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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.
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RNAs and/or proteins are transported by an NXF1-dependent path-
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enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
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infect each strain with 
fluorescing virus

microwell 
array

Motivation: Inferring Biological Networks

Sequential Experimental Design:

Stage 1: assay all 13K strains, twice; keep all with significant
fluorescence in one or both assays for 2nd stage (13K → 1K)

Stage 2: assay remaining 1K strains, 6-12 times; retain only
those with statistically significant fluorescence (1K → 100)

First question: Who are the players in the network?  
“Drosophila RNAi screen identifies host genes important for influenza virus 
replication,” Nature 2008.  How do they confidently determine the ~100 out of 
13K genes hijacked for virus replication from extremely noisy data?

vastly more efficient that replicating all 13K experiments many times

Paul Alhquist 
(Molecular Virology)
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Adaptive Information

Adaptive Information: y1, y2, · · · ∈ Y are selected sequentially and yi can
depend on previously gathered information, i.e., y1(x), . . . , yi−1(x)

Non-Adaptive Information: y1, y2, · · · ∈ Y non-adaptively
chosen (deterministically or randomly) independent of x

Does adaptivity help?

Model Space: X is a collection of models

Goal: Infer the correct model x ∈ X from measurements y(x), y ∈ Y

Measurement Space: Y is a set of sensing or experimental actions

Information: samples of the form y1(x), . . . , yn(x)

see “Information-Based Complexity” 
literature; e.g., 
E. Novak. On the power of adaption. 
J. Complexity 12 (1996), 199-237.
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Good and Bad: adaptive 
requires bare minimum number 
of measurements, non-adaptive 

requires many more
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on intrinsic complexity of X (e.g, metric entropy).

In practice, the minimum number depends on jointly on X and Y.
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Does Adaptivity Help ?

O(n) random measurements are needed to recover x

O(log n) adaptive measurements are needed to recover x (binary search)

identify a threshold signal x ∈ Rn from
a minimal number of measurements

Compressed Sensing: y = 〈x , φ〉 where φ ∈ {−1, 1}n

Adaptivity may help, depending on
structure of signal and measurements

O(log n) random measurements are needed to recover x

Point measurements: y = 〈x , δk〉 = xk
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y = Ax + w

experimental design: how to design A ?

y1 = A1x + w1

y2 = A2x + w2

...
yk = Akx + wk

Sequential Design: how to chose A1, . . . , Ak to minimize MSE of recovery?

Constraints:

• sample budget: A is m× n with k < m < n

• precision budget: ‖A‖2F ≤ Constant

x is k-sparse

Noisy Compressed Sensing

Non-Adaptive: MSE ≤ C log(n)
k

m

Adaptive/Sequential: MSE ≤ C ′ k

m

Haupt, Baraniuk, 
Castro, RN ’09

Good and Better: adaptive 
and non-adaptive require bare minimum 
number of measurements, but adaptive 

measurements improve MSE



The General Problem

X : models/hypotheses
under consideration

Y: possible measurements/experiments

y1(x), y2(x), . . . : information/data

    model
    space

sensing 
space

data
space

The General Problem

1. Adaptive information can improve MSE/SNR performance (Matt Malloy’s talk)

2. Adaptive information can reduce the number of measurements needed   
(especially when the nature of the measurements is restricted in some way)
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Incremental Information-Gain Algorithm
initialize: p0 = uniform over X
for n = 0, 1, 2, . . .
1) Compute information gain Un based on pn

2) Select yn = arg maxy∈Y Un(y)
3) Obtain zn = yn(x∗)
4) Update posterior distribution pn → pn+1

x̂n = arg maxh pn(x)
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initialize: p0 = uniform over X
for n = 0, 1, 2, . . .
1) Compute information gain Un based on pn

2) Select yn = arg maxy∈Y Un(y)
3) Obtain zn = yn(x∗)
4) Update posterior distribution pn → pn+1

x̂n = arg maxh pn(x)

Optimal sequential designs are intractable in most
situations, so usually approximate methods are used.

Given a distribution p(x), the information gained by observing z = y(x) is
quantified by the reduction in Shannon entropy

U(y, z) :=
∫

p(x|y, z) log p(x|y, z) dx −
∫

p(x) log p(x) dx .

