

### **Bayesian Inference for High-Dimensional ODE Models with Applications to Brain Connectivity Studies**

#### **Banff Neuroimaging Data Analysis Workshop**

Tingting Zhang Department of Statistics University of Virginia

## Introduction

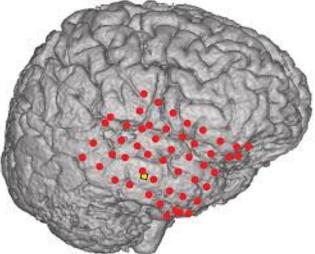
- The brain's functional organization is governed by two principles: functional specialization and functional integration (Friston, 2011).
- Functional specialization suggests that different brain areas are specialized for different functions.
- Functional integration refers to interactions among different specialized brain areas and how these interactions depend on different sensorimotor or cognitive information the brain is processing.

# **ODE Models**

- It is biophysically natural to use ODEs to characterize the functional interactions among different regions.
- Existing ODE models (Dynamic Causal Modeling, Daunizeau et al., 2011; David & Friston, 2003) for fMRI and EEG data.
- 1. Focus on connectivity among only a few regions.
- 2. The ODE formulation highly relies on the prior knowledge of the existence and strength of the connectivity between regions under study.

# A High-dimensional ODE Model for ECoG Data

- ECoG, or intracranial EEG, is a form of electrophysiology whereby electrodes are placed directly (inside the skull and dura) on a living human cortex in the process of surgery for epilepsy care.
- ECoG's high temporal resolution and spatial localization make it an ideal dataset for building brain connectivity models.



# **Dynamic Directional Model (DDM)**

Neuronal Electrical State

$$\frac{dx_1(t)}{dt} = A_{11} x_1(t) \cdot (1 - u(t)) + \ldots + A_{1d} x_d(t) \cdot (1 - u(t)) 
+ B_{11} x_1(t) \cdot u(t) + \ldots + B_{1d} x_d(t) \cdot u(t) + C_1 \cdot u(t) + D_1 
\vdots 
\frac{dx_d(t)}{dt} = A_{d1} x_1(t) \cdot (1 - u(t)) + \ldots + A_{dd} x_d(t) \cdot (1 - u(t)) 
+ B_{d1} x_1(t) \cdot u(t) + \ldots + B_{dd} x_d(t) \cdot u(t) + C_1 \cdot u(t) + D_1$$

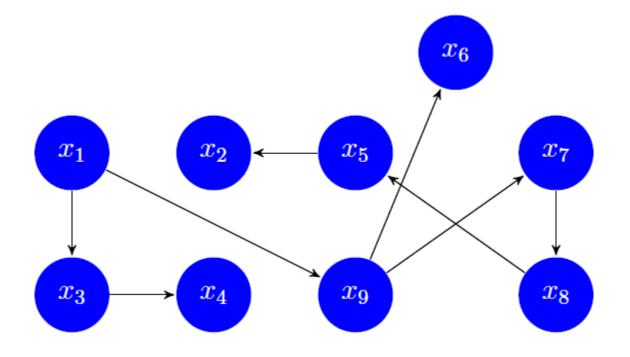
Observation Model

$$\mathbf{y}(t) = \mathbf{x}(t) + \boldsymbol{\epsilon}(t),$$

# **Sparsity Assumption**

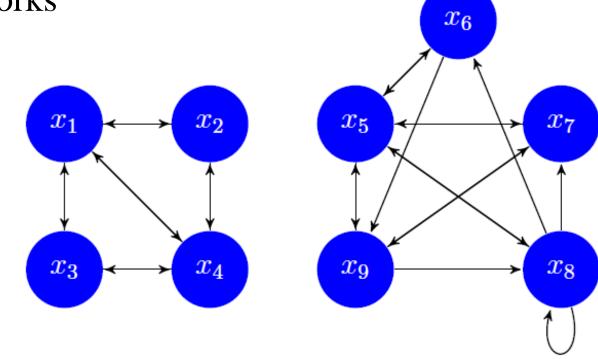
- Connections take up energy and space
- Economical Model
- So many coefficients in *A* and *B* are zeroes.

