Vector Valued Modular Forms in Vertex Operator Algebras

Jean Auger
University of Alberta

Alberta Number Theory Days VIII, BIRS
Banff, April 2016

Overview

Vertex Operator Algebra $=$ VOA
Origins in deep physics theories that aim beyond QM + GR
Philosophy: The relevance of a VOA is found in its rep theory.

Overview : modular objects

In the VOA theory...

$$
\begin{array}{lc}
\text { 'C2-cofiniteness' } & \text { vs } \quad \text { 'finite \# of simple modules' } \\
& \text { vs } \quad \text { modularity of characters }
\end{array}
$$

Following work by Y.Zhu, M.Miyamoto proved that the linear span of trace \& 'pseudo-trace' functions of such VOAs is a representation of the modular group.

Overview : broad aim

An obstacle to non-ss settings : the lack of examples...
To this date, a single family of VOAs with

- C_{2}-cofiniteness
- non-semisimple rep theory
has been known... : the $W(p)$-triplet VOAs.

Overview : broad aim

An obstacle to non-ss settings : the lack of examples...
To this date, a single family of VOAs with

- C_{2}-cofiniteness
- non-semisimple rep theory
has been known... : the $W(p)$-triplet VOAs.

Broad aim

To find new examples of VOAs that are as such.

Overview : local aim

Several people have been looking for candidate VOAs including D.Adamović, T.Creutzig, A.Milas, D.Ridout, S.Wood.

Some of the more accessible candidates with

- C_{2}-cofiniteness
- non-ss rep theory are constructed out of affine VOAs.

Overview : local aim

Several people have been looking for candidate VOAs including D.Adamović, T.Creutzig, A.Milas, D.Ridout, S.Wood.

Some of the more accessible candidates with

- C_{2}-cofiniteness
- non-ss rep theory
are constructed out of affine VOAs.

Local aim

To expose the character modular invariance property for the most accessible candidate !!

Overview : a candidate

The VOA \mathcal{D}_{k} from the following diagram :

$$
L_{k}\left(\mathfrak{s l}_{2}\right) \xrightarrow{\text { Coset }} \mathcal{C}_{k}=\operatorname{Com}\left(\mathcal{H}, L_{k}\left(\mathfrak{s l}_{2}\right)\right) \xrightarrow{\text { Extension }} \mathcal{D}_{k}
$$

where

- $k<0$ \& $k+2=\frac{u}{v} \in \mathbb{Q}>0 \backslash\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$
- $\mathcal{H}=$ the Heisenberg subalgebra of $L_{k}\left(\mathfrak{s l}_{2}\right)$

Overview : a candidate

The VOA \mathcal{D}_{k} from the following diagram :

$$
L_{k}\left(\mathfrak{s l}_{2}\right) \xrightarrow{\text { Coset }} \mathcal{C}_{k}=\operatorname{Com}\left(\mathcal{H}, L_{k}\left(\mathfrak{s l}_{2}\right)\right) \xrightarrow{\text { Extension }} \mathcal{D}_{k}
$$

where

- $k<0$ \& $k+2=\frac{u}{v} \in \mathbb{Q}>0 \backslash\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$
- $\mathcal{H}=$ the Heisenberg subalgebra of $L_{k}\left(\mathfrak{s l}_{2}\right)$

Then under a suitable assumption on $\mathcal{C}_{k} \ldots$

$$
\text { 'Schur-Weyl' }+ \text { Extension process } \Rightarrow \mathcal{D}_{k} \text { is promising }
$$

Overview : 'Schur-Weyl' duality

Assuming that the vertex tensor theory of HLZ applies for $\mathcal{C}_{k} \ldots$

Theorem [T.Creutzig, S.Kanade, A.R.Linshaw, D.Ridout]

Then for any a simple $L_{k}\left(\mathfrak{s l}_{2}\right)$-module M on which \mathcal{H} acts semisimply, we have a decomposition :

$$
M=\bigoplus_{y \in v^{M}+\text { lattice }} F_{y} \otimes C_{y}^{M}
$$

as a $\left(\mathcal{H} \otimes \mathcal{C}_{k}\right)$-module where the F_{y} 's are Fock spaces and the C_{y}^{M} are simple \mathcal{C}_{k}-modules.

