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Overview

Vertex Operator Algebra = VOA

Origins in deep physics theories that aim beyond QM + GR

Philosophy : The relevance of a VOA is found in its rep theory.
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Overview : modular objects

In the VOA theory...

’C2-cofiniteness’ vs ’finite # of simple modules’

vs modularity of characters

Following work by Y.Zhu, M.Miyamoto proved that the linear span of
trace & ’pseudo-trace’ functions of such VOAs is a representation of
the modular group.
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Overview : broad aim

An obstacle to non-ss settings : the lack of examples...

To this date, a single family of VOAs with

C2-cofiniteness

non-semisimple rep theory

has been known... : the W (p)-triplet VOAs.

Broad aim

To find new examples of VOAs that are as such.
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Overview : local aim

Several people have been looking for candidate VOAs including
D.Adamović, T.Creutzig, A.Milas, D.Ridout, S.Wood.

Some of the more accessible candidates with

C2-cofiniteness

non-ss rep theory

are constructed out of affine VOAs.

Local aim

To expose the character modular invariance property for the most
accessible candidate !!
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Overview : a candidate

The VOA Dk from the following diagram :

Lk(sl2) Ck = Com (H, Lk(sl2)) Dk
Coset Extension

where

k < 0 & k + 2 = u
v ∈ Q>0\

{
1, 1

2 ,
1
3 , ...

}

H = the Heisenberg subalgebra of Lk(sl2)

Then under a suitable assumption on Ck ...

’Schur-Weyl’ + Extension process ⇒ Dk is promising
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Overview : ’Schur-Weyl’ duality

Assuming that the vertex tensor theory of HLZ applies for Ck ...

Theorem [T.Creutzig, S.Kanade, A.R.Linshaw, D.Ridout]

Then for any a simple Lk(sl2)-module M on which H acts semisimply, we
have a decomposition :

M =
⊕

y∈vM+lattice

Fy ⊗ CM
y

as a (H⊗ Ck)-module where the Fy ’s are Fock spaces and the CM
y are

simple Ck -modules.

+ a few technical properties.

Note : H = Com (Ck , Lk(sl2)).
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Modular invariance k + 2 = u/v

One defines characters as : trM(ykzh0qL0− c
24 ).

We should think : q = e2πiτ .

By some classification work, it is sufficient to consider characters of two
types of Lk(sl2)-modules...

σ`Eλ,∆r,s σ`Lr ,0

where...

` ∈ Z & σ is an automorphism of Lk(sl2)

r ∈ {1, ... , u − 1} & s ∈ {0, ... , v − 1}
λ ∈ 1

vZ
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Modular invariance Lk(sl2)→ Ck → DkMODULAR DATA AND VERLINDE FORMULAE FOR FRACTIONAL LEVEL WZW MODELS II 9

Lr,0 ≡ Lr−1

Eλ ;∆r,s

D+
u−r,v−1

D+
r,s

D−
u−r,v−1

D−
u−r,v−s−1

σσσ

σ σ σσ

σ σ σσ

FIGURE 2. Depictions of the three types of families of admissible irreducible ŝl(2)-
modules when v > 1. Conformal dimensions increase from top to bottom and sl(2)-
weights increase from right to left.

σ ℓ
(
Eλ ;∆r,s

)
is irreducible, which occurs whenever λ ̸= λr,s,λu−r,v−s, we shall refer to it as being typical.

Admissible modules which are not typical, such as the σ ℓ
(
Lr,0
)

and the σ ℓ
(
D+

r,s
)
, are said to be atypical.

4. STANDARD CHARACTERS

We will assume, unless otherwise stipulated, that v > 1 for the remainder of the article. The admissible
modules with v = 1 coincide with the well-known integrable modules at non-negative integer level and we
refer to standard texts, for example [34, 35], for their study.

To derive character formulae for the standard modules σ ℓ
(
Eλ ;∆r,s

)
, it is actually convenient to start

with certain atypical characters. We therefore consider the structure of the Verma modules Vr,s, for r =

1,2, . . . ,u − 1 and s = 1,2, . . . ,v − 1, whose level k is admissible and whose irreducible quotients are the
admissible modules D+

r,s. The characters of these Verma modules are simply given by

ch
[
Vr,s
](

y;z;q
)

= tr
Vr,s

ykzh0qL0−c/24 =
ykzλr,sq∆r,s−c/24

∏∞
i=1 (1− z2qi)(1−qi)(1− z−2qi−1)

=
−iykzλr,s+1q∆r,s−c/24+1/8

ϑ1
(
z2;q

) . (4.1)

