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Theorem (Luo-Ramakrishnan (1997))

Let g and g’ be normalized eigenforms in S5 (N) and S35%(N')
respectively. Suppose that

L(g ® xa,1/2) = L(¢' ® xa,1/2)

for almost all primitive quadratic characters x4 of conductor prime
to NN'. Then g=g'.
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Theorem (Luo (1999))

Let g and g’ be two normalized eigenforms in Sy (N) and

2V (N') respectively. If there exist infinitely many primes p such
that

Lg® f,1/2) = L(¢' ® f,1/2)

for all normalized newforms f in S5% (p), then we have g = ¢'.
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Theorem (Ganguly-Hoffstein-Sengupta (2009))

Letl, I" and k denote positive integers and suppose g and ¢’ are
normalized eigenforms in So;(1) and Sai (1) respectively. If

L(g® f,1/2) = L(¢' ® f,1/2)

for all normalized eigenforms f € Soy(1) for infinitely many k, then
/
9=9.
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Some Notation

In what follows:

e F'is a totally real number field, [F': Q] =n

@ Op ring of integers in F', D different ideal of F', dp
discriminant of F
embeddings of F' {01, ,0,}. For x € F and
je{l,...,n}, weset z; = o;(x) and
x=(r1,...,2y) ER" Wewritex>0ifz; >0V j.
e X CF, Xt ={z€ X :x totally positive}

+
Fix a set of representatives {ai}?jl of the narrow class group
of F, CI*(F)

a~b < 3 € F*F such that ab™! = £Op. We set

¢ = [ab~"].
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Adelic Hilbert Modular Forms

By an adélic Hilbert cusp form f of weight k € 2N and level n, we
mean f : GLa(Ap) — C satisfying:
@ f(vzgr(0)u) = f(g) exp(ik0) V (v,2,9,7(0),u) €
GLQ(F) X A; X GLQ(AF) X SOQ(FOO) X Ko(ﬂ).
@ As a smooth function on GLJ (Fi), f is an eigenfunction of

the Casimir element A := (Ay,--- ,A,) with eigenvalue
n

M2 G-%

L2 2 )

J=1

1 «x

(s f([O 1]g) dx =0 for all g € GLa(AF).
F\Ap

Denote by Sk(n) the space of adélic Hilbert cusp forms of weight
k and level n.



Adelic HMF and R-S Convolutions

o £=(fi..... fy) with fi € S (T, (n).

o fi 1 h" > C
o filky = fi forall v € I',(n)
e Fourier coefficient of f at m C Op: C¢(m)

o f is primitive < f is a normalized eigenform in S (n).

@ Ilx(n) : a set of all primitive forms of weight k and level n.
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Rankin-Selberg Convolution

Given g € IIj(n) and f € IIx(q) withl =k =0 mod 2 and
(q,n) =1
Rankin-Selberg Convolution of f and g:

Lf®g,s)=(p(2s) Z M.

mCOp N(m)s
Write it as -
bmf®g
Lfegs =) mIoe
m=1
with

bﬁﬂ(f@g)Z(d‘* > Cr(m)Cg(m >).
N

d2|lm (m)=m/d?
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Let
Af®g,s)=NDing)'L(f® g, s)Lf®g,s),

where

- ki —1; ki +1;
~(f®g,s) H 2sr<s+“2f|>r<s—1+]2+3>.

J=1



Adelic HMF and R-S Convolutions

Let
Af® g, s)=N®inq) Lo (f® g, s)L(f® g, s),
where
- ki — 1] ki +1;
f —2s | J J . J 7y
(fog,s) = [[@r F<s+2 >F<s L+ = >
j=1
We have
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Main Results

Weight Aspect Over Totally Real Number Field

Theorem (H., Tanabe)

Let g € Ij(n) and g’ € T (n'), with the weights 1 and I’ being in
2N™. Let q be a fixed prime ideal. If

1 1
L<f®g,2> :L<f®g/,2>

for all £ € Tl (q) for infinitely many k € 2N", then g = g’.
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Twisted First Moment

Fix p which is either OF or a prime ideal.
Consider the first moment

> 1(toe;)Celorer

fellx(q)

where
N'k—-1)

(4m)*=dp[V2 (£, )5, (o)

ws =



Proof of Main Theorems

An Asymptotic Formula for the First Moment in the Level
Aspect

Proposition

Consider g € IIj(n) and let p be either O or a prime ideal. For all
prime ideals q with N(q) sufficiently large, we have

> L(res ;) Celbhur = S8 L (F)dlog(N(@) +O()
felly(q)

where v_1(F) = 2R:e(.)s Cr(2u+1) and A, = H (1-NO™).

IIn
[: prime
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Proof of Main Theorems

The Proof

Given g € IIj(n) and g’ € T/ (v).
Let £ € 2N" be fixed.

Suppose that there exist infinitely many prime ideals q such that

LE®g1/2)=LEog,1/2) Vfelq).

Apply above Proposition with p = Of to get A, = A.
Apply the proposition with (p,nn’) =1 to get

Cg(p) = Cg ().

Multiplicity One Theorem — g =g/'.