+ a few technical properties.

Note : $\mathcal{H}=\operatorname{Com}\left(\mathcal{C}_{k}, L_{k}\left(\mathfrak{s l}_{2}\right)\right)$.

Modular invariance

One defines characters as: $\operatorname{tr}_{M}\left(y^{k} z^{h_{0}} q^{L_{0}-\frac{c}{24}}\right)$.
We should think : $q=e^{2 \pi i \tau}$.
By some classification work, it is sufficient to consider characters of two types of $L_{k}\left(\mathfrak{s l}_{2}\right)$-modules...

$$
\sigma^{\ell} \mathcal{E}_{\lambda, \Delta_{r, s}} \quad \sigma^{\ell} \mathcal{L}_{r, 0}
$$

where...

Modular invariance

One defines characters as: $\operatorname{tr}_{M}\left(y^{k} z^{h_{0}} q^{L_{0}-\frac{c}{24}}\right)$.
We should think : $q=e^{2 \pi i \tau}$.
By some classification work, it is sufficient to consider characters of two types of $L_{k}\left(\mathfrak{s l}_{2}\right)$-modules...

$$
\sigma^{\ell} \mathcal{E}_{\lambda, \Delta_{r, s}} \quad \sigma^{\ell} \mathcal{L}_{r, 0}
$$

where...

- $\ell \in \mathbb{Z}$ \& σ is an automorphism of $L_{k}\left(\mathfrak{s l}_{2}\right)$
- $r \in\{1, \ldots, u-1\}$ \& $s \in\{0, \ldots, v-1\}$
- $\lambda \in \frac{1}{v} \mathbb{Z}$

Modular invariance

$$
L_{k}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{C}_{k} \rightarrow \mathcal{D}_{k}
$$

Source: T.Creutzig, D.Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models II, Nucl. Phys. B 875 (2013) 423. I thank the authors for allowing me to use this picture.

Modular invariance

Decomposing the relevant characters accordingly to the 'Schur-Weyl' result, we get :

$$
\begin{aligned}
\operatorname{ch} \sigma^{\ell} \mathcal{E}_{\lambda, \Delta_{r, s}} & =\sum_{n \in \mathbb{Z}}\left(\operatorname{ch} F_{\lambda+2 n+k \ell}\right) \cdot\left(\operatorname{ch} C_{r, s, \lambda+2 n}^{\mathcal{E}}(q)\right) \\
\operatorname{ch} \sigma^{\ell} \mathcal{L}_{r, 0} & =\sum_{n \in \mathbb{Z}}\left(\operatorname{ch} F_{r-1+2 n+k \ell}\right) \cdot\left(\operatorname{ch} C_{r, r-1+2 n}^{\mathcal{L}}(q)\right)
\end{aligned}
$$

where...

Modular invariance

Decomposing the relevant characters accordingly to the 'Schur-Weyl' result, we get :

$$
\begin{aligned}
\operatorname{ch} \sigma^{\ell} \mathcal{E}_{\lambda, \Delta_{r, s}} & =\sum_{n \in \mathbb{Z}}\left(\operatorname{ch} F_{\lambda+2 n+k \ell}\right) \cdot\left(\operatorname{ch} C_{r, s, \lambda+2 n}^{\mathcal{E}}(q)\right) \\
\operatorname{ch} \sigma^{\ell} \mathcal{L}_{r, 0} & =\sum_{n \in \mathbb{Z}}\left(\operatorname{ch} F_{r-1+2 n+k \ell}\right) \cdot\left(\operatorname{ch} C_{r, r-1+2 n}^{\mathcal{L}}(q)\right)
\end{aligned}
$$

where...

