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The Standard Born–Oppenheimer Approximation

In 1927, Born and Oppenheimer developed an approximation for

molecular energy levels.

The nuclear masses were scaled as ε−4 so the Hamiltonian had the form

−
ε4

2
∆X + h(X), where X denoted the nuclear configuration.

They concluded

E(ε) = E0 + ε2E2 + ε4E4 + O
(
ε5

)
.

E0 was the electron energy at a minimum of the potential energy surface.

E2 was the energy of the nuclear vibrations.

E4 was the rotational energy, an anharmonic correction to the vibrations,

and the “diagonal Born–Oppenheimer correction.”

Almost everything we know about molecules comes from this

approximation. It works exceptionally well for many molecules and ions.
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A successful example is CO2.

The next slide has a contour plot of the potential energy surface

for stretches near its minimum.

It is well approximated by a positive quadratic.

Frequencies

Computed Experiment

1340 cm−1 1333 cm−1 Symmetric Stretch

2374 cm−1 2349 cm−1 Asymmetric Stretch
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The CO2 Potential Energy Surface
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The Modified Approximations

Alain Joye and I published two papers about Hydrogen bonds

in 2007 and 2009.

The first paper was for “symmetric” Hydrogen bonds.

The second was for “non–symmetric” Hydrogen bonds.

More or less simultaneously,

people found exceptions to this classification...
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Figure 2 presents the DPA dependence of the
centroid frequencies of the nsp(||)-based bands
extracted from the spectra in Fig. 1, as well as
those from 12 other systems that we studied.
The relevant band positions are collected in
Table 1 along with the DPA values for each pair
of constituent molecules (25). The correlation
between the absolute nsp(||) position and DPA is
thus revealed over a range of 2700 cm−1, with
all of the systems conforming closely to a uni-
versal trend, even though different atomic part-
ners are involved in this data set.

It is useful to consider the qualitative origin of
the large observed spectral shifts in the context of a
simplified, one-dimensional potential for shared-
proton motion, during which the heavy atoms are
fixed and a proton is scanned between them. The
resulting calculated curves for three representative
systems are included in Fig. 2. At large values of
DPA (Fig. 2C), the relative energies of the two
possible proton transfer situations, AH+·B and
A·H+B, are very different. This disparity localizes
the proton to one side of the complex, effecting a
high nsp(||) frequency (>3000 cm−1). As the
relative energies become similar (Fig. 2, A and
B), the proton transfer potential widens markedly
and shifts nsp(||) to lower energies (19).

In symmetrical systems with strong bases like
ammonia, the trapping potential is calculated to
develop a barrier at the midpoint, resulting in a
double minimum shape (26). Earlier work on the
NH3·H

+·NH3 system (26) in the free NH
stretching region established that the two NH3

groups are equivalent. This indicates that the
vibrational zero-point lies above the barrier, thus

enabling the proton to be equally shared between
the two N atoms. An analogous situation was
also encountered in the highly basic anionic
complex OH–·H+·OH–, which displayed an
isolated nsp(||) transition at 670 cm−1 (5), lower
in energy than any of the bands recovered in the
cationic systems that we studied. Unfortunately,
our initial survey of the NH3·H

+·NH3 spectrum in
the low-energy range suggests that its nsp(||) falls
below 600 cm−1, the lower limit of the apparatus.

Because the strongly basic systems develop a
barrier in the shared-proton potential, we do not
anticipate that there is an intrinsic asymptotic
value for nsp(||) at DPA = 0. Rather, in the limit
that the first two vibrational levels fall below the
barrier, the nsp(||) transition energy evolves into a
tunneling splitting. These considerations suggest
that the correlation displayed in Fig. 2 reflects a
more limited range of behavior where the shared-
proton potential is flattened (Fig. 2B) but does
not develop a substantial barrier. Characterization
of the nsp(||) band structure in high barrier sys-
tems thus presents a challenge for future work in
this area.

Impact of complexation on flanking group
vibrations. In the process of identifying discrete
transitions associated with nsp(||), we have also
obtained sharp band patterns derived from the
skeletal motions of flanking organic groups. These
data provide an opportunity to understand how the
pendant molecules are affected by the inter-
molecular proton bond. Our calculations suggest
that, although the normal modes of vibration are
collectivemotions of the entire complex, it is often
the case that they are largely intramolecular

motions associated with one of the components.
We highlight the case of the Me2O·H

+·MeOH
complex in Fig. 3. Figure 3G presents the
observed spectrum in the fingerprint region; the
left and right panels below it pertain to the tran-
sitions expected for the constituent molecules.
Intuitively, one anticipates that the spectral signa-
ture associated with the skeletal motions of each
monomer subunit should fall between the limiting
patterns corresponding to the neutral (i.e., Me2O
or MeOH) and protonated (i.e., Me2OH

+ or
MeOH2

+) species. Although the spectra of the
neutral molecules are well known (27), this
information was not available for the protonated
analogs; we therefore obtained the spectra of the
protonated analogs using Ar predissociation.

