## Stretching Vibrations of the Hydrogen Bond in HOHOH<sup>-</sup>

George A. Hagedorn Department of Mathematics, and Center for Statistical Mechanics, Mathematical Physics, and Theoretical Chemistry Virginia Tech Blacksburg, VA 24061–0123

(Joint work with Stephanie Gamble)

Banff Workshop on Quantum Molecular Dynamics. 24–29 January 2016.

#### Outline

- 1. The Standard Born–Oppenheimer Approximation.
- 2. The Modified Approximations.
- 3. "Symmetric" Hydrogen Bonds.
- 4. Results for  $HOHOH^-$ .

#### The Standard Born–Oppenheimer Approximation

In 1927, Born and Oppenheimer developed an approximation for molecular energy levels.

The nuclear masses were scaled as  $\epsilon^{-4}$  so the Hamiltonian had the form  $-\frac{\epsilon^4}{2}\Delta_X + h(X)$ , where X denoted the nuclear configuration. They concluded

$$E(\epsilon) = E_0 + \epsilon^2 E_2 + \epsilon^4 E_4 + O(\epsilon^5).$$

 $E_0$  was the electron energy at a minimum of the potential energy surface.  $E_2$  was the energy of the nuclear vibrations.

 $E_4$  was the rotational energy, an anharmonic correction to the vibrations, and the "diagonal Born–Oppenheimer correction."

Almost everything we know about molecules comes from this approximation. It works exceptionally well for many molecules and ions.

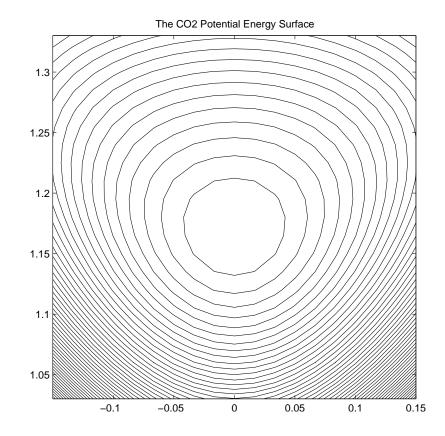
A successful example is  $CO_2$ .

The next slide has a contour plot of the potential energy surface for stretches near its minimum.

It is well approximated by a positive quadratic.

#### Frequencies

| Computed             | Experiment           |                    |
|----------------------|----------------------|--------------------|
| $1340 { m ~cm^{-1}}$ | $1333 { m ~cm^{-1}}$ | Symmetric Stretch  |
| $2374 { m cm}^{-1}$  | 2349 cm $^{-1}$      | Asymmetric Stretch |



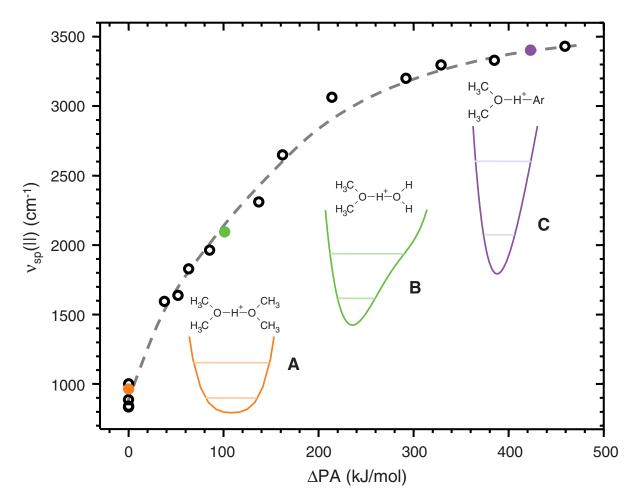
#### **The Modified Approximations**

Alain Joye and I published two papers about Hydrogen bonds in 2007 and 2009.

The first paper was for "symmetric" Hydrogen bonds. The second was for "non-symmetric" Hydrogen bonds.

More or less simultaneously,

people found exceptions to this classification...



**Fig. 2.** Dependence of the  $v_{sp}(||)$ -derived band locations on the difference in proton affinities ( $\Delta$ PA) for all systems reported in Table 1 (*25*). (**A** to **C**) Calculated potential curves (MP2/aug-cc-pVDZ) generated by scanning the shared proton between the heavy atoms while fixing the exomolecular structures at the equilibrium geometry of the complex (*28*). Energy levels were derived by solving the one-dimensional Schrödinger equation for the first two vibrational eigenstates. The potential curves are color-coded to match colored points on the graph.

the analogous modes in the protonated ether. Similarly, the band between these two can be assigned to the C-O stretch primarily localized on

**Table 1.** Observed centroids  $(cm^{-1})$  of sharedproton asymmetric stretching bands,  $v_{sp}(||)$ , and relative (gas-phase) proton affinity ( $\Delta$ PA) values for [A • H<sup>+</sup> • B] complexes (25).