$$
\begin{aligned}
& \text { ch } C_{r, s, x}^{\mathcal{E}}(q)=\frac{\chi_{r, s}^{V i r}(q)}{\eta(q)} q^{-\frac{1}{4 k} x^{2}} \\
& \begin{aligned}
\text { ch } C_{r, x}^{\mathcal{L}}(q)=\sum_{d=1}^{v-1}(-1)^{d-1} \frac{\chi_{r, d}^{V i r}(q)}{\eta(q)} & \cdot \sum_{a=0}^{\infty} q^{-\frac{1}{4 k}(x-k(2 a v+d))^{2}} \\
& -q^{-\frac{1}{4 k}(x-k(2(a+1) v-d))^{2}}
\end{aligned}
\end{aligned}
$$

Modular invariance

$L_{k}\left(\mathfrak{s}_{2}\right) \rightarrow \mathcal{C}_{k} \rightarrow \mathcal{D}_{k}$

Set $p=-k v^{2}$ and $\Gamma=\sqrt{2 p} \mathbb{Z}$.
Lifting the \mathcal{C}_{k}-modules $C_{r, s, x}^{\mathcal{E}}$ and $C_{r, x}^{\mathcal{L}}$ results in the apparition of lattice Θ-functions and derivatives :

$$
\underbrace{D_{r, s, \omega}^{\mathcal{E}, 0}(q)}_{\Theta}+\underbrace{0}_{\Theta^{\prime}}
$$

$$
\underbrace{D_{r, t}^{\mathcal{L}, 0}(q)}_{\Theta}+\underbrace{D_{r, t}^{\mathcal{L}, 1}(q)}_{\Theta^{\prime}}
$$

where...

Modular invariance

$L_{k}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{C}_{k} \rightarrow \mathcal{D}_{k}$

Set $p=-k v^{2}$ and $\Gamma=\sqrt{2 p} \mathbb{Z}$.
Lifting the \mathcal{C}_{k}-modules $C_{r, s, x}^{\mathcal{E}}$ and $C_{r, x}^{\mathcal{L}}$ results in the apparition of lattice Θ-functions and derivatives :

$$
\underbrace{D_{r, s, \omega}^{\mathcal{E}, 0}(q)}_{\Theta}+\underbrace{0}_{\Theta^{\prime}}
$$

$$
\underbrace{D_{r, t}^{\mathcal{L}, 0}(q)}_{\Theta}+\underbrace{D_{r, t}^{\mathcal{L}, 1}(q)}_{\Theta^{\prime}}
$$

where...

$$
\begin{aligned}
D_{r, s, \omega}^{\mathcal{E}, 0}(q) & =\frac{\chi_{r, s}^{V_{r, s}}(q)}{\eta(q)} \Theta_{\frac{\omega}{\sqrt{2 p}}+\Gamma}(1, q) \\
D_{r, t}^{\mathcal{L}, 0}(q) & =\text { a linear combination of expressions of the form } D_{r, s, \omega}^{\mathcal{E}, 0}(q) \\
D_{r, t}^{\mathcal{L}, 1}(q) & =\sum_{d=1}^{v-1}(-1)^{d-1} \frac{\chi_{r, d}^{V i r}(q)}{\eta(q)}\left(\Theta_{\frac{(r-1+2 t)+k v d}{\sqrt{2 p}}+\Gamma}^{\prime}(1, q)-\Theta_{\frac{(r-1+2 t)-k v d)}{\prime}+\Gamma}^{\sqrt{2 p}}(1, q)\right)
\end{aligned}
$$

Modular invariance : $D_{r, s, \omega}^{\mathcal{E}, 0}(q)$

$$
\frac{\chi_{r, s}^{\operatorname{Vir}}(q)}{\eta(q)} \Theta_{\frac{\omega}{\sqrt{2 p}}+\Gamma}(1, q)
$$

Consider the generating modular transformations

$$
S: \tau \mapsto-\frac{1}{\tau} \quad T: \tau \mapsto \tau+1
$$

$\operatorname{Span}_{\mathbb{C}}\left\{D_{r, s, \omega}^{\mathcal{E}, 0}(q)\right\}$ is then automatically a representation of $\operatorname{PSL}(2, \mathbb{Z})$!

