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Motivation
Group analysis of image derived representations
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Workflow
Lots of QC and corrections
Figure out how to warp one image to another
Perform atom-wise statistical analysis after a laundry list of
pre-processing
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Finally obtain heat maps of discriminative voxels (after
p-value corrections)
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Voxel wise analysis on the Image grid

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

H0

The multiple testing problem is significant especially when testing at a
million (independent?) voxels
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Voxel wise analysis on the Image grid
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Type 1 and Type 2 Errors in Neuroimaging

H0 is true H0 is false

voxel not discriminative voxel is discriminative

Reject H0
Type 1 Error

(false positive)
Correct

¬Reject H0 Correct
Type 2 Error

(false negative)

To be safe on Type 1 errors, a super conservative strategy may lead
to many false negatives
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Analysis of cortical meshes
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Analysis of connectivity networks

13 / 86



DTI Tractography

White matter orientational information from DTI
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DTI Tractography

Streamline fiber tracking from orientation field
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DTI Tractography

Brain atlas and connectivity matrix
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Analysis questions

Challenges

Statistical analysis on connectivity matrix involves O(n2) terms

Sample sizes are small in Neuroimaging studies: large p, small n

The “connectivity” between different “nodes” of the graph is arbitrary

Wavelets?
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Analysis questions

Challenges

Statistical analysis on connectivity matrix involves O(n2) terms

Sample sizes are small in Neuroimaging studies: large p, small n

The “connectivity” between different “nodes” of the graph is arbitrary

Need for methods which are sensitive to small signal differences

Multi-resolution analysis of shapes and connectivity networks

Wavelets?
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Analysis questions

Challenges

Statistical analysis on connectivity matrix involves O(n2) terms

Sample sizes are small in Neuroimaging studies: large p, small n

The “connectivity” between different “nodes” of the graph is arbitrary

Identifying “differences” is related to finding “similarity”.

Comparison of signals in multiple resolutions

E.g., SIFT feature

An end-to-end statistical explanation as well (with some disclaimer)

Wavelets?
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Fourier Transform

Superposition of sinusodial functions e iωt in different frequencies

Fourier Transform of f (x):
(From native space to the frequency space)

f̂ (ω) =

∫
f (x)e−jωxdx

Inverse Fourier Transform:
(Reconstruct my signal)

f (x) =
1

2π

∫
f̂ (ω)ejωxdω
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Weather in Madison affects forecast in Banff

Ringing Artifact (e.g., Gibbs phenomenon)
(caused by infinite support of Fourier bases)

Figure: Ringing artifact using Fourier bases.
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Wavelet Transform

Wavelet bases

Unlike Fourier bases, Wavelets are localized in both time and frequency

Sine Haar Wavelet Mexican hat wavelet
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Wavelet Transform

Mother wavelet ψ: function of dilation s and translation a

ψs,a(x) =
1

s
ψ

(
x − a

s

)
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Wavelet Transform

Fourier

f̂ (ω) =

∫
f (x)e−jωxdx

Wavelets

Wf (s, a) =
1

s

∫
f (x)ψ∗(

x − a

s
)dx

Inverse Fourier

f (x) =
1

2π

∫
f̂ (ω)ejωxdω

Inverse Wavelets

f (x) =
1

Cψ

∫∫
Wf (s, a)ψs,a(x)da ds

Admissibility Condition with Cψ =

∫
|Ψ(jω)|2

|ω|
dω <∞

To define Cψ, Ψ(jω) =

∫
ψ(t)e−jωtdt
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Wavelet in the Frequency Domain

ψ (blue) in the frequency domain: band-pass filters

φ (red) in the frequency domain: low-pass filter

Figure: A scaling function (red) and band-pass filters (blue) in the frequency domain.
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Classical Wavelet example

Figure: Example of multi-resolutional characterization (from SGWT toolbox)

36 / 86



Wavelet Transform on Graphs

Wavelets in Euclidean Space

Wavelets on Graphs

(Scale? Translation?)
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Wavelet Transform on Graphs

