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History: 

Functional Specialisation 
Different areas of the brain are 

specialised for different functions 

Functional Integration 
Networks of interactions among 

specialised areas 

Background 
Localizationism 
Functions are localized  
in anatomic cortical regions 
 
Damage to a region results  
in loss of function 
 
Key 19th Century proponents: 
Gall, Spurzheim 

Functional Segregation 
Functions are carried out by  
specific areas/cells in the  
cortex that can be anatomically  
separated 

Globalism 
The brain works as a whole,  
extent of brain damage is  
more important than its 
location  
 
 
Key 19th Century proponents: 
Flourens, Goltz 
 
 Connectionism 

Networks link different  
specialised areas/cells 
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• Analysis of how different regions 
in a neuronal system interact 
(coupling). 

• Determines how an experimental 
manipulation affects coupling 
between regions. 

• Univariate & Multivariate analysis 

• Analyses of regionally specific 
effects 

• Identifies regions specialized for a 
particular task. 

• Univariate analysis 

Systems analysis in functional 
neuroimaging 

3 
Standard SPM 

Adapted from D.  Gitelman, 2011 

Functional Segregation 
Specialized areas exist in the cortex 

Functional Integration 
Networks of interactions among specialized areas 

Effective 
connectivity 

Functional 
connectivity 
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Functional Segregation 
Specialised areas exist in the cortex 

Functional Integration 
Networks of interactions among specialised areas 

Effective 
connectivity 

Functional 
connectivity 
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Basic terminology 
• Functional connectivity (FC) evaluates functional magnetic 

resonance imaging (fMRI) data for statistical associations 
or dependency among two or more anatomically distinct 
time-series. 

• Correlation is the most popular measure of FC. 
• One of the most popular methods to assess dynamically 

changing FC is the sliding window technique. 
• “Rest” is a task state in itself, with potential performance 

differences, rather than differences in the underlying, 
stable brain organisation (Buckner et al., 2008, 2013)  
 



Spontaneous BOLD activity 

< 0.10 Hz 

 

• brain is always active, even in the absence of explicit input or output 
o task-related changes in neuronal metabolism are only about 5% of 

brain’s total energy consumption 
 

• what is the “noise” in standard activation studies? 
o faster frequencies related to respiratory and cardiac activities 
o spontaneous, neuronal oscillations between 0.01 – 0.10 Hz   

 
 
 
 
 
 
 

 

6 

Changes in reflected and scattered 
light signal (indicating neuronal 
activity) at a pervasive low-
frequency (0.1-Hz) oscillation 
correlate with vasomotion signals 
(Mayhew et al., 1996) 
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Brain is never static! 

Connected neural populations tend to synchronize 
and oscillate together. 
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Resting-state networks (RSNs) 
• Multiple resting-state networks (RSNs) have been found  

o All show activity during rest and during tasks 
o One of the RSNs, the default mode network (DMN), shows a decrease in activity during 

cognitive tasks 

8 Moussa  et al (2012) 
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Our goals 

 
• Assessment of uncertainty in the dynamic functional 

connectivity  
• Hypothesis testing for differences in the dynamic 

functional connectivity arising in the task-based 
experiments 

 



Problem introduction 



Static correlation 



The sliding window technique 



The sliding window technique 



The sliding window technique 



The sliding window technique 



Sliding window-based 
correlation estimate 



Pros and cons of  
the sliding window method 

Pros: 
• Intuitive  
• Simple to implement 
• Model-free (nonparametric) 
• Distribution-free 
 
Cons: 
• Arbitrary window lengths 
• Inability to deal with abrupt changes 
• Equal weight given to all observations within a window 
• Inherent variation present in the estimate 



Our proposal for the FC 
uncertainty estimation 

 
• Estimate is nonparametric and distribution-free 

 
• Asymptotic methods rely on relatively large sample sizes 

 
• Bootstrap to the rescue 
• However, we need a sophisticated bootstrap approach 



Multivariate Linear Process 
Bootstrap(MLPB) 

 
• Common bootstrap methods 
    are not applicable to the  
    time series data. 

