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My naive view of this workshop

Each participant has special knowledge of certain methods and

applications.
Participant Methods Discipline/Applications
A . { A’s set of methodsH A’s set of applications

{ B’s set of methodsH B’s set of applications

[

{ C’s set of methodsH C’s set of applications J

\ D’s set of methodsH D’s set of applications




At the end of the workshop

Cross fertilization: participants learn about new matches

between methods and applications.

Participants

Methods Discipline/Applications

A .

{ A’s set of methods A’s set of applications
[ B’s set of methods B’s set of applications

.

{ C’s set of methods C’s set of applications J
D’s set of methods D’s set of applications J




Applications / methods

-
In my case:
Method = Causal discovery
Applications = Geosciences, especially
atmospheric/climate science,
large-scale dynamic processes
Purpose = Scientific discovery

(not prediction, not forecasting, etc.)



Typical geoscience applications
E

e Complex systems; many variables.
* Often spatially distributed = spatio-temporal data
 Data sets are large in size, but that is because

— Dimensionality is high,

—  While sample size is actually small (often 60 years of

daily/monthly/yearly data).

 Properties of many underlying mechanisms not yet
fully understood

— opportunities for scientific discovery from data



Reading suggestion

Report of “2015 Workshop on Intelligent and
Information Systems for Geosciences”.

Yolanda Gil and Suzanne Pierce (+ 32 participants)
59 pages.

Includes discussion of geoscience applications in
need of new analysis methods.

Available at is-geo.org.



Causal Discovery Theory - 101

Goal: Learn potential cause-effect relationships from
observed data.

Causal discovery theory

* Provides algorithms for that purpose.

* Based on Probabilistic Graphical Models.
* Input: Observed data.

 OQutput: Graph structure (diagram) showing potential causal
connections.

Terminology:
* If final model is directed graph: called “Bayesian network”
* If final model is undirected graph: called “Markov network”



Causal Discovery — quick history

N
Development:

e Path diagrams (Wright 1921), Granger “causality” (1969)

e (Causal calculus: late 1980s (Pearl, Rebane)

e Hidden common causes: Spirtes, Glymour, Scheines (1990s)
e More algorithms: 1980s to now

e Computationally feasible since 1990s

e Constantly pushing boundaries for # of variables.

Applications:
e Used extensively in social science and economics (since 1980s)
e 2011: Turing award (=Nobel prize in computer science) to Judea Pearl

* Many recent success stories in bioinformatics:

— identifying gene regulatory networks,
— identifying protein interactions,
— discovering neural connections in the brain.

* Emerging in geosciences.



Concept 1: Direct vs. indirect connections
EEE——

Example: See system on right.
Arrows indicate: cause > effect.

In this plot: @
e Xis adirect cause of,

 Yis adirect cause of Z,
e Xisonly an indirect cause of Z.

Goal of causal discovery: we want to identify only
direct connections. Eliminate all others.



Caution: Directness is relative property
EE——

One can always transform a direct connection into an indirect one
by including an intermediate cause!

Toy example:

Monsoon month is direct cause Monsoon month is only indirect
of flooding in this model. cause of flooding in this model.

Both models are correct!
Directness is only defined relative to variables included in model.



Concept 2: Causality is probabilistic relationship
EE

Example: Monsoon )
Flooding
month

This graph implies:
1) Flooding is more likely in monsoon months, but not certain.
2) Flooding can also happen outside of monsoon months.

— Supplement graph with probabilities.
- Use framework of “Probabilistic graphical models”

But:

* For our applications we so far do not care about the exact
probabilities.

 Just want to identify graph showing strongest potential causal
connections.



Concept 3: Hidden common causes (latent variables)
N

Ex.: Cloud cover is common cause
of UV and rain variables.

If we do not include the common
cause in model, results are no longer causal:

Chance Chance
of Rain of Rain
Conclusion:

1) We can never prove causal connections.

2) But we can disprove causal connections.
— Tool for that: Conditional independence tests.



A basic algorithm to find the graph

B
Use classic statistical tests (e.g. Fisher’s Z-test) to
detect and eliminate indirect connections.