| Complex                              | ν <sub>sp</sub> (  )<br>(cm <sup>-1</sup> ) | ∆PA<br>(k]/mol) |
|--------------------------------------|---------------------------------------------|-----------------|
| $Et_2O \cdot H^+ \cdot OEt_2$        | 843                                         | 0               |
| $Me_2O \cdot H^+ \cdot OMe_2$        | 952                                         | 0               |
| EtOH • H <sup>+</sup> • HOEt         | 840                                         | 0               |
| MeOH•H <sup>+</sup> •HOMe            | 887                                         | 0               |
| $H_2O \cdot H^+ \cdot OH_2$          | 1002                                        | 0               |
| Me₂O•H <sup>+</sup> •HOMe            | 1595                                        | 38              |
| Et₂O • H <sup>+</sup> • HOEt         | 1638                                        | 52              |
| $MeOH \cdot H^+ \cdot OH_2$          | 1828                                        | 63              |
| $EtOH \cdot H^+ \cdot OH_2$          | 1964                                        | 85              |
| $Me_2O \cdot H^+ \cdot OH_2$         | 2094                                        | 101             |
| $Et_2O \cdot H^+ \cdot OH_2$         | 2310                                        | 137             |
| $H_2O \cdot H^+ \cdot NH_3$          | 2649                                        | 162             |
| CO₂ • H <sup>+</sup> • HOMe          | 3064                                        | 214             |
| Me <sub>2</sub> O•H <sup>+</sup> •Xe | 3200                                        | 292             |
| Et <sub>2</sub> O•H <sup>+</sup> •Xe | 3296                                        | 329             |
| MeOH•H <sup>+</sup> •Ar              | 3330                                        | 385             |
| Me <sub>2</sub> O•H <sup>+</sup> •Ar | 3403                                        | 423             |
| Et <sub>2</sub> O•H <sup>+</sup> •Ar | 3431                                        | 459             |

www.sciencemag.org SCIENCE VOL 316 13 APRIL 2007

#### The Symmetric Case

I don't have time to describe the non-symmetric case.

We chose the numerical value of  $\epsilon$  to be determined by the Carbon 12 nuclear mass:  $\epsilon_0 = (12 \times 1836)^{-1/4}$ .

Then the proton mass is 1.015  $\epsilon_0^{-3}$ , so we represented it by 1.015  $\epsilon^{-3}$ .

Next, guided by calculations for the stretches of  $FHF^-$ , we noted that one of the Taylor series coefficients of the potential energy surface was of order  $\epsilon_0$ .

So, we replaced the coefficient by  $\epsilon/\epsilon_0$  times its value.

# This led to a new expansion. We proved that the energy again had an asymptotic expansion to all orders in powers of $\epsilon$ . The stretching vibrations again were of order $\epsilon^2$ , but they were not

described by a harmonic oscillator, but by a Hamiltonian with a fourth order Normal Form potential.

Our prototypical example,  $FHF^-$  had a single well minimum, but our theory could handle some double wells.

#### **Results for** $HOHOH^-$ .

Recently Stephanie Gamble has been studying  $HOHOH^-$ , which has a double well that satisfies our conditions.

We use clustered Jacobi coordinates:

x is the distance from one terminal OH to the other terminal OH. y is the component of the vector from the center of mass of these two OH's to the central proton in the direction between the two OH's.

We have computed the potential energy surface at 25 points using CCSD(T) with the aug-cc-pvtz basis set.

The leading order potential energy surface is represented as

$$E_0 + a_1 x^2 + a_2 \epsilon_0 y^2 + a_3 x y^2 + a_4 y^4 + b_1 x^3 + b_2 x^2 y^2 + b_3 x^3 y^2 + b_4 x^4 y^2 + b_5 y^4 + b_6 x y^4 + b_7 x^2 y^4 + b_8 x^3 y^4 + b_9 x^4 y^4.$$

The Normal Form potential is

$$E_0 + a_1 x^2 + a_2 y^2 + a_3 x y^2 + a_4 y^4.$$

If distances are measured in Angstroms and energies in Hartrees, then  $E_0 = -152.095$ 

- $a_1 = 0.211625$
- $a_2 = -0.316133$
- $a_3 = 0.449109$

 $a_4 = 0.779835.$ 



We then solve numerically for the low-lying eigenvalues of the Normal Form Hamiltonian.

The predicts the lowest symmetric stretch excitation energy to be 597 cm<sup>-1</sup>, and the lowest asymmetric stretch excitation energy to be 744 cm<sup>-1</sup>.

We have no experimental data for the symmetric stretch, but the asymmetric stretch excitation energy has been measured to be 697 cm<sup>-1</sup>.

The 47 cm<sup>-1</sup> discrepancy is perhaps a bit disappointing, but this is just a leading order calculation.

However, this is MUCH better than anything we can obtain from Born–Oppenheimer:

Born–Oppenheimer, expanding around the saddle point yields an imaginary result: 644i cm<sup>-1</sup>.

If one expands around a minimum of the potential energy surface, one obtains 1699  $\rm cm^{-1}.$ 

#### **Possible Sources of Error**

- Perhaps we should do a higher order calculation, but that would probably be complicated.
- Electron Structure Calculations not sufficiently accurate (We have been told to expect errors  $\approx 100\,cm^{-1}$  with this basis set.)
- Fitting the potential energy surface with too few points
- Wrong two-dimensional subspace for these vibrations
- Wrong reduced mass for these vibrations
- Experimental Error (not likely!)

The paper we found with the experimental data, J. Phys. Chem. A **109** 1487–1490, mentioned calculations that were orders of magnitude more sophisticated, but our emphasis was on simplicity.

### Thank you!