### **Different Sparse Network Structures**



### **Different Sparse Network Structures**

The community/cluster structure (modularity) in brain networks



## Modular and Indicator Based DDM (MIDDM)

DDM

$$\frac{dx_{i_1}(t)}{dt} = \sum_{i_2=1}^d A_{i_1i_2} \cdot x_{i_2}(t) \cdot (1 - u(t)) + \sum_{i_2=1}^d B_{i_1i_2} \cdot x_{i_2}(t) \cdot u(t) + C_{i_1} \cdot u(t) + D_{i_1}$$

#### MIDDM

$$\frac{dx_{i_1}(t)}{dt} = \sum_{i_2=1}^d \delta(m_{i_1}, m_{i_2}) \cdot \gamma^A_{i_1 i_2} \cdot A_{i_1 i_2} \cdot x_{i_2}(t) \cdot (1 - u(t)) 
+ \sum_{i_2=1}^d \delta(m_{i_1}, m_{i_2}) \cdot \gamma^B_{i_1 i_2} \cdot B_{i_1 i_2} \cdot x_{i_2}(t) \cdot u(t) + C_{i_1} \cdot u(t) + D_{i_1},$$

- The MIDDM, assuming different properties for connectivity within and between modules, is hierarchical, in contrast to typical single-layer ODE models.
- The proposed new ODE model, motivated by statistical considerations, is considered an approximation rather than a principle for the underlying mechanism. It is important to account for model uncertainty when estimating the ODE model.

- We propose a Bayesian approach for two reasons.
- It is natural to characterize this multilevel structure within a unified Bayesian framework, as simultaneous variable selection and clustering in multiple regression were often addressed in Bayesian texts, such as Tadesse et al. (2005); Kim et al. (2006) and Dunson et al. (2008).

- Second, the ODE model uncertainty can be naturally quantified and incorporated into parameter estimation within a Bayesian framework.
- Kennedy and O'Hagan (2001) have developed a Bayesian framework to quantify various sources of uncertainty in approximating systems with complex mathematical models.
- Chkrebtii et al. (2015) and Conrad et al. (2015) developed approaches within this framework to quantify discretization uncertainty of ODE models.

## **Bayesian Hierarchical Model for Making Inferences of MIDDM**

Neuronal State Model

$$\frac{dx_{i_1}(t)}{dt} = \sum_{i_2=1}^d \delta(m_{i_1}, m_{i_2}) \cdot \gamma^A_{i_1 i_2} \cdot A_{i_1 i_2} \cdot x_{i_2}(t) \cdot (1 - u(t)) 
+ \sum_{i_2=1}^d \delta(m_{i_1}, m_{i_2}) \cdot \gamma^B_{i_1 i_2} \cdot B_{i_1 i_2} \cdot x_{i_2}(t) \cdot u(t) + C_{i_1} \cdot u(t) + D_{i_1},$$

Observation Model

 $\mathbf{y}(t) = \mathbf{x}(t) + \boldsymbol{\epsilon}(t),$ 

### **Differential Equation Model Estimation**

 Discretization methods using numerical approximation (Biegler et al., 1986; Campbell, 2007; Gelman et al., 1996).

2. Basis function expansion (Deuflhard & Bornemann, 2000; Poyton et al., 2006; Ramsay & Silverman, 2005; Ramsay et al., 2007; Varah, 1982).

# **Bayesian MIDDM**

• Represent **x**(t) by a set of spline bases:

 $\mathbf{x}(t) = \mathbf{\Gamma} \, \boldsymbol{\phi}(t),$  $\boldsymbol{\phi}(t) = (\phi_1(t), \dots, \phi_p(t))' \text{ is a vector of basis functions}$ 

Model for the observed data

 $Y_i | \mathbf{\Gamma}[i, ] \stackrel{\text{ind}}{\sim} \mathbf{MN}(\mathbf{\Phi} (\mathbf{\Gamma}[i, ])', \sigma_i^2 \mathbf{I}_T) \text{ for } i = 1, 2..., d$ 