Basic algorithm for learning independence graph from
data:

1. Nodes of graph = observed variables.

2. Start with fully connected graph = assume that
every variable is a cause of every other variable.

3. Eliminate as many edges as possible using
conditional independence tests.

4. Establish arrow directions (using more statistical
tests and/or temporal constraints).

Whatever is left at end: potential causal connections.
(Elimination procedure.)



Assumptions for causal interpretation
EE——

A) From data (probability distribution) to independence graph:

Faithfulness: graph model actually models the underlying data well.
1) Probability distributions are i.i.d.

2) No selection bias.

3) If developing directed model, no loops allowed.

4) Causal signals strong enough to be picked up by statistical tests.

B) From independence graph to causal interpretation:

Causal sufficiency: “no hidden common causes”

If any two nodes, X, Y, of the graph have a common cause Z, then Z
must also be included in the graph.



Causal sufficiency usually NOT satisfied in geoscience
B

e There may always be a hidden common cause we are not
aware of, that cannot be measured, or including them all may
make model too complex.

e Need to keep that possibility in mind when interpreting results
-2 results are only causal hypotheses.

e Each hypothesis could be direct connection, due to hidden
common cause, or combination of both.

How do we deal with that? Add “evaluation step”.

* |n results, every link (or group of links) must be checked by
domain expert.

 (Can we find physical mechanism that explains it?
If Yes = confirmed.
If No 2 new hypothesis to be investigated by domain expert



Application 1: Climate Networks
I
Tsonis and Roebber (2004) introduced

“climate networks”

p— ———

1) Define grid around globe.

2) Evaluate an atmospheric
field at all grid points. g0
> Time-series data at grid points. &t

3) Identify all pairs of grid points
with high correlation
— correlation-based climate network




Existing Climate Networks
EEE——

Correlation-based climate networks:
* Yield undirected graph, static model.
* Focus on similarities between geographical regions

* Great for identifying tele-connections (= regions that are far
apart, but behave similarly)

Two additional (less common) types:
1. Mutual information network

2. Phase synchronization network

All existing climate networks:
Use only pair-wise tests involving data for
nodes X,Y to decide whether X-Y should be connected.



Example: Interaction maps from geopotential height

Data: Joint work
with Yi Deng
e 500mb
geopotential ’
height B
e NCEP/NCAR
Reanalysis
e 1948-2011

e Results for winter
(DJF months)

e Fekete grid

Shown here: ,
e Stereo-graphic P SR A Y
projection (North) | " 4

e Strongest direct
connections for

0, 1, 2, 3 days.

(c) 2-day-delay (d) 3-day-delay



What we learned later from synthetic experiments
B

But what
Is this ?17?

This one was clear
right away:

This is what
advection =

looks like

(c) 2-day-delay (d) 3-day-delay



What we learned later from synthetic experiments
E———

It took us 3 years and lots of
experiments with synthetic
data to find this out:

o0 £

This is what
diffusion

90

looks like

This one was clear
right away:

This is what
advection =

looks like

(c) 2-day-delay (d) 3-day-delay



We can now do this in 3D, too!
Joint work
with Yi Deng

Input = observed daily
geopotential height data.

50mb

Causal Discovery 2>

Track physical interactions
around the globe to study
specific effects (QBO, etc).

250mb

Geopotential height

500mb ~

“Selective reverse engineering”

Data: NCEP/NCAR Reanalysis data, 1948-2011. sone
Daily geopotential height for 850, 500, 250, 50mb.
Data during QBO up transition.

Northern hemisphere, stereo-graphic projections for
850, 500, 250, 50mb.

400 point grid. Timescale: D=1 day.

Here: Observed data = Causal discovery =2 Interaction Maps



Application 2: Apply to Climate Model Runs

Idea by Dorit Hammerling: Use interaction maps as “dynamic

fingerprints” or “causal signatures” of climate model runs.

e
I

Model

Output

(single run)

N 2@

CESM Model

Causal

Discovery
Algorithm

e Calculate “causal signature” for individual model outputs (e.g.

different initial conditions), then compare their “signature”.

* First experiments: use only 15 variables, use global averages.

Here: Model data = Causal discovery = Interaction Maps



Sample Results: Effect of compression

B
HOW tO read the plOtS, 1..'.5 1._'.3 1.:_3‘4 1.;34.*

1) Every connection is only a
potential cause-effect
relationship (could be due to
common cause).

