

Bayesian Inference for High-Dimensional ODE Models with Applications to Brain Connectivity Studies

Banff Neuroimaging Data Analysis Workshop

Tingting Zhang Department of Statistics University of Virginia

Introduction

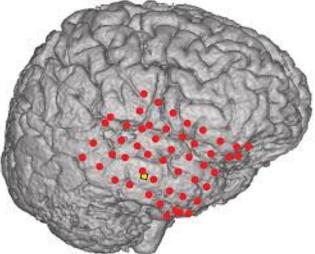
- The brain's functional organization is governed by two principles: functional specialization and functional integration (Friston, 2011).
- Functional specialization suggests that different brain areas are specialized for different functions.
- Functional integration refers to interactions among different specialized brain areas and how these interactions depend on different sensorimotor or cognitive information the brain is processing.

ODE Models

- It is biophysically natural to use ODEs to characterize the functional interactions among different regions.
- Existing ODE models (Dynamic Causal Modeling, Daunizeau et al., 2011; David & Friston, 2003) for fMRI and EEG data.
- 1. Focus on connectivity among only a few regions.
- 2. The ODE formulation highly relies on the prior knowledge of the existence and strength of the connectivity between regions under study.

A High-dimensional ODE Model for ECoG Data

- ECoG, or intracranial EEG, is a form of electrophysiology whereby electrodes are placed directly (inside the skull and dura) on a living human cortex in the process of surgery for epilepsy care.
- ECoG's high temporal resolution and spatial localization make it an ideal dataset for building brain connectivity models.



Dynamic Directional Model (DDM)

Neuronal Electrical State

$$\frac{dx_1(t)}{dt} = A_{11} x_1(t) \cdot (1 - u(t)) + \ldots + A_{1d} x_d(t) \cdot (1 - u(t))
+ B_{11} x_1(t) \cdot u(t) + \ldots + B_{1d} x_d(t) \cdot u(t) + C_1 \cdot u(t) + D_1
\vdots
\frac{dx_d(t)}{dt} = A_{d1} x_1(t) \cdot (1 - u(t)) + \ldots + A_{dd} x_d(t) \cdot (1 - u(t))
+ B_{d1} x_1(t) \cdot u(t) + \ldots + B_{dd} x_d(t) \cdot u(t) + C_1 \cdot u(t) + D_1$$

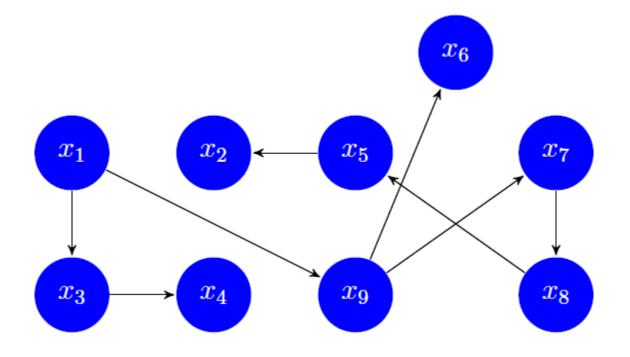
Observation Model

$$\mathbf{y}(t) = \mathbf{x}(t) + \boldsymbol{\epsilon}(t),$$

Sparsity Assumption

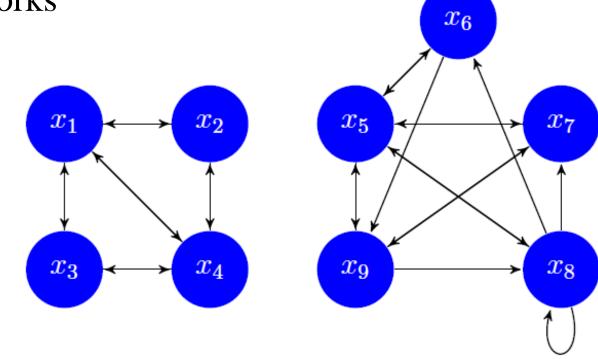
- Connections take up energy and space
- Economical Model
- So many coefficients in *A* and *B* are zeroes.

