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Introduction Main Simulation Case Study

Motivating Example

CT scan of liver Time-attenuation curves




Introduction Simulation Case Study

Functional Data Model

Mathematical model
Yijk = (tije) + 2ij(tijr) + €ijr
Yijk: observation of subject ¢ and unit j taken at time %;;;,
w(t): a smooth mean function
x;5(t): a random function for subject ¢ unit j. It is assumed to

be mean zero and correlated within the same subject with the
cross-covariance function.

COV(.%‘ij(t),.’Eij/(t/)) = G(t,tl;A), (1)

where A denotes the distance between two units.
€ijk: random measurement noise~ i.i.d. N(0,0?).
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Introduction Simulation Case Study

Modeling of Spatial Correlation

functional mixed model

multilevel functional model
wi(t) = ni(t) + & (t)

7:(t): random curve at subject level
&j(t): random curve at unit level

Dietal.
Guo Morris etal.  Li & Carroll Zhou et al. (Ann. Appl. Zhou et al.
(Biometrics) (JRSSB) (Ann. Stat.) (Biometrica) Stat.) (JASA)
2002 .. 2006 2007 2008 2009 2010 -

Baladandayuthapani  Scarpa & Dunson
et al. (Biometrics) (Biometrics)
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Introduction Simulation Case Study

The general covariance structure

The general covariance (1) imposes no restriction on the spatial
and temporal correlation structure.
For the hierarchical model (e.g., Baladandayuthapani et al.,
2008; Zhou et al., 2010), it corresponds to the summation of
the covariance at the subject level and the unit level.
For the additive model (e.g. Staicu et al., 2010), it
corresponds to the summation of the spatial covariance and
temporal covariance.
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Problems of interest are:
estimate mean function ()
estimate covariance function G(¢,t'; A)

predict individual curves
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Introduction Simulation Case Study

Problems of interest are:
estimate mean function ()
estimate covariance function G(¢,t'; A)

predict individual curves

Kernal Smoothing (et al., Yao et al., 2005): sparse observations,
irregular time points
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Introduction i Simulation

Kernel Smoothing Estimate for the Mean Function

The kernel smoothing estimate fio(t) is defined as

k
fio(t) = arg mlnz bij ) Wijk — f(tijn — 1))

J(tije —t) = Bo + Bi(tije — 1)
k(+): kernel function

h: bandwidth that controls the size of local window

Yao et al. (2005)

The kernel smoothing estimate fig is uniformly consistent, i.e.,

; —o (L
Sup lfio(t) — p(t)| = Op(\/m)-
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Introduction i Simulation Case Study

Kernel Smoothing Estimate for Covariance

We estimate covariance between measurements taken at time ¢;
and t9 by minimizing

D wigkako (Giltighy s tijhs) — 9(tighy — 1, tigh, — £2))%,
i7j7k17ék2

where G;(t (tijky» tijky) is the sample covariance from subject 4, g is
a bivariate local linear function, wjjx,x, is the local weight given by
the kernel function and bandwidth h¢.

Yao et al. (2005)

The kernel smoothing estimate C?O is uniformly consistent, i.e.,

« 1
fg? |Go(t) — G(t)] = Op(\/—ThQG)-
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Problem of Interest
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Problem of Interest

How can we incorporate the spatial correlation to improve mean
estimation?
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A New Mean Estimation

Let Yik = [Uitk,- - -, Yin,k] | be the stacked observation from
subject 4 at time t;;.. The simple kernel smoothing estimate in Yao

(2005) equivalently minimizes
N m;

Z Z ’i(tikh_ t)(yi-k — ftie — )10) " (Wik — f(tin — t)1n,)

1=1 k=1
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A New Mean Estimation

Let Yik = [Uitk,- - -, Yin,k] | be the stacked observation from
subject 4 at time t;;.. The simple kernel smoothing estimate in Yao
(2005) equivalently minimizes

N m;
tir — 1

Z Z ( N )ik — ftik — )1n)" (Wi — f(tix — t)1n,)

i=1 k=1
We propose a weighted kernel smoothing estimate minimizes:
N m;

tik —t

DD R ik — (tie = 0)1n) W (i — f (b — 1)10,)
i=1 k=1

Special case: Wy, = I,,.
In general, weight is a function of time and space
Wi = w(tir; 8i)-
Requirement: all units within the same subject are sampled at
the same time.
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Introduction Simulation

Asymptotic Results

Theorems
Under certain conditions, we demonstrate the following results:

@ Uniform consistency:

; oL
sup (1) — (1) = Op(

@ Asymptotic distribution:

VNR(A() — u(t)) % N0,V (w))

)

© Asymptotic efficiency:
V(w) =V (wo)

Here wy is the inverse of the conditional covariance of y given
time and space.

v
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Seperable Covariance Structure

We specify a separable structure for the covariance:
G(t,t;A) = Y(A)Go(t, 1)

where A is the distance between two units.

