaptive Information: yq,y2, - € ) are selected sequentially and y; can
depend on previously gathered information, i.e., y1(x),...,y;—1(x)

L[] L[] ?
Does adapthIty help y see “Information-Based Complexity”
literature; e.g.,
E. Novak. On the power of adaption.

J. Complexity 12 (1996), 199-237.
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Adaptive vs. Non-Adaptive: Three Situations

The “bare minimum” number of measurements depends
on intrinsic complexity of X (e.g, metric entropy).

In practice, the minimum number depends on jointly on X and ).

Equal and Bad:
adaptive and non-adaptive
equally (non)-informative and

require many more
measurements then the bare
minimum

Equal and Good:
adaptive and non-adaptive
equally informative and require
about the bare minimum of

measurements

Good and Bad: adaptive
requires bare minimum number
of measurements, non-adaptive
requires many more
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Does Adaptivity Help ?

identify a threshold signal z € R™ from
A a minimal number of measurements

‘:...............

Point measurements: y = (z, i) =

O(n) random measurements are needed to recover x

O(logn) adaptive measurements are needed to recover x (binary search)

Compressed Sensing: y = (r, ¢) where ¢ € {—1,1}"

O(logn) random measurements are needed to recover x

Adaptivity may help, depending on
structure of signal and measurements
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Noisy Compressed Sensing

y = Ar + w x is k-sparse
experimental design: how to design A 7
Constraints:
e sample budget: Ais m xn with k <m <n

e precision budget: [|A]|% < Constant

Sequential Design: how to chose A, ..., A, to minimize MSE of recovery?

y1. = Arx+w
Good and " etter:adaptive
y2 = Asx 4w : : -
and non-adaptive require bare minimum
number of measurements, but adaptive
measurements improve MSE
Uk = Apr+wy

_ 5 : < _
Non-Adaptive: MSE < C’log(n)m Haupt, Baraniuk,

k Castro, RN 09
Adaptive/Sequential: MSE < C' —



The General Problem

Y: possible measurements/experiments

sensing
space

X' models/hypotheses

...t inf tion/dat
under consideration (@), e (). information/data

1. Adaptive information can improve MSE/SNR performance (Matt Malloy’s talk)

2. Adaptive information can reduce the number of measurements needed
(especially when the nature of the measurements is restricted in some way)
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4) Update posterior distribution p,, — pp11
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Optimization: Incremental Information Gain Algorithm

Optimal sequential designs are intractable in most
situations, so usually approximate methods are used.

Given a distribution p(z), the information gained by observing z = y(x) is
quantified by the reduction in Shannon entropy

Uly,2) = / p(zly, 2) log p(aly, ) dx — / p(z) log p(x) d

A priori, z is a random variable with distribution p(z|y) = [ p(z|x,y)p(x) dx.
The information-gain is defined as the expected value

“Information-Gain”

Ul(y) := /U(y7 2)p(zly) dz. (Shannon 48, Lindley '56)

Incremental Information-Gain Algorithm long history, special cases known to

initialize: py = uniform over X yield near-optimal designs (see

forn=0.1.2 classic papers by Lindley, Degroot)
- , ’ 7 e o o

1) Compute information gain U,, based on p, a very nice recent paper that unifies
many ideas:

2) Select y,, = arg max U
Yn & yey Un(y) Golovin and Krause. Adaptive

3 _ k
3) Obtain z, = yf" (z ) . . Submodularity: Theory and
4) Update posterior distribution p,, — pp41 Applications in Active Learning
T, = arg maxy, pn (m) and Stochastic Optimization, 2010
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Ranking Based on Pairwise Comparisons

Ranking Problem: Consider a set of n objects z1, ..., 2, € R%. The locations
of x,...,x,_1 are known, but location of x,, is unknown. To gather information
about z,,, we can only ask questions of the form “is object x,, closer to x; than
x;?” The goal is to rank z1,...,x,—1 relative to distances to z,, by asking as

few questions as possible.
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when n is large, especially since it is often humans who are judging the comparisons
(e.g., database search).



Ranking Based on Pairwise Comparisons

Ranking Problem: Consider a set of n objects z1, ..., 2, € R%. The locations
of x,...,x,_1 are known, but location of x,, is unknown. To gather information
about z,,, we can only ask questions of the form “is object x,, closer to x; than
x;?” The goal is to rank z1,...,x,—1 relative to distances to z,, by asking as
few questions as possible.