Optimization: Incremental Information Gain Algorithm

long history, special cases known to 
yield near-optimal designs (see 
classic papers by Lindley, Degroot)

a very nice recent paper that unifies 
many ideas: 

Golovin and Krause. Adaptive 
Submodularity: Theory and 
Applications in Active Learning 
and Stochastic Optimization, 2010

A priori, z is a random variable with distribution p(z|y) =
∫

p(z|x, y)p(x) dx.
The information-gain is defined as the expected value

U(y) :=
∫

U(y, z)p(z|y) dz.
“Information-Gain”
(Shannon ’48, Lindley ’56)



Learning Problem: Consider a binary prediction problem involving a collection
of “classifiers.” Each classifier maps points in the ”feature-space” (e.g., Rd) to
binary labels. The features and labels are governed by an unknown distribu-
tion P . The goal is to select the classifier that minimizes the probability of
misclassification using as few training examples as possible.

Active Learning



Learning Problem: Consider a binary prediction problem involving a collection
of “classifiers.” Each classifier maps points in the ”feature-space” (e.g., Rd) to
binary labels. The features and labels are governed by an unknown distribu-
tion P . The goal is to select the classifier that minimizes the probability of
misclassification using as few training examples as possible.

Active Learning

cholesterol

BM
I



Standard approaches assume training data are obtained prior to learning.

Learning Problem: Consider a binary prediction problem involving a collection
of “classifiers.” Each classifier maps points in the ”feature-space” (e.g., Rd) to
binary labels. The features and labels are governed by an unknown distribu-
tion P . The goal is to select the classifier that minimizes the probability of
misclassification using as few training examples as possible.

Active Learning

cholesterol

BM
I

best linear classifier



Standard approaches assume training data are obtained prior to learning.

Learning Problem: Consider a binary prediction problem involving a collection
of “classifiers.” Each classifier maps points in the ”feature-space” (e.g., Rd) to
binary labels. The features and labels are governed by an unknown distribu-
tion P . The goal is to select the classifier that minimizes the probability of
misclassification using as few training examples as possible.

Active Learning

cholesterol

BM
I

best linear classifier



Standard approaches assume training data are obtained prior to learning.

However, some examples are more informative than others, so
sequential selection of data can dramatically accelerate learning.

Learning Problem: Consider a binary prediction problem involving a collection
of “classifiers.” Each classifier maps points in the ”feature-space” (e.g., Rd) to
binary labels. The features and labels are governed by an unknown distribu-
tion P . The goal is to select the classifier that minimizes the probability of
misclassification using as few training examples as possible.

Active Learning

cholesterol

BM
I

best linear classifier

which unlabeled point is likely to be 
most informative ?

for which point do we have the greatest 
uncertainty about its label ?



Standard approaches assume training data are obtained prior to learning.

However, some examples are more informative than others, so
sequential selection of data can dramatically accelerate learning.

Learning Problem: Consider a binary prediction problem involving a collection
of “classifiers.” Each classifier maps points in the ”feature-space” (e.g., Rd) to
binary labels. The features and labels are governed by an unknown distribu-
tion P . The goal is to select the classifier that minimizes the probability of
misclassification using as few training examples as possible.

Active Learning

cholesterol

BM
I

best linear classifier

which unlabeled point is likely to be 
most informative ?

for which point do we have the greatest 
uncertainty about its label ?



δj

δi

Ordinal Data: 1(δi < δj)

Ranking Problem: Consider a set of n objects x1, . . . , xn ∈ Rd. The locations
of x, . . . , xn−1 are known, but location of xn is unknown. To gather information
about xn, we can only ask questions of the form “is object xn closer to xi than
xj?” The goal is to rank x1, . . . , xn−1 relative to distances to xn by asking as
few questions as possible.

Standard sorting methods require n log n comparisons, but this can be prohibitive
when n is large, especially since it is often humans who are judging the comparisons
(e.g., database search).
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xj?” The goal is to rank x1, . . . , xn−1 relative to distances to xn by asking as
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However, many comparisons are redundant because the objects embed in Rd,
and therefore it may be possible to correctly rank based on a small subset.
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Binary Classification

Key Questions: 
1. When can active learning provide reductions in sample complexity?