 
• MLPB allows us  to resample multivariate time 

series data. 

 
 



Intuition behind MLPB 
Assume that Y~𝑁𝑁(0,Σ) 
 

𝑊𝑊 = Σ−1 2�  ∗ 𝑌𝑌~𝑁𝑁(0, 𝐼𝐼𝑛𝑛) 
 
Resample 𝑊𝑊 ⟹  𝑊𝑊∗. 
 
Generate a bootstrap sample: 

𝑌𝑌∗ = Σ1 2�  ∗ 𝑊𝑊∗ 



MLPB algorithm 
1. Let Χ be the (𝑑𝑑 ×  𝑛𝑛) data matrix consisting of ℝ𝑑𝑑  valued time series data 

𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 of sample size 𝑛𝑛. Compute the centered observations  𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡 −
𝑋𝑋 where 𝑋𝑋 = 1

𝑛𝑛
∑ 𝑋𝑋𝑡𝑡𝑛𝑛
𝑡𝑡=1 , let 𝑌𝑌 be the corresponding (𝑑𝑑 ×  𝑛𝑛) matrix of centered 

observations and define 𝑌𝑌 = 𝑣𝑣𝑣𝑣𝑣𝑣 𝑌𝑌  to be 𝑑𝑑𝑛𝑛 − dimensional vectorized 
version of 𝑌𝑌. 

2. Compute 𝑊𝑊 = Γ�𝜅𝜅,𝑙𝑙
𝜖𝜖 −12𝑌𝑌 , where Γ�𝜅𝜅,𝑙𝑙

𝜖𝜖
1
2 denotes the lower left triangular matrix  

𝐿𝐿 of Cholesky decomposition Γ�𝜅𝜅,𝑙𝑙
𝜖𝜖 = 𝐿𝐿𝐿𝐿𝑇𝑇  

3. Let 𝑍𝑍  be the standardized version of  𝑊𝑊, that is, 𝑍𝑍𝑖𝑖 = 𝑊𝑊𝑖𝑖−𝑊𝑊
𝜎𝜎�𝑊𝑊

, 𝑖𝑖 = 1,⋯ ,𝑑𝑑𝑛𝑛, where 

𝑊𝑊 = 1
𝑑𝑑𝑛𝑛
∑ 𝑊𝑊𝑡𝑡
𝑑𝑑𝑛𝑛
𝑡𝑡=1  and 𝜎𝜎�𝑊𝑊2 =   1

𝑑𝑑𝑛𝑛
∑ (𝑊𝑊𝑡𝑡
𝑑𝑑𝑛𝑛
𝑡𝑡=1 −𝑊𝑊)2 . 

4. Generate 𝑍𝑍∗ = 𝑍𝑍1∗,⋯ ,𝑍𝑍𝑑𝑑𝑛𝑛∗ 𝑇𝑇  by performing i.i.d. resampling from 𝑍𝑍1,⋯𝑍𝑍𝑑𝑑𝑛𝑛 . 

5. Compute 𝑌𝑌∗ = Γ�𝜅𝜅,𝑙𝑙
𝜖𝜖

1
2𝑍𝑍∗ and let  𝑌𝑌∗  be the matrix that is obtained  by placing 

this vector column-wise into an (𝑑𝑑 ×  𝑛𝑛) matrix with columns 𝑌𝑌1∗,⋯ ,𝑌𝑌𝑛𝑛∗. Define  
Χ∗ to be (𝑑𝑑 ×  𝑛𝑛)  matrix consisting of columns 𝑋𝑋𝑡𝑡∗ = 𝑌𝑌𝑡𝑡∗ + 𝑋𝑋  



Key idea behind MLPB 

• Obtain an estimator Γ�𝜅𝜅,𝑙𝑙
𝜖𝜖  of Γ𝑑𝑑𝑛𝑛 , which is consistent and positive 

definite for all finite sample sizes (needed for Cholesky 
decomposition). 
 

