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Background: Extremal weight modules

Affine Lie algebra gaf , quantum group Uq(gaf).

For λ ∈ Xaf , the extremal weight module of extremal weight λ over
Uq(gaf): V (λ), generated by vλ (of weight λ).

Remark. For λ of positive or negative level, V (λ) is the
corresponding integrable highest (resp. lowest) weight module. For
level 0 its structure is much more complicated.

For λ dominant integral weight of g (fixed throughout) and
w ∈Waf , the Demazure module:

V±w (λ) := U±q (gaf)wvλ ⊂ V (λ) .

Remark. For w = w◦ (the longest element of the finite Weyl group
W ), V+

w◦(λ) is the global Weyl module over the current algebra
g⊗ C[x ].



Background: Extremal weight modules

Affine Lie algebra gaf , quantum group Uq(gaf).

For λ ∈ Xaf , the extremal weight module of extremal weight λ over
Uq(gaf): V (λ), generated by vλ (of weight λ).

Remark. For λ of positive or negative level, V (λ) is the
corresponding integrable highest (resp. lowest) weight module. For
level 0 its structure is much more complicated.

For λ dominant integral weight of g (fixed throughout) and
w ∈Waf , the Demazure module:

V±w (λ) := U±q (gaf)wvλ ⊂ V (λ) .

Remark. For w = w◦ (the longest element of the finite Weyl group
W ), V+

w◦(λ) is the global Weyl module over the current algebra
g⊗ C[x ].



Background: Extremal weight modules

Affine Lie algebra gaf , quantum group Uq(gaf).

For λ ∈ Xaf , the extremal weight module of extremal weight λ over
Uq(gaf): V (λ), generated by vλ (of weight λ).

Remark. For λ of positive or negative level, V (λ) is the
corresponding integrable highest (resp. lowest) weight module.

For
level 0 its structure is much more complicated.

For λ dominant integral weight of g (fixed throughout) and
w ∈Waf , the Demazure module:

V±w (λ) := U±q (gaf)wvλ ⊂ V (λ) .

Remark. For w = w◦ (the longest element of the finite Weyl group
W ), V+

w◦(λ) is the global Weyl module over the current algebra
g⊗ C[x ].



Background: Extremal weight modules

Affine Lie algebra gaf , quantum group Uq(gaf).

For λ ∈ Xaf , the extremal weight module of extremal weight λ over
Uq(gaf): V (λ), generated by vλ (of weight λ).

Remark. For λ of positive or negative level, V (λ) is the
corresponding integrable highest (resp. lowest) weight module. For
level 0 its structure is much more complicated.

For λ dominant integral weight of g (fixed throughout) and
w ∈Waf , the Demazure module:

V±w (λ) := U±q (gaf)wvλ ⊂ V (λ) .

Remark. For w = w◦ (the longest element of the finite Weyl group
W ), V+

w◦(λ) is the global Weyl module over the current algebra
g⊗ C[x ].



Background: Extremal weight modules

Affine Lie algebra gaf , quantum group Uq(gaf).

For λ ∈ Xaf , the extremal weight module of extremal weight λ over
Uq(gaf): V (λ), generated by vλ (of weight λ).

Remark. For λ of positive or negative level, V (λ) is the
corresponding integrable highest (resp. lowest) weight module. For
level 0 its structure is much more complicated.

For λ dominant integral weight of g (fixed throughout) and
w ∈Waf , the Demazure module:

V±w (λ) := U±q (gaf)wvλ ⊂ V (λ) .

Remark. For w = w◦ (the longest element of the finite Weyl group
W ), V+

w◦(λ) is the global Weyl module over the current algebra
g⊗ C[x ].



Background: Extremal weight modules

Affine Lie algebra gaf , quantum group Uq(gaf).

For λ ∈ Xaf , the extremal weight module of extremal weight λ over
Uq(gaf): V (λ), generated by vλ (of weight λ).

Remark. For λ of positive or negative level, V (λ) is the
corresponding integrable highest (resp. lowest) weight module. For
level 0 its structure is much more complicated.

For λ dominant integral weight of g (fixed throughout) and
w ∈Waf , the Demazure module:

V±w (λ) := U±q (gaf)wvλ ⊂ V (λ) .