The weight function is
Wi, = {Go(tin, tiw) ®i + 6L, } ",

where W, is an n; X n; matrix with elements
(W3)jj5r = V(Ajjr).-

In our studies, we focus on the compound symmetry structure.
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Individual Curve Prediction

Idea: using discrete observations to predict each individual curve.

Functional principal component analysis (PCA) approximation

ylj + Z g@ngSl

Independent prediction
& = El&ijlyis)
Simultaneous prediction

& = Eléijilyits - -+ Yin)
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Introduction Simulation

Simulation

A data generation scenario to mimick the pCT data.

i (t) = p(t) + &ij1(si5)d1(t) + Eija(si5) P2(t) + €(t)

In total of 20 subjects, 4 units each.

Separable covariance

Covariance estimation

G: bivariate kernel smoothing R
¥(A): maximizes the likelihood given G.

Cross-validation bandwidth selection
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Simulation Results

(1) Sparse case: 3 observations for each curve

Estimation Prediction
INLErTegion | s WKS | Indep  Joint
correlation
0 0.111 0.101 | 1.306 1.298
0.4 0.333 0.316 | 1.446 1.405
0.8 0.502 0.487 | 1.638 1.466

(2) Non-sparse case: 7 observations for each curve

Estimation Prediction
Inter-region | (s WKS | Indep Joint
correlation
0 0.055 0.052 | 0.572 0.571
0.4 0.213 0.206 | 0.612 0.594
0.8 0.308 0.303 | 0.672 0.601
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Introduction Simulation Case Study

The CT Perfusion Study

16 patients with 25 path verified neuroendocrine liver
metastases, with CTp undertaken within the designated region
CTp variables from neighboring regions are strongly correlated
due to common vasculature.

Hepatic Arterial Fraction (Between-region correlation:0.83)
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Case Study

Results
Mean estimation Individual curve prediction
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Introduction Simulation Case Study

Summary

Incorporating the correlation between curves improves the
mean estimation efficiency and individual curve prediction
accuracy

The proposed weighted mean estimate is uniformly
consistently and asymptotically most efficient

The proposed method offers to improve our ability to
characterize biomarkers that are acquired from a small number
of scans by leveraging the information at neighboring sites
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The multivariate functional data model

Denote y;;(t) = [yij1(t), - .., Yijp(t)]? the p x 1 measurement
function for the jth unit of subject ¢

Yij(t) = p(t) + xi;(t) + €;5(1),

@ u(t) is the p x 1 smooth mean curve that depicts the average
temporal trajectory of the p features in the study

@ x;;(t) is the p x 1 smooth random function that characterizes
the random deviation from the mean curve for unit j of
patient %

@ €;j(t) is a p x 1 random function assumed to be independent
white noise process with variance o
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The three-way correlation structure

@ Correlation between time and variables

Gult,t) ... Gu(t,t)
covlay(t), @y (1) = Gt.t) = | 1 .

Gpi(t,t") ... Gpp(t,t)
@ Correlation between neighboring regions
cov(z;j(t), iy (1) = G(s4j, sijr; t,1).
A separable structure

G(Sij, Sij/; t, t/) = p(Sij, Si]‘/)G(t, t/),
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Raw Data and Mean Estimates
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Introdu

Cross-Covariance for Each Class of Tissue

Normal Tumor

HAF
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Simulation Case Study

Introduction

Classification

Suppose the new subject has ng regions of interest. Let

20 = (201, - - -, Zon,) be the class assignment for each region and
Yo.- = [Yo1-s- - -, Yone-] the measurements collected on all the
regions.

@ When ng = 1, we assign zp; = 0 if

f(yo1-1z01 = 0,00)po

> 1
f(yoilzo1 = 1,01)p1 —

and zg; = 1 otherwise. pg and p; are the prior probabilities for
normal and tumor tissue, respectively.

@ When ng > 1,

no
zp = arg max f(yo.|2z, @9, O1) szoj
zeD j=1
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Case Study
Method MCR TPR FPR
three-way NB 0.135 0.800 0.074
two-way NB(no spatial corr) 0.327 0.480 0.148
two-way NB(no variable corr) 0.154 0.80 0.111
functional depth 0.173 0.880 0.222
BF 0.308 0.640 0.259
GLM HAF 0.231 0.800 0.259
PS 0.269 0.720 0.259
BF 0.577 0.280 0.444
KNN HAF 0.173 0.960 0.296
PS 0.346 0.640 0.333

Table : Leave-one-subject-out classification for the CT perfusion study.
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Simulation Study

no inter-unit correlation

weak inter—unit correlation

strong inter—unit correlation
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inter-variate correlation

inter-variate correlation

inter-variate correlation

classification approaches: the proposed (solid), no inter-unit
correlation(dashed), no inter-variate correlation (dotted), GLM
(dotdash) , KNN (longdash), multivariate functional depth

(twodash)
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