• One possibility: tapered kernel functions, spectral factorization 
and adjusting the eigenvalues of correlation matrix  

  𝑉𝑉� = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 Γ�𝑑𝑑𝑛𝑛 −sample variances 
 

Γ�𝜅𝜅,𝑙𝑙
𝜖𝜖 = 𝑉𝑉�1 2� 𝑅𝑅�𝜅𝜅,𝑙𝑙

𝜖𝜖  𝑉𝑉�1 2�
𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙 

𝑓𝑓𝑝𝑝𝑝𝑝𝑡𝑡𝑎𝑎𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝𝑡𝑡𝑖𝑖𝑎𝑎𝑛𝑛

𝑉𝑉�1 2� 𝑆𝑆𝑆𝑆𝜖𝜖𝑆𝑆𝑇𝑇 𝑉𝑉�1 2�  

• where 𝑆𝑆𝜖𝜖 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑟𝑟1𝜖𝜖 ,⋯ , 𝑟𝑟𝑑𝑑𝑛𝑛𝜖𝜖  and 𝑟𝑟𝑖𝑖𝜖𝜖 = max (𝑟𝑟𝑖𝑖 , 𝜖𝜖𝑛𝑛−𝛽𝛽) 

• 𝛽𝛽 > 1
2
 and 𝜖𝜖 > 0 



DCBootCB  algorithm 



DCBootCB Bands algorithm 

bootstrap bootstrap bootstrap bootstrap 



DCBootCB Bands algorithm 

sliding 
window 

Bootstrap sample 

Dynamically changing correlation 



DCBootCB Bands algorithm 
Notation:  
𝑿𝑿 is an (2 × n) data matrix consisting of vectors 𝑋𝑋1,𝑋𝑋2 of size n representing  the 
fMRI time series from 2 ROIs and 𝐰𝐰 is an integer block length. 

 

Algorithm: 
1. Partition matrix 𝑿𝑿 into (2 x  

𝑛𝑛
𝑤𝑤

 ) adjacent blocks.  
2. Within each adjacent block of data, apply MLPB to obtain one 2 

x 𝐰𝐰 bootstrap sample. Combine 2-dimensional adjacent blocks of 
bootstrap samples into a one (2 × n) data matrix 𝑿𝑿*. 

3. Let 𝑿𝑿𝒊𝒊,𝒘𝒘 be a 2 x 𝐰𝐰 bootstrap block  of 𝐰𝐰 consecutive observations 
starting at time index 𝑖𝑖 from matrix 𝑿𝑿*. 

4. For each 𝑿𝑿𝒊𝒊,𝒘𝒘 estimate correlations at time index 𝑖𝑖.  
5. Repeat steps 2 to 4 B times. 
6. Use a Gaussian kernel smoothing technique to obtain estimated 

correlation trajectories. 
 

 
The whole set of bootstrap samples enables the calculation of the 
correlation coefficient and its confidence interval using quantiles of 
their empirical distribution. 

 



Simulation study 
  

Two time series 𝑋𝑋1,𝑋𝑋2 were generated from bivariate normal distribution 
with mean zero, constant variance and correlation changing 
according to the following scenarios: 

 

1. Constant correlation ρ=0 at all time points t. 
2. Correlation changes in the piecewise linear fashion with  

ρ= 0, 0.6 and 0.2.  
3. Correlation changes in 0.1 steps  from ρ=0 to 0.5 and 

back to 0. 
4. Correlation changes according to sine function with 

four different frequencies.  
5. Correlation changes according to a Gaussian kernel 

with four different variances.. 
 

• For scenario 1, t = 150, 300, 600. For scenarios 2 and 3, a 
piecewise constant intervals are t = 50, 100, 200. For 
scenarios 4 and 5, t = 1000. 
 