Remark. For w = w◦ (the longest element of the finite Weyl group
W ), V+

w◦(λ) is the global Weyl module over the current algebra
g⊗ C[x ].



Background: Subquotients

A certain quotient of V+
w◦(λ): U+

w◦(λ) := V+
w◦(λ)/Xw◦(λ)

(Beck-Nakajima).

Remarks. (1) U+
w◦(λ) is a local Weyl module over the current

algebra (unique maximal finite-dimensional quotient of a global
Weyl module).

(2) For λ =
∑

i∈I miωi , we have, as Uq(g)-modules:

U+
w◦(λ) '

⊗
i∈I

(W i ,1)⊗mi ,

where W i ,1 are the (column shape) Kirillov-Reshetikhin (KR)
modules of the affine Lie algebra without the derivation
(finite-dimensional, not of highest weight).
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Background: Subquotients (cont.)

Let w ∈W λ (the lowest coset representatives modulo the
stabilizer Wλ of λ in W ).

The image of the Demazure module V+
w (λ) under the projection:

U+
w (λ) := Im(V+

w (λ)) , V+
w◦(λ)� U+

w◦(λ) := V+
w◦(λ)/Xw◦(λ) .

Graded character:

gchU+
w (λ) :=

∑
γ∈Q, k∈Z

dimU+
w (λ)λ−γ+kδ x

λ−γ qk , where q = xδ .

Remark. Under the isomorphism

U+
w◦(λ) '

⊗
i∈I

(W i ,1)⊗mi ,

the grading is the one by the energy function (originates in the
theory of exactly solvable lattice models).
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Background: Kashiwara’s crystals

Colored directed graphs encoding certain representations V of the
quantum group Uq(g) or Uq(gaf) as q → 0.

The vertices correspond to the elements of a crystal basis, and the
arrows to the action of the Kashiwara operators when q → 0.

Fact. All the above modules have crystal bases.
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Macdonald polynomials

λ: dominant weight for a finite root system; µ: any weight.

Pλ(q, t): polynomials in Q(q, t)⊗ Z[P]W , orthogonal, generalizing
the corresponding irreducible characters = Pλ(0, 0).

Eµ(q, t): nonsymmetric versions.

Eµ(q, t) defined in the double affine Hecke algebra (DAHA) setup,
as common eigenfunctions of the Cherednik operators.
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Main result

Theorem. (LNSSS) For all untwisted affine root systems and λ
dominant, we have:

gchU+
w (λ) = Ewλ(q, t = 0) .

Remark. We have Ew◦λ(q, t = 0) = Pλ(q, t = 0), and this can be
interpreted as:

I the character of a tensor product of one-column KR
modules/crystals, graded by the energy function (LNSSS,
previous work);

I the graded character of a local Weyl module for the current
algebra (Chari-Ion, based on our work).
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Proof idea: identify the combinatorial descriptions of the two sides,
based on two new combinatorial models:

I quantum alcove model on the Macdonald side (we use the
Ram-Yip formula, specialized by Orr-Shimozono);

I quantum Lakshmibai-Seshadri (QLS) paths on the
representation theory side (we build on previous work of
Naito-Sagaki).

The bijection to QLS paths is a forgetful map, but the inverse map
is highly non-trivial.
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The quantum alcove model

It is a uniform model (for all types A
(1)
n−1 –G

(1)
2 ) for tensor products

of column shape KR crystals.

Remark. Only some type-specific models (e.g., tableaux) exist in
classical types.

The model generalizes the alcove model for highest weight crystals
(L. and Postnikov). Based on the corresponding finite root systems
An−1 –G2.
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The main ingredient: the finite Weyl group W

W = 〈sα : α ∈ Φ〉 .

The quantum Bruhat graph QB(W ) is the directed graph on W
with labeled edges

w
α−→ wsα ,

where
`(wsα) = `(w) + 1 (covers of strong Bruhat order) , or

`(wsα) = `(w)− 2ht(α∨) + 1 (ht(α∨) = 〈ρ, α∨〉) .

Comes from the multiplication of Schubert classes in the quantum
cohomology of flag varieties QH∗(G/B) (Fulton and Woodward).
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The quantum alcove model

Definition. Given a dominant weight λ, we associate with it a
sequence of roots, called a λ-chain (many choices possible):

Γ = (β1, . . . , βm) .