Different Sparse Network Structures



Different Sparse Network Structures

The community/cluster structure (modularity) in brain networks



Modular and Indicator Based DDM (MIDDM)

DDM

$$\frac{dx_{i_1}(t)}{dt} = \sum_{i_2=1}^d A_{i_1i_2} \cdot x_{i_2}(t) \cdot (1 - u(t)) + \sum_{i_2=1}^d B_{i_1i_2} \cdot x_{i_2}(t) \cdot u(t) + C_{i_1} \cdot u(t) + D_{i_1}$$

MIDDM

$$\frac{dx_{i_1}(t)}{dt} = \sum_{i_2=1}^d \delta(m_{i_1}, m_{i_2}) \cdot \gamma^A_{i_1 i_2} \cdot A_{i_1 i_2} \cdot x_{i_2}(t) \cdot (1 - u(t))
+ \sum_{i_2=1}^d \delta(m_{i_1}, m_{i_2}) \cdot \gamma^B_{i_1 i_2} \cdot B_{i_1 i_2} \cdot x_{i_2}(t) \cdot u(t) + C_{i_1} \cdot u(t) + D_{i_1},$$

- The MIDDM, assuming different properties for connectivity within and between modules, is hierarchical, in contrast to typical single-layer ODE models.
- The proposed new ODE model, motivated by statistical considerations, is considered an approximation rather than a principle for the underlying mechanism. It is important to account for model uncertainty when estimating the ODE model.

- We propose a Bayesian approach for two reasons.
- It is natural to characterize this multilevel structure within a unified Bayesian framework, as simultaneous variable selection and clustering in multiple regression were often addressed in Bayesian texts, such as Tadesse et al. (2005); Kim et al. (2006) and Dunson et al. (2008).

- Second, the ODE model uncertainty can be naturally quantified and incorporated into parameter estimation within a Bayesian framework.
- Kennedy and O'Hagan (2001) have developed a Bayesian framework to quantify various sources of uncertainty in approximating systems with complex mathematical models.
- Chkrebtii et al. (2015) and Conrad et al. (2015) developed approaches within this framework to quantify discretization uncertainty of ODE models.

Bayesian Hierarchical Model for Making Inferences of MIDDM

Neuronal State Model

$$\frac{dx_{i_1}(t)}{dt} = \sum_{i_2=1}^d \delta(m_{i_1}, m_{i_2}) \cdot \gamma^A_{i_1 i_2} \cdot A_{i_1 i_2} \cdot x_{i_2}(t) \cdot (1 - u(t))
+ \sum_{i_2=1}^d \delta(m_{i_1}, m_{i_2}) \cdot \gamma^B_{i_1 i_2} \cdot B_{i_1 i_2} \cdot x_{i_2}(t) \cdot u(t) + C_{i_1} \cdot u(t) + D_{i_1},$$

Observation Model

 $\mathbf{y}(t) = \mathbf{x}(t) + \boldsymbol{\epsilon}(t),$

Differential Equation Model Estimation

 Discretization methods using numerical approximation (Biegler et al., 1986; Campbell, 2007; Gelman et al., 1996).

2. Basis function expansion (Deuflhard & Bornemann, 2000; Poyton et al., 2006; Ramsay & Silverman, 2005; Ramsay et al., 2007; Varah, 1982).

Bayesian MIDDM

• Represent **x**(t) by a set of spline bases:

 $\mathbf{x}(t) = \mathbf{\Gamma} \, \boldsymbol{\phi}(t),$ $\boldsymbol{\phi}(t) = (\phi_1(t), \dots, \phi_p(t))' \text{ is a vector of basis functions}$

Model for the observed data

 $Y_i | \mathbf{\Gamma}[i,] \stackrel{\text{ind}}{\sim} \mathbf{MN}(\mathbf{\Phi} (\mathbf{\Gamma}[i,])', \sigma_i^2 \mathbf{I}_T) \text{ for } i = 1, 2..., d$