R
~ 0j 7
S
5 o Ordinal Data: 1(0; < ¢;)
. 'S
“____7;.--».
n o

Standard sorting methods require n log n comparisons, but this can be prohibitive
when n is large, especially since it is often humans who are judging the comparisons
(e.g., database search).

However, many comparisons are redundant because the objects embed in R?,
and therefore it may be possible to correctly rank based on a small subset.
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Binary Classification & := feature space, typically R

y = {-1,+1}

P(Y =1|X = z)

unknown decision boundary

1/2-level set is optimal  optimal decision set

allowable questions:
is z in the set?
Problem boils down to learning a set through simple “membership” queries
Key Questions:

1. When can active learning provide reductions in sample complexity?
2. What active learning strategies/policies are optimal?
R. Castro, RN: Minimax Bounds for

Active Learning. IEEE Transactions
on Information Theory, 2008.

M. Raginsky and S. Rahklin:
Lower Bounds for Passive and
Active Learning, NIPS 2011
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Lower Bounds on Sample Complexity

Key complexity parameters

Holder regularity of the
decision boundary, (¥
™ a
+
— 1 /
~ 2R
S K '\ .\ /
smoothness of conditional probability ( -1
function at the boundary, K \_
P(Y =1|X =x) optimal decision set

training examples: {(z;,y;)}/ selected sequentially and
adaptively (active learning) or at random (passive learning)

minimax rate of convergence to Bayes error: as p— 0
Y . S 5
ACthGI n 2k+p—2 0= d—1 and kK — 1
K ' o active learning yields
PaSSive: n 2k+ep—1 exponential improvement!

proof ingredients: Fano’s inequality, Varshamov-Gilbert Bound
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Classic Binary Search

active learning: sequentially select points for labeling

y
+1 R X = [0,1]
. H = {thresholds at %, %, 1}
= 1— ‘| - - - : - —:-A-_A-T_A_A_A_A_A_A_ A S
1
0 X
1/3 =0101... requires log, N queries

Y+ + + 4+ + 4+ passive learning: query points uniformly (possibly random)

requires O(N) queries

active learning is dramatically more efficient



Rates of Convergence to Bayes

. _ Ia%
Active: n- 2r—2

. _ Ia%
Passive: n~ 2k—1

passive: n—2/3

active: n 1

Y bounded noise Y
1 (aka “Massart’s 1

° 1 noise condition”) \
Vi 4
Y ; ... KL -

..................................................

1

passive: — 1 passive: — n—1/2

active: — e~ " active: — n_1/2
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Noisy Binary Search: Channel Coding with Noiseless Feedback

1.0.1.1,01... 1-b 11,0,0,1,0,1 2

b
b

@A\ *“-~\\\§§_; 1001014_,,//’/////’
sender

noiseless feedback

receiver

noise bound
= BSC crossover prob

Both sender and receiver implement
Horstein’s algorithm

Sender deduces which binary symbol to
send next in order to yield the greatest
0 possible expected reduction in the

threshold location receiver's uncertainty about n-bit message
= n bit message




Horstein’s Algorithm (incremental information gain)




Horstein’s Algorithm (incremental information gain)




Horstein’s Algorithm (incremental information gain)

po(0)




Horstein’s Algorithm (incremental information gain)

po(0)




Horstein’s Algorithm (incremental information gain)

Update ‘posterior’ density
based on noise bound b

p1(0)
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Horstein’s Algorithm (incremental information gain)

see Burnashev & Zigangirov 74 for rigorous analysis;

h* +1 also independently proposed by Karp & Kleinberg ’07
1

./_\.

"""""""""""""" e
:-_1(\
—

0 1
A .
sequentially take samples
at posterior median
p2(0)
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Halfspaces: Canonical Model for Multi-Dim Problems
X = RY H = {finite number of halfspaces}

How to select queries?

What is query complexity? Is it log, |[H| ?



Incremental Information-Gain for Classification

X := feature or query space 1 + + N
Yy = {-1,+1} - ) H

H := hypothesis space 4 +
Vhe H, h:X —) : + - -

Assume labels y are deterministically related to features z, i.e., “noiseless”




Incremental Information-Gain for Classification

X .= feature or query space 1 + + N
Y o= {-1,+1} : ' H

H := hypothesis space 4 +
Vhe H, h:X —) — + - -

Assume labels y are deterministically related to features x, i.e., “noiseless”

\ 4

Generalized Binary Search (GBS)

initialize: n =0, Ho = 'H

while |H,| > 1

1) Select z,, = argmingex | ) ;s h(2)]

2) Query with x, to obtain response vy, = h*(z,)
3) Set Hpa1 ={h € Hy : h(zn) =yn}t, n=n+1
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“Is the person
wearing a hat ?”