The traces in Fig. 3, A and B, present the IR
spectra of the independent neutral components
[Me2O (Fig. 3A) and MeOH (Fig. 3B)], with the
corresponding spectra of their protonated analogs
displayed in the middle traces [Me2OH

+ (Fig.
3C) and MeOH2

+ (Fig. 3D)]. These spectra can
be confidently assigned with the aid of ab initio
calculations at the scaled harmonic level, because
they are covalently bound systems that do not
display large amplitude motion or unusual
anharmonicity. In both neutral molecules (Fig.
3, A and B), the bands lowest in energy arise
from the C-O stretching vibrations, and they are
each shifted to lower energy (red-shifted) by
about 200 cm−1 upon protonation. The calcu-
lations predict that two of the low-energy bands
in the Me2O·H

+·MeOH complex are due to the
C-O stretches on the Me2O group, which
undergo about half the red-shift displayed by
the analogous modes in the protonated ether.
Similarly, the band between these two can be
assigned to the C-O stretch primarily localized on
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Fig. 2. Dependence of the nsp(||)-derived band locations on the difference in proton affinities
(DPA) for all systems reported in Table 1 (25). (A to C) Calculated potential curves (MP2/aug-cc-
pVDZ) generated by scanning the shared proton between the heavy atoms while fixing the
exomolecular structures at the equilibrium geometry of the complex (28). Energy levels were
derived by solving the one-dimensional Schrödinger equation for the first two vibrational
eigenstates. The potential curves are color-coded to match colored points on the graph.

Table 1. Observed centroids (cm−1) of shared-
proton asymmetric stretching bands, nsp(||), and
relative (gas-phase) proton affinity (DPA) values for
[A·H+·B] complexes (25).

Complex nsp(||)
(cm–1)

DPA
(kJ/mol)

Et2O·H
+·OEt2 843 0

Me2O·H
+·OMe2 952 0

EtOH·H+·HOEt 840 0
MeOH·H+·HOMe 887 0
H2O·H

+·OH2 1002 0
Me2O·H

+·HOMe 1595 38
Et2O·H

+·HOEt 1638 52
MeOH·H+·OH2 1828 63
EtOH·H+·OH2 1964 85
Me2O·H

+·OH2 2094 101
Et2O·H

+·OH2 2310 137
H2O·H

+·NH3 2649 162
CO2·H

+·HOMe 3064 214
Me2O·H

+·Xe 3200 292
Et2O·H

+·Xe 3296 329
MeOH·H+·Ar 3330 385
Me2O·H

+·Ar 3403 423
Et2O·H

+·Ar 3431 459
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The Symmetric Case

I don’t have time to describe the non–symmetric case.

We chose the numerical value of ε to be determined by the

Carbon 12 nuclear mass: ε0 = (12 × 1836)−1/4.

Then the proton mass is 1.015 ε−3
0 , so we represented it by 1.015 ε−3.

Next, guided by calculations for the stretches of FHF−,

we noted that one of the Taylor series coefficients of the potential

energy surface was of order ε0.

So, we replaced the coefficient by ε/ε0 times its value.
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This led to a new expansion. We proved that the energy again had

an asymptotic expansion to all orders in powers of ε.

The stretching vibrations again were of order ε2, but they were not

described by a harmonic oscillator, but by a Hamiltonian with a

fourth order Normal Form potential.

Our prototypical example, FHF− had a single well minimum,

but our theory could handle some double wells.
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Results for HOHOH−.

Recently Stephanie Gamble has been studying HOHOH−,

which has a double well that satisfies our conditions.

We use clustered Jacobi coordinates:

x is the distance from one terminal OH to the other terminal OH.

y is the component of the vector from the center of mass of these

two OH’s to the central proton in the direction between the two OH’s.

We have computed the potential energy surface at 25 points using

CCSD(T) with the aug-cc-pvtz basis set.
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The leading order potential energy surface is represented as

E0 + a1 x
2 + a2 ε0 y

2 + a3 x y
2 + a4 y

4 + b1 x
3 + b2 x

2y2 + b3 x
3y2

+ b4 x
4y2 + b5 y

4 + b6 x y
4 + b7 x

2y4 + b8 x
3y4 + b9 x

4y4.

The Normal Form potential is

E0 + a1 x
2 + a2 y

2 + a3 x y
2 + a4 y

4.

If distances are measured in Angstroms and energies in Hartrees, then

E0 = −152.095

a1 = 0.211625

a2 = −0.316133

a3 = 0.449109

a4 = 0.779835.
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We then solve numerically for the low-lying eigenvalues of the

Normal Form Hamiltonian.

The predicts the lowest symmetric stretch excitation energy

to be 597 cm−1,

and the lowest asymmetric stretch excitation energy

to be 744 cm−1.

We have no experimental data for the symmetric stretch,

but the asymmetric stretch excitation energy

has been measured to be 697 cm−1.
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The 47 cm−1 discrepancy is perhaps a bit disappointing,

but this is just a leading order calculation.

However, this is MUCH better than anything we can obtain from

Born–Oppenheimer:

Born–Oppenheimer, expanding around the saddle point yields an

imaginary result: 644i cm−1.

If one expands around a minimum of the potential energy surface,

one obtains 1699 cm−1.
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Possible Sources of Error

• Perhaps we should do a higher order calculation,

but that would probably be complicated.

• Electron Structure Calculations not sufficiently accurate

(We have been told to expect errors ≈ 100 cm−1

with this basis set.)

• Fitting the potential energy surface with too few points

• Wrong two–dimensional subspace for these vibrations

• Wrong reduced mass for these vibrations

• Experimental Error (not likely!)
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The paper we found with the experimental data,

J. Phys. Chem. A 109 1487–1490, mentioned

calculations that were orders of magnitude more sophisticated,

but our emphasis was on simplicity.
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Thank you!
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