Modular invariance : $D_{r, t}^{\mathcal{C}, 1}(q)$

Fix parameters r, t and write

$$
D_{r, t}^{\alpha, 1}\left(-\frac{1}{\tau}\right)=\sum \operatorname{Coeff}_{\left(r^{\prime}, s^{\prime}\right), \omega} \cdot\left(\frac{\chi_{\chi_{r}, s_{s}}^{V_{r}(\tau)}}{\eta(\tau)} \Theta_{\frac{\omega}{\sqrt{2 p}}+\Gamma}^{\prime}(\tau)\right)
$$

Modular invariance : $D_{r, t}^{\mathcal{L}, 1}(q)$

Fix parameters r, t and write

$$
D_{r, t}^{\alpha, 1}\left(-\frac{1}{\tau}\right)=\sum \operatorname{Coeff}_{\left(r^{\prime}, s^{\prime}\right), \omega} \cdot\left(\frac{X_{\chi_{r}, s_{s}}^{\nu_{r}(\tau)}}{\eta(\tau)} \Theta_{\frac{\omega}{\sqrt{2 p}}+\Gamma}^{\prime}(\tau)\right)
$$

Fix d. Then for any r^{\prime}, t^{\prime}, one can find that

$$
(-1)^{d-1} \operatorname{Coeff}_{\left(r^{\prime}, d\right),\left(r^{\prime}-1+2 t^{\prime}\right) v \pm k v d}= \pm\left[\#\left(r, t, r^{\prime}, t^{\prime}\right)\right]
$$

... and that the irrelevant 'Coeffs' vanish!

Modular invariance

Result

The vector space

$$
V=\operatorname{Span}_{\mathbb{C}}\left\{D_{r, s, \omega}^{\mathcal{E}, 0}(q)+0, D_{r, t}^{\mathcal{L}, 0}(q)+D_{r, t}^{\mathcal{L}, 1}(q)\right\}
$$

is a representation of $\operatorname{PSL}(2, \mathbb{Z})$!

Modular invariance

Result

The vector space

$$
V=\operatorname{Span}_{\mathbb{C}}\left\{D_{r, s, \omega}^{\mathcal{E}, 0}(q)+0, D_{r, t}^{\mathcal{L}, 0}(q)+D_{r, t}^{\mathcal{L}, 1}(q)\right\}
$$

is a representation of $\operatorname{PSL}(2, \mathbb{Z})$!

More interestingly $\operatorname{Span}_{\mathbb{C}}\left\{D_{r, t}^{\mathcal{L}, 1}(q)\right\}$ also is ;

$$
D_{r, t}^{\mathcal{L}, 1}\left(-\frac{1}{\tau}\right)=\sum S_{(r, t),\left(r^{\prime}, t^{\prime}\right)}^{\mathcal{L}, 1} \cdot D_{r^{\prime}, t^{\prime}}^{\mathcal{L}, 1}(\tau)
$$

where

$$
S_{(r, t),\left(r^{\prime}, t^{\prime}\right)}^{\mathcal{L}, 1}=\underbrace{X_{\left(r^{\prime} t^{\prime}\right)}}_{1 \text { or } 1 / 2} \cdot \frac{4 i \tau}{\sqrt{u} \sqrt{2 v-u}} \sin \left(\pi \frac{v}{u} r r^{\prime}\right) \cos \left(\pi \frac{(r-1+2 t)\left(r^{\prime}-1+2 t^{\prime}\right) v}{2 v-u}\right)
$$