2. What active learning strategies/policies are optimal?

optimal decision setP(Y = 1|X = x) 1/2-level set is optimal
decision boundary

+1

-1

allowable questions:
is x in the set?

x •

Problem boils down to learning a set through simple “membership” queries

Y := {−1,+1}
X := feature space, typically Rd

R. Castro, RN: Minimax Bounds for 
Active Learning. IEEE Transactions 
on Information Theory, 2008.

M. Raginsky and S. Rahklin: 
Lower Bounds for Passive and 
Active Learning, NIPS 2011

unknown
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i=1 selected sequentially and

adaptively (active learning) or at random (passive learning)

Lower Bounds on Sample Complexity

optimal decision set

+1

-1

Key complexity parameters

smoothness of conditional probability 
function at the boundary, κ

Holder regularity of the 
decision boundary, α

P(Y = 1|X = x)

active learning yields 
exponential improvement!

ρ := d−1
α

Active: n−
κ

2κ+ρ−2

Passive: n−
κ

2κ+ρ−1

minimax rate of convergence to Bayes error:

proof ingredients: Fano’s inequality, Varshamov-Gilbert Bound
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Rates of Convergence to Bayes

passive:

active:

passive:

active:

passive:

active:

Active: n−
κ

2κ−2

Passive: n−
κ

2κ−1

bounded noise
(aka “Massart’s 
noise condition”)
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Noisy Binary Search: Channel Coding with Noiseless Feedback

1,0,1,1,0,1…

threshold location
= n bit message

noise bound
= BSC crossover prob

Both sender and receiver implement 
Horstein’s algorithm

Sender deduces which binary symbol to 
send next in order to yield the greatest 
possible expected reduction in the 
receiver's uncertainty about n-bit message

sender

1,0,0,1,0,1…?

receiver
1,0,0,1,0,1…

noiseless feedback

0
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Update ‘posterior’ density 
based on noise bound b
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sequentially take samples 
at posterior median

Horstein’s Algorithm (incremental information gain)

-1

+1

-1

see Burnashev & Zigangirov ’74 for rigorous analysis;
also independently proposed by Karp & Kleinberg ’07
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Halfspaces: Canonical Model for Multi-Dim Problems
X = Rd H = {finite number of halfspaces}

How to select queries?
What is query complexity? Is it log2 |H| ?



Assume labels y are deterministically related to features x, i.e., “noiseless”

X := feature or query space

Incremental Information-Gain for Classification

H := hypothesis space

Y := {−1,+1}

∀h ∈ H, h : X → Y
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Assume labels y are deterministically related to features x, i.e., “noiseless”

X := feature or query space

Incremental Information-Gain for Classification

Generalized Binary Search (GBS)
initialize: n = 0, H0 = H
while |Hn| > 1
1) Select xn = arg minx∈X |

∑
h∈Hn

h(x)|
2) Query with xn to obtain response yn = h∗(xn)
3) Set Hn+1 = {h ∈ Hn : h(xn) = yn}, n = n + 1

H := hypothesis space

Y := {−1,+1}

∀h ∈ H, h : X → Y

+
-

+ -

+
--

- -

+

+

+ -
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Generalized Binary Search with Noise

Generalized Binary Search (GBS)
initialize: n = 0, H0 = H
while |Hn| > 1
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h(x)|
2) Query with xn to obtain response yn = h∗(xn)
3) Set Hn+1 = {h ∈ Hn : h(xn) = yn}, n = n + 1
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realization of the random variable Y satisfying P(Y = h∗(x)) > P(Y = −h∗(x)),
where h∗ ∈ H is fixed but unknown (i.e., the response is only probably correct)
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Suppose that the binary response y ∈ {−1, 1} to query x ∈ X is an independent
realization of the random variable Y satisfying P(Y = h∗(x)) > P(Y = −h∗(x)),
where h∗ ∈ H is fixed but unknown (i.e., the response is only probably correct)

The noise bound is defined as α := supx∈X P(Y != h∗(x))

Noise-tolerant GBS
initialize: p0 uniform overH and α < β < 1/2.
for n = 0, 1, 2, . . .
1) xn = arg minx∈X |

∑
h∈H pn(h)h(x)|

2) Obtain noisy response yn

3) Bayes update: ∀h

pn+1(h) ∝ pn(h)×
{

1− β , h(xn) = yn

β , h(xn) %= yn

hypothesis selected at each step:
ĥn := arg maxh∈H pn(h)

Generalized Binary Search with Noise

Noise-tolerant GBS is a generalized version of Horstein’s algorithm



Theorem 1 Let P denotes the underlying probability measure (governing errors
and randomization). Under mild conditions, noise-tolerant GBS generates a
sequence of hypotheses satisfying

P(ĥn != h∗) ≤ |H| (1− λ)n ≤ |H| e−λn , n = 0, 1, . . .

with exponential constant λ = 1
2

(
1− β(1−α)

1−β − α(1−β)
β

)

When is Noisy GBS Information-Theoretically Optimal?