The Twisted First Moment

Approximate Functional Equation

Proposition

Let G(u) be a holomorphic function on an open set containing the
strip |R(s)| < 2, bounded and satisfies G(u) = G(—u) and

G(0) = 1. Then we have

1 < M(feg) 4r 72,
L|(f =2y 2"V —om—
<®g’2> mZ vm 1/2<N<©%uq>)’
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Approximate Functional Equation

Proposition

Let G(u) be a holomorphic function on an open set containing the
strip |R(s)| < 2, bounded and satisfies G(u) = G(—u) and

G(0) = 1. Then we have

1 —~ bn(f®g) )
L(f = | =2 E ——=V —
< Ve 2) P <N(©%ﬂq)> ’

with
1
V1/2(y> = 9ri /(3/2) Y NN ey w

—A
ay/(a) Y




The Twisted First Moment

Proposition (Trotabas (2011))

Let a and b be fractional ideals in F. Fora € a=' and B € b1,
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Proposition (Trotabas (2011))

Let a and b be fractional ideals in F. Fora € a=' and B € b1,
we have

(k- 1)
C Ce(Bb
fe%,;(q) (4m)e=2|dp |2 (E, ) g, (o) et

Kl(ea, a; 38, b; ¢, 4y /ev€[abe—2
b @ Sy ACAEUE0 (V [obe ]),

N(ce le]
2~ab ( )
cec g\ {0}
€Ot /O)2

where C' = % and Hy(q) is an orthogonal basis for the

space Sk(q).
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The Twisted First Moment

Consider the following:

S Lo g 1/2)Cepler
felly(q)

=2 Z Z \[;%Vlﬁ (4”7T2nmN(nq)_1) Ce(p)ws

felly(q) m=1



The Twisted First Moment

Consider the following:

> L(f®g,1/2)Cr(p)we

f€k(q)
=2 >y Z \ﬁvl/z (4"7*"*mN(nq) ") Ce(p)ws

fellg(q) m=1
4772 N(m)d?
2\ T N

mCOp

X Z wa’f(p)Cf(m)

felly(q)
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Given m,p C OpF:

m = va for some a and v € (a=!)* mod O;*
p = &b for some b and € € (b71)T mod O57T.
Apply Petersson Trace formula

L (f@g, )C’f(p)

fellx(q)

=23, > ﬁz V) (et

{a} ve(a1)t/O0x*

T/ EV -2
N N = — | N

le| forms
c,e

— Cel) pye g g
—\/mM p(k,q) + CE;(k,q) — Ey(k,q,0ld)
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C = at 4772 N (p)d?
Mpg(qu) — g(p) Z d V1( N(g%ipq)) >

oty o ng A" 72N (va) d2
Ef(k,q)=20> > ;((:2) > <N(®2F(n§))>

fa} ve(@1)t/05" d=1
Kl(ev,a;&,b;¢,¢) 4r[ev€[abe2]
X Z Jie—1 e
4 N(cc)
c“~ab
cec1q\{0}

ccOft/O)?
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C = at 4772 N (p)d?
Mpg(qu) — g(p) Z d V1( N(g%ipq)) >

oty o ng A" 72N (va) d2
Ef(k,q)=20> > ;((:2) > <N(®2F(n§))>

{a} ve(a—1)+/05" d=1
Kl(ev,a;€,b5¢,¢ 47y /eve[abe—2
oy Klwmtbieg (e
4 N(cc)
c“~ab
cec1q\{0}
ccOft/O)?
0 “q 4n,ﬂ.2nN(m) d2
Eg(k: q,old) =2 <)
m;; \/ Z N(D%na)
'k -1
> kL) C(m)Celp).

k—
feHR! (q) (4m)E=dp |2 (£, £)s, g
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Lemma

ME(0) = 82 (P T (1= N0 log(N(@) + 001,

(i
[: prime

where y_1(F') = QRE(JS Cr(2u+1).

Lemma

We have E§(k,q) = O (N(q)_%“) :

| A

Lemma

1

We have ES (k,q,0ld) = O (N(q)"%+¢).




Instead of

Ce(va) <= a} 4" 72N (va)d?
I SR SR L8 Sy Ca TG
A =T

N N T4/ EV. ac‘z
S Kl(ey,a,f,b,c,c)t]kil (4,/ ¢[ab ])7

N(cc)

2~ab
cec g\ {0}
€Ot /O )2
we consider
Cg(rva) ad,, 472N (va)d?
E8 (k = —a =0 \FRR
p,a( 7q) Z Z d N(Q%nq)

ve(a-1)t/ox* N(va) 3

" Z Kl(v, a;ﬁ,b;cn,c)Jk_1 <4WW> '

o - IN()] e
cec 1q\{0}/O0x
neOxt
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Error Term in the Level Aspect

Bound for the J-Bessel function: We have

Ju(z) < 2170 for 0<5<1.

—58
HJk._l (47r‘/u]£] [abe— > < H< v;&;labe— 2 )1 ]’

njle;l njles]

where §; = 0 if n; > 1, and ; = J for some fixed § > 0 otherwise.
Crucial observation (Luo 2003): For A >0

Z H Inj| ™ | < o0

et \Ins[>1
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give

o Cg(va) - ay’ 4" 72" N(va)d?
E§ o(k,q) = DDA (W)
ve(a—1)+t/Oxt d=1
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< X Tt ¥ e Sicyon 3 5 v (“en)

776(9;+ n;>1 cCq

<o S (Gl T ol (%2)

N(va)<N(q) N(va)>N(q)
< N(q)~2H0+e



Thank you.
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