Prior specification for the basis coefficients

(

$$\Theta_{I} = \{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \boldsymbol{m}, \boldsymbol{\gamma}^{A}, \boldsymbol{\gamma}^{B}\} \quad \boldsymbol{\eta} = (\boldsymbol{\Gamma}[1,], \dots, \boldsymbol{\Gamma}[d,])',$$
$$p(\boldsymbol{\eta} | \boldsymbol{\Theta}_{I}, \tau) \propto \exp\left\{-\frac{1}{2\tau} \mathbf{R}(\boldsymbol{\eta}, \boldsymbol{\Theta}_{I})\right\},$$

$$\begin{aligned} \mathbf{R}(\boldsymbol{\eta}, \boldsymbol{\Theta}_{I}) &= \\ \sum_{i_{1}=1}^{d} \int_{0}^{T} \left(\frac{dx_{i_{1}}(t)}{dt} - \sum_{i_{2}=1}^{d} \delta(m_{i_{1}}, m_{i_{2}}) \cdot \gamma_{i_{1}i_{2}}^{A} \cdot A_{i_{1}i_{2}} \cdot x_{i_{2}}(t) \cdot (1 - u(t)) \right. \\ &- \left. \sum_{i_{2}=1}^{d} \delta(m_{i_{1}}, m_{i_{2}}) \cdot \gamma_{i_{1}i_{2}}^{B} \cdot B_{i_{1}i_{2}} \cdot x_{i_{2}}(t) \cdot u(t) - C_{i_{1}} \cdot u(t) - D_{i_{1}} \right)^{2} dt. \end{aligned}$$

Prior specification for the basis coefficients

• Since $R(\eta, \Theta_I) = \eta' \Omega_{\Theta_I} \eta - 2\Lambda'_{\Theta_I} \eta + \Xi_{\Theta_I}$,

$$\eta | \Theta_I, \tau \sim \mathrm{MN}(\Omega_{\Theta_I}^{-1} \Lambda_{\Theta_I}, \tau \cdot \Omega_{\Theta_I}^{-1}).$$

Prior Specification for Indicators

 $p(\boldsymbol{\gamma}^{A}, \boldsymbol{\gamma}^{B} | \boldsymbol{\theta}, \boldsymbol{m}, \tau) \propto$

$$\det(\Omega_{\Theta_I})^{-1/2} \cdot \exp\{\frac{1}{2\tau}(\Lambda_{\Theta_I}'\Omega_{\Theta_I}^{-1}\Lambda_{\Theta_I} - \Xi_{\Theta_I})\}$$
$$p_0^{\sum_{i,j}\gamma_{ij}^A + \sum_{i,j}\gamma_{ij}^B} \cdot (1-p_0)^{2d^2 - \sum_{i,j}\gamma_{ij}^A - \sum_{i,j}\gamma_{ij}^B},$$

Priors for other MIDDM parameters

$$P(\boldsymbol{m}) \propto \exp\{-\mu \cdot \sum_{i_1, i_2=1}^d \delta(m_{i_1}, m_{i_2})\},\$$

$$A_{ij}, B_{ij}, C_i, D_i \stackrel{\text{i.i.d}}{\sim} N(0, \xi_0^2) \text{ and}$$

 $p(\sigma_i^2) \propto 1/\sigma_i^2$, for i, j = 1, 2, ..., d,

Joint Posterior Distribution

$$p(\boldsymbol{\eta}, \boldsymbol{\Theta}_{I}, \boldsymbol{\sigma}^{2} | \mathbf{Y}, \tau, \mu) \propto$$

$$\prod_{i=1}^{d} \sigma_{i}^{-T} \exp\{-\frac{(Y_{i} - \boldsymbol{\Phi} \boldsymbol{\Gamma}[i,]')^{2}}{2\sigma_{i}^{2}}\} \cdot \exp\{-\frac{1}{2\tau} \mathbf{R}(\boldsymbol{\eta}, \boldsymbol{\Theta}_{I})\}$$

$$\cdot \exp\{-\mu \sum_{i_{1}, i_{2}=1}^{d} \delta(m_{i_{1}}, m_{i_{2}})\}$$

$$\cdot p_{0}^{\sum_{i, j} \gamma_{ij}^{A} + \sum_{i, j} \gamma_{ij}^{B}} \cdot (1 - p_{0})^{2d^{2} - \sum_{i, j} \gamma_{ij}^{A} - \sum_{i, j} \gamma_{ij}^{B}}$$