No redundant queries
Query complexity:
O(log N)

No redundant queries
Query complexity:
O(log N)
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4

to the quantity |
∑

h∈H′ h(A)−
∑

h∈H′ h(A′)| cancel each other. Combining these inequalities yields |H′| < k/c.

!

Example 1: To illustrate Lemma 1, consider the special situation in which we are given two points x1, x2 ∈ X

known to satisfy h∗(x1) = +1 and h∗(x2) = −1. This allows us to restrict our attention to only those hypotheses

that agree with h∗ at these points. Let H denote this collection of hypotheses. A depiction of this situation is shown

in Fig. 2, where the solid curves represent the classification boundaries of the hypotheses, and each cell in the

partition shown corresponds to a subset of X (i.e., an element of A). As long as each subset is non-empty, then

the 1-neighborhood graph is connected in this example. The minimization in (1) is achieved by the distribution

P = 1
2δx1 + 1

2δx2 (equal point-masses on x1 and x2) and c∗(X ,H) = 0. Lemma 1 implies that there exists a

query (equivalently a partition cell A) where half of the hypotheses take the value +1 and the other half −1. The

shaded cell in Fig. 2 has this bisection property. The figure also shows a dashed path between x1 and x2 that

passes through the bisecting cell.

Fig. 2. An illustration of the idea of GBS. Each solid curve denotes the decision boundary of a hypothesis. There are six boundaries/hypotheses

in this example. The correct hypothesis in this case is known to satisfy h∗(x1) = +1 and h∗(x2) = −1. Without loss of generality we may

assume that all hypotheses agree with h∗ at these two points. The dashed path between the points x1 and x2 reveals a bisecting query location.

As the path crosses a decision boundary the corresponding hypothesis changes its output from +1 to −1 (or vice-versa, depending on the

direction followed). At a certain point, indicated by the shaded cell, half of the hypotheses output +1 and half output −1. Selecting a query

from this cell will bisect the collection of hypotheses.

C. Coherence and Query Complexity

The coherence parameter c∗ quantifies the informativeness of queries. The coherence parameter is optimized over

the choice of P , rather than sampled at random according to a specific distribution on X , because the queries may

be selected as needed from X . The minimizer in (1) exists because the minimization can be computed over the

space of finite-dimensional probability mass functions over the elements of A. For c∗ to be close to 0, there must

exist a distribution P on A so that the moment of every h ∈ H is close to zero (i.e., for each h ∈ H the probabilities

RN. Information Theory, IEEE Transactions on, Vol. 
57, No. 12. (December 2011), pp. 7893-7906.

GBS isn’t all that different 
from classic binary search



δj

δi

Ordinal Data: 1(δi < δj)

Ranking Problem: Consider a set of n objects x1, . . . , xn ∈ Rd. The locations
of x, . . . , xn−1 are known, but location of xn is unknown. To gather information
about xn, we can only ask questions of the form “is object xn closer to xi than
xj?” The goal is to rank x1, . . . , xn−1 relative to distances to xn by asking as
few questions as possible.

Ranking Based on Pairwise Comparisons

n

j

i

However, many comparisons are redundant because the objects embed in Rd,
and therefore it may be possible to correctly rank based on a small subset.

Standard sorting methods require n log n comparisons, but this can be prohibitive
when n is large, especially since it is often humans who are judging the comparisons
(e.g., database search).





Bartender: “What beer would you like?”
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Natasha: “B”
Bartender: “Try these two samples. Do you prefer A or B?
Natasha: “Hmm... actually I’m more of wine drinker”
Bartender: “What beer would you like?”



Natasha: “B”
Bartender: “Ok try these two:  C or D?” ....

Bartender: “Try these two samples. Do you prefer A or B?
Natasha: “Hmm... actually I’m more of wine drinker”
Bartender: “What beer would you like?”
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C
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F

G

r
Natasha’s latent preferences in “beer space”
(e.g, hoppiness, lightness, maltiness,...)
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Goal: Determine ranking by asking
comparisons like, “Is r closer to A or B?”

Weakness of randomized schemes:
If comparisons are selected at random, then
almost all

(n
2

)
comparisons are needed to rank.

Ranking Relative to Distance

A B

C

D

E

F

G

D < G < C < E < A < B < F

r



Goal: Determine ranking by asking
comparisons like, “Is r closer to A or B?”