“Does the person
have blue eyes ?”

GBS can be quite effective if responses are reliable
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Generalized Binary Search (GBS)
initialize: n =0, Ho = 'H

while |H,| > 1

1) Select x,, = argmingex | ) jcpy M(T)]

2) Query with x,, to obtain response y,, = h*(z,,)
3) Set Hpor ={h € Hy : h(xn) =ynt, n=n-+1
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where h* € H is fixed but unknown (i.e., the response is only probably correct)
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Generalized Binary Search (GBS)
initialize: n =0, Hp = 'H

while |H,| > 1

1) Select x, = argmingex | ) ey h()|

2) Query with x,, to obtain response y,, = h*(z,,)
3) Set Hpor ={h € Hy : h(xn) =ynt, n=n-+1

Suppose that the binary response y € {—1,1} to query x € X is an independent
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Generalized Binary Search with Noise

Noise-tolerant GBS
initialize: pg uniform over H and oo < 3 < 1/2.
forn=20,1,2,...

1) Tp = arg Milgex ‘ ZheH pn(h)h<£€)’
2) Obtain noisy response ¥,
3) Bayes update: VY h

pn—l—l(h) X pn(h) X { : gﬁ : ZEiZ§ ; zz

hypothesis selected at each step:
h, = argmaxpc g pn(h)

Suppose that the binary response y € {—1,1} to query x € X is an independent
realization of the random variable Y satisfying P(Y = h*(z)) > P(Y = —h*(z)),
where h* € H is fixed but unknown (i.e., the response is only probably correct)

The noise bound is defined as o := sup, . P(Y # h*(x))

Noise-tolerant GBS is a generalized version of Horstein’s algorithm



When is Noisy GBS Information-Theoretically Optimal?

Theorem 1 Let P denotes the underlying probability measure (governing errors
and randomization). Under mild conditions, noise-tolerant GBS generates a
sequence of hypotheses satisfying

P(h, #h*) < [H|(1=N" < [H|le ™ , n=0,1,...

with exponential constant A = % (1 — 5(11_—;) _ a(lﬁ—ﬁ))
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When is Noisy GBS Information-Theoretically Optimal?

Theorem 1 Let P denotes the underlying probability measure (governing errors
and randomization). Under mild conditions, noise-tolerant GBS generates a
sequence of hypotheses satisfying

P(h, #h*) < [H|(1=N" < [H|le ™ , n=0,1,...

1 —a) _ a(1-0)

with exponential constant A = 3 (1 — ﬁgl_ﬁ 3 ) = n = O(log|H])

will suffice

GBS isn’t all that different
from classic binary search

RN. Information Theory, IEEE Transactions on, Vol.
57, No. 12. (December 2011), pp. 7893-7906.



Ranking Based on Pairwise Comparisons

Ranking Problem: Consider a set of n objects z1, ..., 2, € R%. The locations
of x,...,x,_1 are known, but location of x,, is unknown. To gather information
about z,,, we can only ask questions of the form “is object x,, closer to x; than
x;?” The goal is to rank z1,...,x,—1 relative to distances to z,, by asking as
few questions as possible.

R
~ 0j 7
S
5 o Ordinal Data: 1(0; < ¢;)
. 'S
“____7;.--».
n o

Standard sorting methods require n log n comparisons, but this can be prohibitive
when n is large, especially since it is often humans who are judging the comparisons
(e.g., database search).

However, many comparisons are redundant because the objects embed in R?,
and therefore it may be possible to correctly rank based on a small subset.
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Bartender: “What beer would you like?”

Natasha: “Hmm... actually I'm more of wine drinker”
Bartender: “Try these two samples. Do you prefer A or B?
Natasha: “B”

Bartender: “Ok try these two: C or D?” ....




Ranking Relative to Distance

B

r

Natasha’s latent preferences in “beer space”
(e.g, hoppiness, lightness, maltiness,...)
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Ranking Relative to Distance

Goal: Determine ranking by asking
comparisons like, “Is r closer to A or B?”