Set 31:
Signature from
original data
(D=1 day)

2) Connections can be
directed or undirected.

3) Number(s) next to line =

delay from potential cause to . (e (s pues (Cram i (20 uaass

potential effect.
Here: daily time scale. Set 31C:
Signature after

compression and

Observation: reconstruction
compression is (D=1 day)
causing only tiny

differences.




Sample Results: Effect of initial conditions

EE
Shown here:
Interactions on
daily time scale.

Set 31

Observation: Time scale: D=1 day

Different initial
conditions do yield
some differences.

But there is always

a “basic minimal
pattern” that stays
the same. Needs
more study ...

o 1..&} 1‘1.3 1..&} 1_'\3.4 1.:,3‘4.5.0
U U
>

1\:\3.45.10»
Set 26

Time scale: D=1 day




Opportunities of Causal Discovery in Geosciences
E

* Apply to observed data or model data for reverse engineering

— extract big picture of interactions from observed/model data.

* Interaction maps are intuitive - great communication tool.

* |Interaction maps are useful for scientific discovery:

Learn details about (physical) mechanisms that are not yet

fully understood.

Details can be: Location / direction / magnitude of effect,

causal pathway.
Study trends for different conditions.

Example: How do mechanisms change in a warming climate?



Limitations + Challenges of Causal Discovery

1)
2)
3)

4)

5)

6)

Large sample size required for statistical tests (robustness).
Computational complexity — can limit spatial resolution.
Grid bias = signals along grid symmetry are picked up best.

Signal speed bias: signals with speeds around (aAx/at) get picked up

best.

Ground truth rarely available to test and calibrate methods

- need to generate and test on synthetic data.

In practice, method catches only the strongest interactions for any
variable/location. (If there are strong + weak interactions at one

location, do not expect to pick up the weak one.)



Experiments with synthetic data: advection + diffusion

Original advection

Result:
velocity field (input) Estimated velocity field
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Experiments with synthetic data
B

Original advection Result:
velocity field (input) Estimated velocity field
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Interpretation of interaction maps is hard work !

E——
1. Identify physical mechanism for each interaction found:

* Many different mechanisms can be at work simultaneously.

* Only domain scientist can determine what each connection
represents.

 Some may be due to hidden common causes.

2. Determine effect of grid bias, signal speed bias (Ax/At), etc..

Ex: use several different grids/resolutions and compare results.

3. Conduct experiments with synthetic data to learn typical causal

signatures of different physical mechanisms.



Conclusions

* Causal discovery is emerging in many new
applications.

e Causal interpretation requires caution: we can only
identify potential cause-effect relationships.

* Knowledge discovery — of any kind — has much to
contribute to geosciences and similar disciplines.

* There are still so many processes of this earth that are
not yet fully understood. —> Lots of potential.



The End.

Questions or Suggestions?

Motto: To boldly go, where no causal discovery
algorithm has gone before.






One of our first experiments — what’s going on?

EEE———
Static model, simple equal-area grid, Northern hemisphere shown

H N N I I Y DO

300

Front view

30N

60

Straight connections in Africa & hexagons in Pacific ?1?
Does this make any sense ?!?
What do you think happened here?



One of our first experiments: showing grid bias

B
Static model, simple equal-area grid, Northern hemisphere shown

H N N I I Y DO

Front view

30N

300 60

Straight connections in Africa & hexagons in Pacific ?1?

Unequal proximity in grid is stronger signal than “causal” signal.

Direction bias because of uneven proximity of some neighbors.

= Any two points close to each other are connected! Not what we intended!
Solution: Isotropic grid (Fekete grid) = reduces bias for direction.
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Experiments with synthetic data
B

Original advection
velocity field (input)
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Application to Climate Models

Goals:

1. Study effect of lossy compression in output data — Does
fingerprint look very different after compression and
reconstruction?

2. Detect errors in individual runs (e.g. maybe one software
component not linked in properly). Do we pick up such errors
in the fingerprint?

3. Can we classify ensemble members based on their causal
signatures?

First experiments: Focus on only 15 variables of climate model
output, use global averages.