Weakness of randomized schemes:
If comparisons are selected at random, then
almost all

(n
2

)
comparisons are needed to rank.

... but there are at most n! rankings, and so in principle
no more than n log n bits of information are needed.

Ranking Relative to Distance

A B

C

D

E

F

G

D < G < C < E < A < B < F

r
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Ranking with Adaptively Selected Queries

D < G < C < E < A < B < F

D G C E A B F

Insert H into:

{H < E}D G C E A B F

D G C E A B F {H < E},{G < H}

D G C E A B F {H < E},{G < H},{H < C}

D < G < H < C < E < A < B < F

{ }



log2 k comparisons to insert an item into a list of k objects

=⇒ n log2 n comparisons to rank n objects
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=⇒ n log2 n comparisons to rank n objects
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D < G < C < E < A < B < F

D G C E A B F

Insert H into:

{H < E}D G C E A B F

D G C E A B F {H < E},{G < H}
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... but does embedding dimension d affect the sample complexity?
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else impute qi,j from {qi,j}i,j<k

output: ranking of x1, . . . , xn−1 consistent with all pairwise comparisons

In fact, there are only O(n2d) possible rankings,
and so we should only need O(d log n) bits.
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simple linear program

positive info-gain

zero info-gain
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Ranking and Geometry

Definition:
Answers to previous queries 
induces a Region of 
Ambiguity. Any query that 
intersects this region is said to 
be Ambiguous.
Otherwise its Unambiguous
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Ranking and Geometry

# of d-cells ≈ k2d

d!

# intersected ≈ k2(d−1)

(d−1)!

=⇒ E[#ambiguous] ≈ d
k

=⇒ P(ambiguous) ≈ d
k2



=⇒ E[#ambiguous] ≈ d
k

# of d-cells ≈ k2d

d!

# intersected ≈ k2(d−1)

(d−1)!

=⇒ E[# requested] ≈
n∑

k=2

d

k

(Coombs 1960)

(Buck 1943)

(Cover 1965)

(Jamieson & Nowak 2011)

≈ d log n

Ranking and Geometry

=⇒ P(ambiguous) ≈ d
k2



Si,j = {human-judged similarity between signals i and j}
Sonar echo audio signals bounced off: {50 targets, 50 rocks }

Learning task:
Leave one signal out of the set
and rank the other 99 using
comparisons: qi,j ≡ {Si,∗ < Sj,∗}

% of queries we requested

best achievable error

our algorithm’s errorKen
dell

Tau

Compute d-dim embedding using
MDS with similarity matrix.
Si,∗ < Sj,∗ ! ||xi − r|| < ||xj − r||
because embedding is approximate

Sonar Example

Dimension 2 3
% of queries requested 14.5 18.5
Average
error

d(y, ỹ) 0.23 0.21
d(y, ŷ) 0.31 0.29



  random selection

  sequential w/o geometry

exploiting geometry

         noise-tolerant

Summary

O(n log n)
O(d log n)

O(n2)

O(d log2 n)

# of comparisons needed to rank n objects in d dimensions

K. Jamieson and RN. Active ranking using 
pairwise comparisons. Neural Information 
Processing Systems (NIPS), 2011



  random selection

  sequential w/o geometry

exploiting geometry

         noise-tolerant

Summary

O(n log n)
O(d log n)

O(n2)

O(d log2 n)

# of comparisons needed to rank n objects in d dimensions

K. Jamieson and RN. Active ranking using 
pairwise comparisons. Neural Information 
Processing Systems (NIPS), 2011

D. Tschopp, P. Delgosha, S. Mohajer, S. Diggavi. 
Randomized Algorithms for Comparison-based Search. 
Neural Information Processing Systems (NIPS), 2011

There are other ways to limit the complexity of ranks.  The combinatorial 
disorder D quantifies approximate triangle inequalities on ranks, and this 
has been used to devise more efficient ranking schemes of a similar nature

ranking requires about O(D3 log2 n) pairwise comparisons



X : models/hypotheses
under consideration

Y: possible measurements/experiments

y1(x), y2(x), . . . : information/data

    model
    space

sensing 
space

data
space

The General Problem

Conclusions

* many learning tasks can be accelerated using interactive information gathering

* gains are often achieved because, unlike in conventional coding/information 
   theory, there are restrictions on how information can be obtained/conveyed

* incremental information gain algorithms can be effective and sometimes optimal