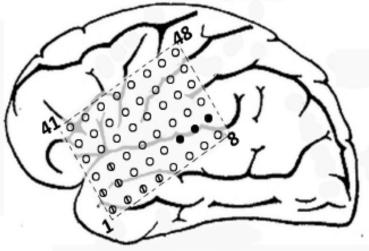
$$\cdot \prod_{i, j=1}^{d} \phi(\frac{A_{ij}}{\xi_{0}}) \cdot \prod_{i, j=1}^{d} \phi(\frac{B_{ij}}{\xi_{0}}) \cdot \prod_{i=1}^{d} \phi(\frac{C_{i}}{\xi_{0}}) \cdot \prod_{i=1}^{d} \phi(\frac{D_{i}}{\xi_{0}}) \cdot \prod_{i=1}^{d} \frac{1}{\sigma_{i}^{2}},$$

Partially Collapsed Gibbs Sampler (PCGS; van Dyk and Park, 2008) $\Theta_I = \{A, B, C, D, m, \gamma^A, \gamma^B\}, \quad \eta = (\Gamma[1,], \dots, \Gamma[d,])', \theta = \{A, B, C, D\}, \eta \in \{A,$

- 1. Draw from $p(m_i | \boldsymbol{m}_{-i}, \boldsymbol{\eta}, \boldsymbol{\sigma}^2, \boldsymbol{\gamma}^A, \boldsymbol{\gamma}^B, \mathbf{Y})$
- 2. Draw from $p(\gamma_{ij}^A | \boldsymbol{m}, \boldsymbol{\eta}, \boldsymbol{\sigma}^2, \boldsymbol{\gamma}_{-ij}^A, \boldsymbol{\gamma}^B, \mathbf{Y})$
- 3. Draw from $p(\gamma_{ij}^B | \boldsymbol{m}, \boldsymbol{\eta}, \boldsymbol{\sigma}^2, \boldsymbol{\gamma}^A, \boldsymbol{\gamma}_{-ij}^B, \mathbf{Y})$
- 4. Draw $\boldsymbol{\theta}$ from $p(\boldsymbol{\theta}|\boldsymbol{m}, \boldsymbol{\eta}, \boldsymbol{\sigma}^2, \boldsymbol{\gamma}^A, \boldsymbol{\gamma}^B, \mathbf{Y})$
- 5. Draw $\sigma_1^2, \ldots, \sigma_d^2$ from $p(\boldsymbol{\sigma}^2 | \boldsymbol{\Theta}_I, \boldsymbol{\eta}, \mathbf{Y})$,
- 6. Draw $\boldsymbol{\eta}$ from $p(\boldsymbol{\eta}|\boldsymbol{\Theta}_{I}, \boldsymbol{\sigma}^{2}, \mathbf{Y})$

Real ECoG Data

- 45 Recording Channels/Nodes
- Cover Auditory Cortex
- Cover Epileptic Areas
- Use auditory stimulus of 1000 Hz
- Consist of 254 Trials
- Each trial lasted 250 ms including 50 ms of auditory stimulus



Identified Clusters

Each edge represents a top 5% selection probability.

Summary

- Propose a new ODE model for the brain's functional integration.
- Develop a new Bayesian framework for inferring a high-dimensional ODE model for a complex system.

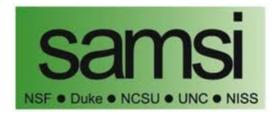
Acknowledgement

 Brian Caffo and Dana Boatman from Johns Hopkins University

My Student Qiannan Yin

Acknowledgement

• Support from SAMSI.



Thank you!

• Questions?