Fact. The construction of a λ-chain is based on a reduced
decomposition of the translation by λ, as an element of the affine
Weyl group. This corresponds to a sequence of alcoves.
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Example. Type A2, λ = (3, 1, 0) = 3ε1 + ε2,
Γ = ( (1, 2), (1, 3), (2, 3), (1, 3), (1, 2), (1, 3) ).
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The quantum alcove model (cont.)

Given Γ = (β1, . . . , βm), let ri := sβi .

We consider subsets of positions in Γ

J = (j1 < . . . < js) ⊆ {1, . . . ,m} .

Definition. A subset J = {j1 < j2 < . . . < js} is admissible if we
have a path in the quantum Bruhat graph

Id = w0
βj1−→ rj1

βj2−→ rj1rj2 . . .
βjs−→ rj1 . . . rjs =: φ(J) (final direction) .

The objects of the model: A(Γ) − the collection of all admissible
subsets.
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Bijection from the quantum alcove model to QLS paths
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QLS paths of shape λ: QLS(λ)

We have the parabolic quantum Bruhat graph QB(W λ) (more
subtle than the restriction of QB(W ) to W λ 'W /Wλ).

Given b ∈ Q, let QBbλ(W λ) be the subgraph of QB(W λ) with the
same vertex set but having only the edges:

w
bλ−→ bwsαcλ with 〈α∨ , bλ〉 ∈ Z .

Definition. A QLS path of shape λ is a pair

η = (w1, w2, . . . , ws ; b0, b1, . . . , bs) with

0 = b0 < b1 < · · · < bs = 1 in Q , wi ∈W λ , and

w1
b1λ⇐== w2

b2λ⇐== · · · bs−2λ⇐=== ws−1
bs−1λ⇐=== ws .

Let w1 =: ι(η) (initial direction).
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Main result

Theorem. (LNSSS) Ewλ(q, t = 0) and the graded character of the
quotient module U+

w (λ) can be described in terms of the quantum
alcove model and QLS paths,

namely the sets:

{J ∈ A(Γ) | bφ(J)cλ ≤ w} , and {η ∈ QLS(λ) | ι(η) ≤ w} .

Remark. The above theorem generalizes to KR crystals the
description of Demazure subcrystals inside highest weight crystals
in terms of LS paths (Littelmann) and the alcove model (L.).
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Previous applications

In terms of the quantum alcove model and QLS paths, we can do
the following computations for a tensor product of KR crystals,

uniformly for all affine types A
(1)
n−1 − G

(1)
2 :

(1) describe the action of the Kashiwara operators on the crystal
(LNSSS, previous work);

(2) define a statistic which efficiently computes the energy
function (LNSSS, previous work);

(3) give an explicit construction of the combinatorial R-matrix,
i.e., the (unique) affine crystal isomorphism between tensor
products with permuted factors (L. and Lubovsky).
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New applications and follow-up work

I Computer verification in exceptional types of some properties
of KR crystals conjectured by Hatayama et al. (LNSSS).

** Ishii-Naito-Sagaki: combinatorial realization of the crystal
basis of a level 0 extremal weight module V (λ), and the
corresponding Demazure modules, in terms of semi-infinite LS
paths.

I Naito-Nomoto-Sagaki: Ewλ(q, t =∞) in terms of QLS paths,
and representation theoretic interpretation for w = w◦.

I Feigin-Makedonskyi: define and study in our setup generalized
Weyl modules, which are essentially the U+

w (λ).

** Braverman-Finkelberg, etc.: relation to q-Whittaker functions
and Schubert calculus in quantum K -theory.
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Local and global Weyl modules for current algebras

Let λ =
∑

i∈I miωi .

Recall the graded character of the quotient module U+
w◦(λ) (local

module for current algebra) and our previous result:

gchU+
w◦(λ) = Pλ(q, t = 0) .

Also recall the graded character of V+
w◦(λ) (global module for

current algebra):

gchV+
w◦(λ) =

(∏
i∈I

mi∏
r=1

(1− qr )

)−1
Pλ(q, t = 0) .

Based on the corresponding combinatorial models, Naito-Sagaki
gave a new, crystal-theoretic interpretation of the above
relationship between local and global Weyl modules.



Local and global Weyl modules for current algebras

Let λ =
∑

i∈I miωi .