Key Idea

Native domain: G = {V ,E , ω}
First step: define analogue of Fourier transform on graphs (Maggioni,
2006), (Hammond 2012)

Construct orthonormal bases defined on structure of G

Construction of filters in the frequency domain to get band pass effect
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Wavelet Transform on Graphs

Key Idea

Native domain: G = {V ,E , ω}
First step: define analogue of Fourier transform on graphs (Maggioni,
2006), (Hammond 2012)

Construct orthonormal bases defined on structure of G

Construction of filters in the frequency domain to get band pass effect

Ingredients

Adjacency A: square matrix, am,n for connectivity information

Degree Matrix: D: Diagonals are the sum of weights

Graph Laplacian: L = D − A

Orthonormal bases χl and eigenvalues λl , l ∈ {0, · · · ,N − 1} of L
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Wavelet Transform on Graphs

Key Idea

Native domain: G = {V ,E , ω}
First step: define analogue of Fourier transform on graphs (Maggioni,
2006), (Hammond 2012)

Construct orthonormal bases defined on structure of G

Construction of filters in the frequency domain to get band pass effect

Star shaped graph Adjacency Degree Laplacian
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Wavelet Transform on Graphs

Fourier

f̂ (ω) = 〈f , e jωx〉 =

∫
f (x)e−jωxdx

Graph Fourier

f̂ (l) = 〈f , χl〉 =
N∑

n=1

f (n)χ∗l (n)

For graph Fourier transform, the orthonormal bases come from spectral
graph theory: from a self-adjoint operator (the graph Laplacian)

Inverse Fourier

f (x) =
1

2π

∫
f̂ (ω)ejωxdω

Inverse Graph Fourier

f (n) =
N−1∑
l=0

f̂ (l)χl(n)

Construct original signal using graph Fourier bases and coefficients f̂

L � 0, so χ and χ∗ are the same.
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Wavelet Transform on Graphs

Wavelet function on node m, localized on node n

ψs,n(m) =
N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m)

Choose a kernel function g (band-pass filter)

Spectral Graph Wavelet Transform on f (n) on node n

Wf (s, n) =
N−1∑
l=0

g(sλl)f̂ (l)χl(n)
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An Example of Wavelet Functions on Graphs

Example of wavelets on graphs (mesh surface)

Mesh surface
(sphere)

Mexican hat
wavelet at scale 1

Mexican hat
wavelet at scale 2

Mexican hat
wavelet at scale 3
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An Example of Wavelet Transform on Graphs

Forward and inverse wavelet transform of f (n) (on a brain mesh)

Wf (s, n) = 〈f , ψs,n〉 =
N−1∑
l=0

g(sλl)f̂ (l)χl(n)

f (n) =
1

Cg

N∑
n=1

∫ ∞
0

Wf (s, n)ψs,n(m)
ds

s

→ →

Figure: Forward and Inverse wavelet transform.
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Application 1: Cortical Thickness Discrimination

Group analysis: Identify regions showing differences between disparate
groups

I Alzheimer’s disease versus Healthy controls

Statistical Parametric Mapping
I Hypothesis test at vertex level
I Multiple comparison correction (Bonferroni, etc.)
I Check which regions survive

Domain: Brain surface mesh;
Signal: Cortical thickness (distance between inner/outer cortical surfaces)
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Application 1: Cortical Thickness Discrimination
Wavelet multi-scale descriptor (WMD):
- A set of wavelet coefficients at each vertex n for each scale s

WMDf (n) = {Wf (s, n)|s ∈ S} (1)

WMD on Lenna at scale 0, 1, 2.
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Application 1: Cortical Thickness Discrimination (ADNI)

Group analysis: Alzheimer’s disease (AD) subjects versus healthy
controls

Table: ADNI data details

ADNI data

Category AD (mean) AD (s.d.) Ctrl (mean) Ctrl (s.d.)