# **Prior specification for the basis coefficients**

(

$$\Theta_{I} = \{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \boldsymbol{m}, \boldsymbol{\gamma}^{A}, \boldsymbol{\gamma}^{B}\} \quad \boldsymbol{\eta} = (\boldsymbol{\Gamma}[1, ], \dots, \boldsymbol{\Gamma}[d, ])',$$
$$p(\boldsymbol{\eta} | \boldsymbol{\Theta}_{I}, \tau) \propto \exp\left\{-\frac{1}{2\tau} \mathbf{R}(\boldsymbol{\eta}, \boldsymbol{\Theta}_{I})\right\},$$

$$\begin{aligned} \mathbf{R}(\boldsymbol{\eta}, \boldsymbol{\Theta}_{I}) &= \\ \sum_{i_{1}=1}^{d} \int_{0}^{T} \left( \frac{dx_{i_{1}}(t)}{dt} - \sum_{i_{2}=1}^{d} \delta(m_{i_{1}}, m_{i_{2}}) \cdot \gamma_{i_{1}i_{2}}^{A} \cdot A_{i_{1}i_{2}} \cdot x_{i_{2}}(t) \cdot (1 - u(t)) \right. \\ &- \left. \sum_{i_{2}=1}^{d} \delta(m_{i_{1}}, m_{i_{2}}) \cdot \gamma_{i_{1}i_{2}}^{B} \cdot B_{i_{1}i_{2}} \cdot x_{i_{2}}(t) \cdot u(t) - C_{i_{1}} \cdot u(t) - D_{i_{1}} \right)^{2} dt. \end{aligned}$$

# **Prior specification for the basis coefficients**

• Since  $R(\eta, \Theta_I) = \eta' \Omega_{\Theta_I} \eta - 2\Lambda'_{\Theta_I} \eta + \Xi_{\Theta_I}$ ,

$$\eta | \Theta_I, \tau \sim \mathrm{MN}(\Omega_{\Theta_I}^{-1} \Lambda_{\Theta_I}, \tau \cdot \Omega_{\Theta_I}^{-1}).$$

### **Prior Specification for Indicators**

 $p(\boldsymbol{\gamma}^{A}, \boldsymbol{\gamma}^{B} | \boldsymbol{\theta}, \boldsymbol{m}, \tau) \propto$ 

$$\det(\Omega_{\Theta_I})^{-1/2} \cdot \exp\{\frac{1}{2\tau}(\Lambda_{\Theta_I}'\Omega_{\Theta_I}^{-1}\Lambda_{\Theta_I} - \Xi_{\Theta_I})\}$$
$$p_0^{\sum_{i,j}\gamma_{ij}^A + \sum_{i,j}\gamma_{ij}^B} \cdot (1-p_0)^{2d^2 - \sum_{i,j}\gamma_{ij}^A - \sum_{i,j}\gamma_{ij}^B},$$

### **Priors for other MIDDM parameters**

$$P(\boldsymbol{m}) \propto \exp\{-\mu \cdot \sum_{i_1, i_2=1}^d \delta(m_{i_1}, m_{i_2})\},\$$
  
$$A_{ij}, B_{ij}, C_i, D_i \stackrel{\text{i.i.d}}{\sim} N(0, \xi_0^2) \text{ and}$$

 $p(\sigma_i^2) \propto 1/\sigma_i^2$ , for i, j = 1, 2, ..., d,

### **Joint Posterior Distribution**

$$p(\boldsymbol{\eta}, \boldsymbol{\Theta}_{I}, \boldsymbol{\sigma}^{2} | \mathbf{Y}, \tau, \mu) \propto$$

$$\prod_{i=1}^{d} \sigma_{i}^{-T} \exp\{-\frac{(Y_{i} - \boldsymbol{\Phi} \boldsymbol{\Gamma}[i, ]')^{2}}{2\sigma_{i}^{2}}\} \cdot \exp\{-\frac{1}{2\tau} \mathbf{R}(\boldsymbol{\eta}, \boldsymbol{\Theta}_{I})\}$$

$$\cdot \exp\{-\mu \sum_{i_{1}, i_{2}=1}^{d} \delta(m_{i_{1}}, m_{i_{2}})\}$$

$$\cdot p_{0}^{\sum_{i, j} \gamma_{ij}^{A} + \sum_{i, j} \gamma_{ij}^{B}} \cdot (1 - p_{0})^{2d^{2} - \sum_{i, j} \gamma_{ij}^{A} - \sum_{i, j} \gamma_{ij}^{B}}$$