Recall the graded character of the quotient module U+
w◦(λ) (local

module for current algebra) and our previous result:

gchU+
w◦(λ) = Pλ(q, t = 0) .

Also recall the graded character of V+
w◦(λ) (global module for

current algebra):

gchV+
w◦(λ) =

(∏
i∈I

mi∏
r=1

(1− qr )

)−1
Pλ(q, t = 0) .

Based on the corresponding combinatorial models, Naito-Sagaki
gave a new, crystal-theoretic interpretation of the above
relationship between local and global Weyl modules.



Local and global Weyl modules for current algebras

Let λ =
∑

i∈I miωi .

Recall the graded character of the quotient module U+
w◦(λ) (local

module for current algebra) and our previous result:

gchU+
w◦(λ) = Pλ(q, t = 0) .

Also recall the graded character of V+
w◦(λ) (global module for

current algebra):

gchV+
w◦(λ) =

(∏
i∈I

mi∏
r=1

(1− qr )

)−1
Pλ(q, t = 0) .

Based on the corresponding combinatorial models, Naito-Sagaki
gave a new, crystal-theoretic interpretation of the above
relationship between local and global Weyl modules.



Local and global Weyl modules for current algebras

Let λ =
∑

i∈I miωi .

Recall the graded character of the quotient module U+
w◦(λ) (local

module for current algebra) and our previous result:

gchU+
w◦(λ) = Pλ(q, t = 0) .

Also recall the graded character of V+
w◦(λ) (global module for

current algebra):

gchV+
w◦(λ) =

(∏
i∈I

mi∏
r=1

(1− qr )

)−1
Pλ(q, t = 0) .

Based on the corresponding combinatorial models, Naito-Sagaki
gave a new, crystal-theoretic interpretation of the above
relationship between local and global Weyl modules.



Braverman-Finkelberg q-Whittaker functions

Ψλ(q): eigenfunctions of the quantum difference Toda integrable
system (Etingof, Sevostyanov).

For λ =
∑

i∈I miωi , let

Ψ̂λ(q) := Ψλ(q)
∏
i∈I

mi∏
r=1

(1− qr ) .

Theorem. (Braverman-Finkelberg, Feigin-Makedonskyi-Orr) In
simply-laced types, we have

Pλ(q, t = 0) = Ψ̂λ(q) .

Remark. As we have seen before, Ψλ(q) and Ψ̂λ(q) are the
characters of global and local Weyl modules for current algebras,
respectively.
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Remark. The non-simply laced cases are notoriously hard, due to a
lack of understanding of the related geometry.

Thus, for the moment, our approach based on crystal
combinatorics seems to be the only option.
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Schubert calculus on flag varieties

Flag variety G/B, Schubert variety Xw = B−wB/B, for w ∈W .

H∗(G/B) and K (G/B) have bases of Schubert classes; for
K -theory, they are the classes [Ow ] = [OXw ] of structure sheaves
of Xw .

The quantum cohomology algebra QH∗(G/B) still has the
Schubert basis, but over C[q1, . . . , qr ].

The structure constants (for multiplying Schubert classes) are the
3-point Gromov-Witten (GW) invariants.

A k-point GW invariant (of degree d) counts curves of degree d
passing through k given Schubert varieties.
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Quantum K -theory

Givental and Lee defined more general, K -theoretic GW invariants.

The structure constants for the quantum K -theory QK (G/B) are
defined based on the 2- and 3-point invariants (complex formula).
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K (G/B) and QK (G/B): Chevalley formulas

Theorem. (L.-Postnikov, L.-Shimozono) In K (G/B) (finite-type or
Kac-Moody), we have an explicit combinatorial formula (of
Chevalley type) in terms of the alcove model for expanding:

[Ov ] · [Osk ]=
∑
w∈W

cw [Ow ] .

Conjecture (L.-Postnikov)

Similar formula in QK (G/B) (finite-type), in terms of the
quantum alcove model.

Evidence. L.-Maeno. Also: computer experiments (A. Buch).
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K -theoretic J-function

The K -theoretic J-function is the generating function of 1-point
K -theoretic GW invariants.

Theorem. (Braverman-Finkelberg) In simply-laced types, the
q-Whittaker function Ψλ(q) (viewed as a function of λ) coincides
with the K -theoretic J-function.
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