# of Subjects 160 - 196 -

Age 75.53 7.41 76.09 5.13

Gender (M/F) 86 / 74 - 101 / 95 -

MMSE at Baseline 21.83 5.98 28.87 3.09

Years of Education 13.81 4.61 15.87 3.23
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Application 1: Cortical Thickness Discrimination (ADNI)

p-values from Hotelling’s T 2. Then, multiple comparison correction

Figure: p-values (in − log10 scale) after FDR correction at q = 10−5. Row 1:
Cortical thickness, Row 2: SPHARM, Row 3: WMD

54 / 86



Application 1: Cortical Thickness Discrimination (ADNI)

p-values and False discovery rate (FDR)

Group difference: the vertices below the FDR threshold

Figure: Sorted p-values from group analysis on cortical thickness (cyan), SPHARM
(green), and WMD (red), and the FDR thresholds are represented by dotted lines.
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Application 1: Cortical Thickness Discrimination (ADNI)

Effect of changes of q in FDR

Figure: p-values (in − log10 scale and normalized) showing the effect of FDR
correction on a left hemisphere using WMD with FDR q = 10−3 (left column),
q = 10−5 (middle column) and q = 10−7 (right column) respectively.
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Application 1: Cortical Thickness Discrimination (ADRC)

Group analysis on ADRC (local) dataset

The dataset consists of 42 AD and 50 Controls subjects

Expect to find weaker signal but the same regions found from ADNI
(small n)

Figure: Group analysis on AD vs Controls. p-values in − log10 scale after FDR
correction at q = 0.05 are shown on a smoothed brain surface. Top row: Result using
smoothed cortical thickness, Bottom row: Result using WMD
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Line Graph Transform

We would like to detect group differences in brain connectivity.

Here, the information lies on the edges of a graph, not on the vertices.

We need to transform the graph G to apply our framework.
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Line Graph Transform

Line graph L(G ) is a dual form of graph G .

Interchange of the roles of V and E in G .

Let gij be the elements in the adjacency matrix AL of L(G ),

gij =

{
1 if v ∈ V, v v ei , ej

0 otherwise

where v is a vertex in V and e is an edge in E .

Figure: Examples of graphs and the corresponding line graphs. Original graphs with
vertices (red) and edges (yellow) with edge weights (thickness), and corresponding line
graphs with vertices (yellow) with function (vertex size) and edges (red).
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Filtering Process on Line Graphs
Once we obtain L(G ), we have a function defined on vertices.
Now, we can apply filtering operations.
Recall that wavelet transform is a band-pass filtering operation.
An illustration of smoothing operation by line graph transformation.

Figure: A toy example of graph structure filtering. The top panel shows the graph
filtering steps: (1) Construction of the line graph, (2) filtering the signal on the line
graph vertices, (3) reconstructing the filtered graph. The bottom panel shows the cor-
responding adjacency matrices.
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Multi-scale Descriptor for Brain Connectivity

Derive multi-scale descripter on L(G ) and transform back to G

Wavelet Connectivity Signature (WaCS)

WaCSf (e) = {Wf (s, e)|s ∈ S} (2)

Figure: An example of multi-resolution on graph edges at various resolutions.
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Application 2: Brain Connectivity Discrimination

ADRC and WRAP Dataset

ADRC: 58 healthy vs. 44 AD subjects

WRAP: 93 Family history (FH) positive vs. 250 negative subjects

162 parcellated brain regions as region of interest (ROI)

Mean fractional anisotropy (FA) of tracts between ROIs

162× 162 connectivity matrix for each subject

Figure: Left: ROIs and track bundles, Right: connectivity matrices.
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Application 2: Brain Connectivity Discrimination

ADRC Study

64 / 86



Application 2: Brain Connectivity Discrimination

ADRC Study

AD vs. CN result

Bonferroni
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Application 2: Brain Connectivity Discrimination

ADRC Study

AD vs. CN result

Bonferroni

Feature Selection
FDR

WRAP study

FH+ vs. FH- result

FDR
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Application 2: Brain Connectome Discrimination - ADRC

GLM on FA (control for age/gender) for p-values

Bonferroni at α = 0.01 for multiple comparisons correction

The edge color represents the direction of difference
- Red: stronger connection in Controls group
- Blue: stronger connection in AD group