Their structures may be obtained straight-forwardly from the Kac-Kazhdan formula. The singular vectors
turn out to have weights of the form λr′,s and conformal dimensions ∆r′,s, where r′ = ±r mod u. More
precisely, the singular vectors form an infinite braided pattern as follows:

r

−r

2u− r

−2u+ r

2u+ r

−2u− r

4u− r

−4u+ r

4u+ r

−4u− r

6u− r

Source : T.Creutzig, D.Ridout, Modular Data and Verlinde Formulae for
Fractional Level WZW Models II, Nucl. Phys. B 875 (2013)
423. I thank the authors for allowing me to use this picture.
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Modular invariance Lk(sl2)→ Ck → Dk

Decomposing the relevant characters accordingly to the ’Schur-Weyl’
result, we get :

chσ`Eλ,∆r,s =
∑

n∈Z

(
chFλ+2n+k`

)
·
(

chCEr ,s,λ+2n(q)
)

chσ`Lr ,0 =
∑

n∈Z

(
chFr−1+2n+k`

)
·
(

chCLr ,r−1+2n(q)
)

where...

chCEr ,s,x(q) =
χVir
r ,s (q)

η(q)
q−

1
4k x

2

chCLr ,x(q) =
v−1∑

d=1

(−1)d−1
χVir
r ,d(q)

η(q)
·
∞∑

a=0

q−
1

4k (x−k(2av+d))2

− q−
1

4k

(
x−k
(

2(a+1)v−d
))2
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Modular invariance Lk(sl2)→ Ck → Dk

Set p = −kv2 and Γ =
√

2p Z.

Lifting the Ck -modules CEr ,s,x and CLr ,x results in the apparition of lattice
Θ-functions and derivatives :

DE,0r ,s,ω(q)
︸ ︷︷ ︸

Θ

+ 0︸︷︷︸
Θ′

DL,0r ,t (q)︸ ︷︷ ︸
Θ

+DL,1r ,t (q)︸ ︷︷ ︸
Θ′

where...

DE,0r ,s,ω(q) =
χVir
r ,s (q)

η(q)
Θ ω√

2p
+Γ(1, q)

DL,0r ,t (q) = a linear combination of expressions of the form DE,0r ,s,ω(q)

DL,1r ,t (q) =
v−1∑

d=1

(−1)d−1
χVir
r ,d(q)

η(q)

(
Θ′(r−1+2t)v+kvd√

2p
+Γ

(1, q)−Θ′(r−1+2t)v−kvd)√
2p

+Γ
(1, q)

)
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Modular invariance : DE ,0r ,s,ω(q) 1/2

χVir
r ,s (q)

η(q)
Θ ω√

2p
+Γ(1, q)

Consider the generating modular transformations

S : τ 7→ − 1
τ T : τ 7→ τ + 1

SpanC
{
DE,0r ,s,ω(q)

}
is then automatically a representation of PSL(2,Z) !
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Modular invariance : DL,1r ,t (q) 2/2

v−1∑

d=1

(−1)d−1
χVir
r ,d(q)

η(q)

(
Θ′(r−1+2t)v+kvd√

2p
+Γ

(1, q)−Θ′(r−1+2t)v−kvd)√
2p

+Γ
(1, q)

)

Fix parameters r , t and write

DL,1r ,t

(
− 1
τ

)
=
∑

Coeff(r ′,s′), ω ·
(
χVir
r′,s′ (τ)

η(τ) Θ′ ω√
2p

+Γ(τ)

)

Fix d . Then for any r ′, t ′, one can find that

(−1)d−1 Coeff(r ′,d), (r ′−1+2t′)v±kvd = ±
[
#(r , t, r ′, t ′)

]

... and that the irrelevant ’Coeffs’ vanish !
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Modular invariance

Result

The vector space

V = SpanC
{
DE,0r ,s,ω(q) + 0 , DL,0r ,t (q) + DL,1r ,t (q)

}

is a representation of PSL(2,Z) !

More interestingly SpanC
{
DL,1r ,t (q)

}
also is ;

DL,1r ,t

(
− 1
τ

)
=
∑

SL,1(r ,t),(r ′,t′) · D
L,1
r ′,t′(τ)

where

SL,1(r ,t),(r ′,t′) = X(r ′t′)︸ ︷︷ ︸
1 or 1/2

· 4iτ√
u
√

2v−u sin
(
π v

u rr
′) cos

(
π (r−1+2t)(r ′−1+2t′)v

2v−u

)
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