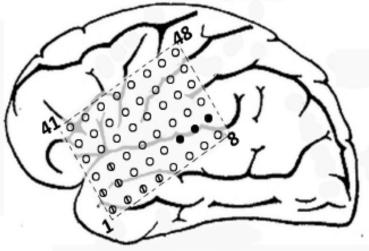
$$\cdot \prod_{i, j=1}^{d} \phi(\frac{A_{ij}}{\xi_{0}}) \cdot \prod_{i, j=1}^{d} \phi(\frac{B_{ij}}{\xi_{0}}) \cdot \prod_{i=1}^{d} \phi(\frac{C_{i}}{\xi_{0}}) \cdot \prod_{i=1}^{d} \phi(\frac{D_{i}}{\xi_{0}}) \cdot \prod_{i=1}^{d} \frac{1}{\sigma_{i}^{2}},$$

**Partially Collapsed Gibbs Sampler** (PCGS; van Dyk and Park, 2008)  $\Theta_I = \{A, B, C, D, m, \gamma^A, \gamma^B\}, \quad \eta = (\Gamma[1, ], \dots, \Gamma[d, ])', \theta = \{A, B, C, D\}, \eta \in \{A,$ 

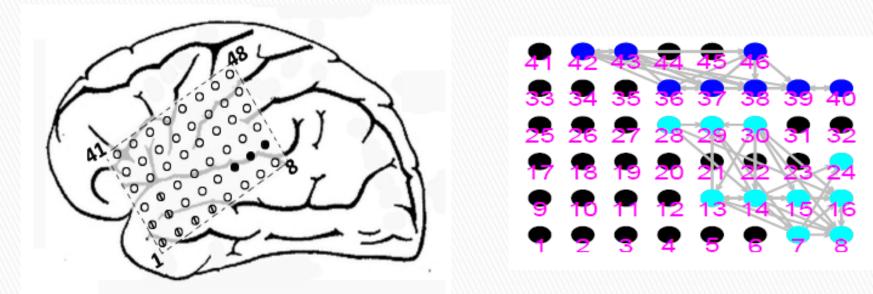
- 1. Draw from  $p(m_i | \boldsymbol{m}_{-i}, \boldsymbol{\eta}, \boldsymbol{\sigma}^2, \boldsymbol{\gamma}^A, \boldsymbol{\gamma}^B, \mathbf{Y})$
- 2. Draw from  $p(\gamma_{ij}^A | \boldsymbol{m}, \boldsymbol{\eta}, \boldsymbol{\sigma}^2, \boldsymbol{\gamma}_{-ij}^A, \boldsymbol{\gamma}^B, \mathbf{Y})$
- 3. Draw from  $p(\gamma_{ij}^B | \boldsymbol{m}, \boldsymbol{\eta}, \boldsymbol{\sigma}^2, \boldsymbol{\gamma}^A, \boldsymbol{\gamma}_{-ij}^B, \mathbf{Y})$
- 4. Draw  $\boldsymbol{\theta}$  from  $p(\boldsymbol{\theta}|\boldsymbol{m}, \boldsymbol{\eta}, \boldsymbol{\sigma}^2, \boldsymbol{\gamma}^A, \boldsymbol{\gamma}^B, \mathbf{Y})$
- 5. Draw  $\sigma_1^2, \ldots, \sigma_d^2$  from  $p(\boldsymbol{\sigma}^2 | \boldsymbol{\Theta}_I, \boldsymbol{\eta}, \mathbf{Y})$ ,
- 6. Draw  $\boldsymbol{\eta}$  from  $p(\boldsymbol{\eta}|\boldsymbol{\Theta}_{I}, \boldsymbol{\sigma}^{2}, \mathbf{Y})$

# **Real ECoG Data**

- 45 Recording Channels/Nodes
- Cover Auditory Cortex
- Cover Epileptic Areas
- Use auditory stimulus of 1000 Hz
- Consist of 254 Trials
- Each trial lasted 250 ms including 50 ms of auditory stimulus



# **Identified Clusters**



#### Each edge represents a top 5% selection probability.

# Summary

- Propose a new ODE model for the brain's functional integration.
- Develop a new Bayesian framework for inferring a high-dimensional ODE model for a complex system.

# Acknowledgement

 Brian Caffo and Dana Boatman from Johns Hopkins University

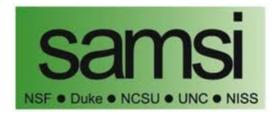


### My Student Qiannan Yin



# Acknowledgement

• Support from SAMSI.



Thank you!

• Questions?