@ >

Weakness of randomized schemes:
If comparisons are selected at random, then

almost all (g) comparisons are needed to rank.
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Ranking Relative to Distance

Goal: Determine ranking by asking

A comparisons like, “Is r closer to A or B?” B
® O
Weakness of randomized schemes:
If comparisons are selected at random, then
almost all (g) comparisons are needed to rank.
C ... but there are at most n! rankings, and so in principle
O no more than nlogn bits of information are needed.

F
£ O
D<G<C<E<A<B<F O
5 QO
P r S
O
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Ranking with Adaptively Selected Queries

Insert H into: D<G<C<E<A<B<F

0 Qe QOO0 ()

0 Qe QOO0 H<E)
0@ QOO @Pe -vch

X oXYcXXcKkYe KX~ XY = KX - K INCRISNRNNtRTe:

D<G<H<C<E<A<B«<F

log, k comparisons to insert an item into a list of k objects

—> nlog, n comparisons to rank n objects

... but does embedding dimension d affect the sample complexity?
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then ask for pairwise comparison,
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output: ranking of x1,...,x,_1 consistent with all pairwise comparisons
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Ranking by Exploiting Low-Dimensional Geometry

- ® In fact, there are only O(n??) possible rankings,
and so we should only need O(dlogn) bits.

Many comparisons are redundant because the objects embed in R¢, and
therefore it may be possible to correctly rank based on a small subset.

binary information we can gather: ¢; ; = z,, is closer to z; than z;

Sequential Data Selection

input: x1,...,Zn—1 € R? and x,, at unknown position in R¢
initialize: z1,...,x,_1 in uniformly random order

for k=2.... n-1 : :
R simple linear program
for i=1,... k-1 g PIog

if qi.k 18 ambiguous given {gi,j}i,j<ka positive info-gain
then ask for pairwise comparison,
else impute qi.j from {Qi,j}i,j<kz Zero infO-gain

output: ranking of x1,...,x,_1 consistent with all pairwise comparisons
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yd

O Definition:

Answers to previous queries
induces a Region of
Ambiguity. Any query that
intersects this region is said to
be :

Otherwise its Unambiguous
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Ranking and Geometry

2d

# of d-cells ~ kd—,
# intersected ~ %

—> P(ambiguous) ~ %

d

—> [E[#fambiguous| ~ ¢

d
— [E|# requested]| & P

(Coombs 1960)
(Buck 1943)

(Cover 1965)

(Jamieson & Nowak 2011)



Sonar Example

Sonar echo audio signals bounced off: {50 targets, 50 rocks }

S;.; = {human-judged similarity between signals i and j}

Learning task:

Leave one signal out of the set
and rank the other 99 using
comparisons: ¢; ; = {S; « < S;.}

Compute d-dim embedding using
MDS with similarity matrix.

Sive < Sjx & || — || < |[zj — 7]
because embedding is approximate

Dimension 2 3
% of queries requested | 14.5 | 18.5 .
Average e\\@@»d(y’ 7) | 0.23 | 0.21 «— best achievable error

error y&e“d d(y,4) | 0.31 | 0.29 |«—— our algorithm’s error

Y % of queries we requested
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# of comparisons needed to rank n objects in d dimensions

random selection O(nZ)

sequential w/o geometry O n lOg TL) K. Jamieson and RN. Active ranking using
pairwise comparisons. Neural Information

exploiting geometry (O (d log n) Processing Systems (NIPS), 2011

noise-tolerant O (d 10g2 n)



Summary

# of comparisons needed to rank n objects in d dimensions

random selection O(nZ)

sequential w/o geometry O n lOg TL) K. Jamieson and RN. Active ranking using
pairwise comparisons. Neural Information

exploiting geometry (O (d log n) Processing Systems (NIPS), 2011

noise-tolerant O (d 10g2 n)

There are other ways to limit the complexity of ranks. The combinatorial
disorder D quantifies approximate triangle inequalities on ranks, and this
has been used to devise more efficient ranking schemes of a similar nature

D. Tschopp, P. Delgosha, S. Mohajer, S. Diggavi.
Randomized Algorithms for Comparison-based Search.
Neural Information Processing Systems (NIPS), 2011

ranking requires about O(D?3 log2 n) pairwise comparisons



Conclusions

Y: possible measurements/experiments

sensing
space

X' models/hypotheses

...: Inf ti dat
under consideration y1(w), y2(x), information /data

* many learning tasks can be accelerated using interactive information gathering

* gains are often achieved because, unlike in conventional coding/information
theory, there are restrictions on how information can be obtained/conveyed

* incremental information gain algorithms can be effective and sometimes optimal