Figure: Significant connection difference between AD vs control group with direction of
significance. Edge thickness corresponds to p-value, and the color denotes to the
direction of strength.
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Application 2: Brain Connectivity Discrimination - ADRC

MGLM on WaCS (control for age/gender) for p-values

Bonferroni at α = 0.01 for multiple comparisons correction

The edge color represents the direction of difference
- Red: stronger connection in Controls group
- Blue: stronger connection in AD group

Figure: 81 significant connection difference between AD vs control group with direction
of significance. Edge thickness corresponds to p-value, and the color denotes to the
direction of strength.
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Application 2: Brain Connectivity Discrimination - ADRC

Hub regions: ROIs with connected edges ≥ 5

I Left: superior and transverse occipital sulcus, superior parietal lobule,
I Right: hippocampus, transverse occipital sulcus, precuneus, medial

occipito-temporal gyrus

Figure: Illustration of the hub ROIs with connections identified as showing significant
group difference between AD and control groups.
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Application 2: Brain Connectivity Discrimination - WRAP

Further Analysis on Preclinical AD (small effect size)

615 Connections of interest (COIs) selected from ADRC study

COI selection: FDR at 0.001 on AD vs. CN analysis

Family History analysis on the COIs using WRAP data
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Application 2: Brain Connectivity Discrimination - WRAP

Further Analysis on Preclinical AD (small effect size)

Applying standard GLM analysis on FA revealed no connection

MGLM (controlling for age/gender) for WaCS on COIs for p-values

FDR at α = 0.05 for multiple comparisons correction (less
conservative than Bonferroni) to detect subtle variations
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Application: Brain Connectivity Discrimination - WRAP

7 connections identified
- Left: 5 ROIs (orbital gray matter, calcarine sulcus, lateral orbital sulcus, postro
ventral cingular gyrus and pericallosal sulcus)
- Right: 4 ROIs (precuneus, superior parietal lobule, posterior sylvian fissure,
calcarine sulcus, pericallosal sulcus)

Figure: Significant group difference between FH+ and FH- groups. Color gives sign of
strength: red (and blue) are stronger in FH- (and FH+ group).
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Longitudinal Analysis of PIB Images

W. H. Kim, B. B. Bendlin, M. K. Chung, S. C. Johnson, V. Singh,
Statistical Inference Models for Image Datasets with Systematic
Variations, CVPR, 2015.

Longitudinal SUVR images from PIB scans from two time points

Figure: Changes of longitudinal SUVR images from a single subject. Decreases of the
intensities are shown in various regions.
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Analysis of Images with Imperfect Registration

W. H. Kim, S. Ravi, S. C. Johnson, O. Okonkwo, V. Singh, On
Statistical Analysis of Neuroimages with Imperfect Registration,
ICCV, 2015

Analysis with incorrectly registered brain images

(a) (b) (c) (d) (e)

Figure: Registered FDG-PET scans of a subject. a) Using the original deformation
field, b), c) Using deformation field with 5% and 10% noise level, d) A slice of GRF for
spatially correlated noise, e) Using deformation field with d) as noise.
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The BEMMA hammer (Dahl and Newton, 2006)

Class 1 Class 2

N

D
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The BEMMA hammer (Dahl and Newton, 2006)

Class 1 Class 2
Rejecting H0
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Class 1 Class 2
Rejecting H0
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Graph restricted Chinese Restaurant Processes

The CRP is explicitly restricted by the image lattice

Sampling must become significantly easier (relative to distance
dependent CRPs)

For cluster Ci , improvements in statistical power ∝ |Ci |?
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Conclusions

Thanks to the organizers!

82 / 86



Conclusions

Thanks to the organizers!

83 / 86



Conclusions

Powerful machinery for shape analysis of arbitrary meshes and graphs

So far: has worked well on many different datasets and diverse
application domains

If you’re interested –

Start with the excellent papers by Maggioni and those by Hammond

You may also look at some of our recent ones
I Kim et al., NIPS 2012
I Kim et al., NeuroImage 2014
I Kim et al., NeuroImage 2015

Acknowledgments
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