Scenario 1 – zero correlation 



Scenario 2 



Scenario 3 



Scenarios 4 and 5 



Scenario 1 (zero correlation) 
a single simulation run 



Coverage of a true constant correlation 
coefficient by the 95%  confidence 

interval 



Scenario 2 (sine function) 

a single simulation run 



Coverage of a true correlation coefficient (sine 
function) by the 95%  confidence interval 



Comparison of coverage of a true 
correlation coefficient (sine function) by the 

95%  confidence interval 



Average width of confidence interval for 
simulation scenario1 and scenario3 

Red curve average width of confidence bands using Fisher approximation 
Black curve average width of confidence bands using DCBootCB. 

scenario1 scenario3 



Resting state functional 
connectivity data 

 
• Kirby 21 dataset (Landman et al., 2011) 
• 20 healthy adults  
• Two resting state fMRI scans lasting 7 minutes (210 

observations) 
• Six regions of interest analyzed (Chang & Glover, 2010): 

a. posterior cingulate cortex (PCC)  
b. right interior parietal  cortex,  
c. frontal operculum, 
d. temporal cortex,  
e. orbitofrontal cortex  
f. anterior cingulate cortex 

Presenter
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Raw data and estimated dynamic 
connectivity with confidence bands 

Subject 1 

Subject 2 



Non-(zero coverage) 
 



Non-(static correlation coverage) 
 



Task-based connectivity 

• Dynamically changing correlation functions exhibit 
complex correlation structure 

• Different sources of variability 
 

Our goal 
• Develop a testing procedure for the equality of two 

possibly correlated functional processes 
 



Motivating example 
GPTF Experiment 

• Cue reactivity in frontal and limbic regions in college-age 
male drinkers (n=29) to the taste of: 
o Beer (Flavor B) or  
o Gatorade© (an appetitive flavor control; Flavor  G).   

 

• Flavors delivered in 1-sec sprays (trials) on subjects’ 
tongues, totaling 26 and 30 ml, respectively, interspersed 
with neutral water (w; a flavorless sensory baseline).  

 
• Subjects participated in one imaging session, during which 

they were exposed to different tastes.  
 



Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6 

wBwBwBw wBwBwBw wBwBwBw wGwGwGw wGwGwGw wGwGwGw w 

↑ ↑ ↑ ↑ ↑ ↑ ↑ 

Baseline 

Ref. Brandon Oberlin 

Experimental design 

 
• Signal acquired every TR=2.25 s 

 
• 11s – interstimulus period 

wwwBBBBwwwBBBBwwwBBBBwww 
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A B C 

D E F 

Group-averaged dynamic FC estimates across 6 scans (750 time points) for the homologous regions of: A: SMC; B: Amygdala;  
C: Insula; D: VST; E: OFC;  F: STG. Black line is the dynamic FC estimate, red lines indicate confidence intervals, white vertical bands  
indicate flavor stimulation and shaded bands water stimulation. 
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A B 

C D 

Group-averaged dynamic FC estimates across 6 scans (750 time points) for the: 
 ipsilateral (A: OFC_L vs. VST_L;  B: OFC_R vs. VST_R) and contralateral (C: OFC_L vs. VST_R; D: OFC_R vs. VST_L) regions.  



5 

10 

15 

20 

10 20 30 40 50 60 

Percentage of time points where the dynamic correlation is zero with 95% confidence on a subject-by-subject basis (rows). 
Dark-shaded cells represent lower percentage of time with zero connectivity. Columns 22, 52 and 61 correspond to the 
connectivity between homologous areas: amygdala, VST and SMC, respectively. 



Conclusions 
 
 Provided model-free estimation of confidence intervals 

for the dynamically changing correlation coefficient 
estimate. 

 
 Simulation studies show that the theoretical results are 

supported by the empirical evidence.  
 

 An application to the resting-state Kirby 21 data 
demonstrates that the assumption of static correlation 
amongst the considered ROIs is not fully appropriate. 
 

 Task-based connectivity testing in early development. 
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