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1. Prelude: Black holes

https://www.youtube.com/embed/fjSPJTo51lM?rel=0&amp;showinfo=0


Black holes are some of the most fascinating 
objects in the universe

A black hole forms in the final stage of the  
collapse of a sufficiently large star

Nothing may escape after crossing the black hole horizon

https://www.youtube.com/embed/fjSPJTo51lM?rel=0&amp;showinfo=0


Black holes are some of the most fascinating 
objects in the universe

A black hole forms in the final stage of the  
collapse of a sufficiently large star

At its centre space and time breaks down into a singularity  

Quantum effects should
resolve the singularityEvent Horizon

Singularity

https://www.youtube.com/embed/fjSPJTo51lM?rel=0&amp;showinfo=0


But black holes are not black!

Hawking radiation!

Black holes behave like a black body with entropy

S =
Area

4GN~
Bekenstein-Hawking 

formula



Black holes behave like a black body with entropy

This is an amazing equation!

Statistical Physics =
Gravity

Quantum Mechanics

S =
Area

4GN~
Bekenstein-Hawking 

formula



This relates all three  
pillars of theoretical physics!

Statistical Physics =
Gravity

Quantum Mechanics



A quantum theory of gravity must be able to provide a  
microscopic account for the black hole entropy

S = log (]microstates)



A quantum theory of gravity must be able to provide a  
microscopic account for the black hole entropy

S = log (]microstates)

= log ⌦(Q)

Q = electromagnetic charge



log ⌦(Q) =

A(Q)

4GN~

Enter number theory in physics



We package the microstates into a partition function: 

Enter number theory in physics

Z(�) =
X

states

e��Estates
� = 1/T



Enter number theory in physics

We package the microstates into a partition function: 

In string theory the partition function is an automorphic form!

Z(�) =
X

states

e��Estates
� = 1/T



We package the microstates into a partition function: 

Enter number theory in physics

Z(�) =
X

states

e��Estates
� = 1/T

In string theory the partition function is an automorphic form!

Finding the black hole microstate 
degeneracies corresponds to calculating  

Fourier coefficients of automorphic forms



Toroidal compactifications yield the famous chain of U-duality groups
[Cremmer, Julia][Hull, Townsend]

Partition functions are given by automorphic forms on

G(Z)\G(R)/K

Green, Gutperle, Sethi, Vanhove, Kiritsis, Pioline, Obers, Kazhdan, Waldron, Basu, Russo, 
Cederwall, Bao, Nilsson, D.P., Lambert, West, Gubay, Miller, Fleig, Kleinschmidt,…



Certain partition functions are Eisenstein series attached to small 
automorphic representations of     .G

What is known?

minimal automorphic 
representation

next-to-minimal automorphic 
representation

[Green, Miller, Vanhove][Pioline]

Fourier coefficients of these functions reveal perturbative and 
non-perturbative quantum effects.  Very hard to compute!

⇡ntm⇡min



2. Fourier coefficients of Eisenstein series



Mainly based on our recent papers:

[1412.5625]  w/ Gustafsson, Kleinschmidt
[1312.3643]  w/ Fleig, Kleinschmidt

[1511.04265]  w/ Fleig, Gustafsson, Kleinschmidt

and work in progress with Gourevitch and Sahi



Adelic Eisenstein series

split, simply-laced semisimple Lie group over G Q

Borel subgroupB = AN

quasi-character: � : B(A) ! C⇥

unique spherical standard section

f�(g) = f�(nak) = �(na) = �(a)

IndG(A)
B(A)� =

Y

p

Ind
G(Qp)
B(Qp)

�pinduced representation:

f� 2 IndG(A)
B(A)�

f� =
Y

f�p



Associated to this data we construct the Eisenstein series

g 2 G(A)E(f�, g) =
X

�2B(Q)\G(Q)

f�(�g)

Adelic Eisenstein series



Associated to this data we construct the Eisenstein series

g 2 G(A)E(f�, g) =
X

�2B(Q)\G(Q)

f�(�g)

It is also convenient to represent this in the following form:

E(�, g) =
X

�2B(Q)\G(Q)

eh�+⇢|H(�g)i
� 2 h? ⌦ C

It converges absolutely in the Godement range of     . �

Adelic Eisenstein series



Associated to this data we construct the Eisenstein series

g 2 G(A)E(f�, g) =
X

�2B(Q)\G(Q)

f�(�g)

For a unitary character  : N(Q)\N(A) ! U(1)

we have the Whittaker-Fourier coefficient

W (f�, g) =

Z

N(Q)\N(A)
E(f�, ng) (n)dn

Adelic Eisenstein series



It is well-known that this is Eulerian:

W (f�, g) = W1(f�1 , g1)⇥
Y

p<1
Wp(f�p , gp)

g1 2 G(R), gp 2 G(Qp)with and

[Langlands]



W (f�, g) = W1(f�1 , g1)⇥
Y

p<1
Wp(f�p , gp)

W1(f�1 , g1) =

Z

N(R)
f�1(ng1) 1(n)dn

Wp(f�p , gp) =

Z

N(Qp)
f�p(ngp) p(n)dn

can be computed 
using the 

CS-formula

[Langlands]

g1 2 G(R), gp 2 G(Qp)with and

It is well-known that this is Eulerian:



More general Fourier coefficients

P = LU standard parabolic of G



More general Fourier coefficients

P = LU standard parabolic of G

unitary character  U : U(Q)\U(A) ! U(1)



More general Fourier coefficients

P = LU standard parabolic of G

unitary character  U : U(Q)\U(A) ! U(1)

We then have the      -Fourier coefficient: U

much less is known in general in this case…

F U (f�, g) =

Z

U(Q)\U(A)
E(f�, ug) U (u)du



It is sufficient to determine the coefficient for one 
representative in each Levi orbit of 

Each Levi orbit is contained in some complex nilpotent      -orbitG

 U

F U (f�, g) =

Z

U(Q)\U(A)
E(f�, ug) U (u)du

It is fruitful to restrict to small automorphic representations.

These are not Eulerian in general, no CS-formula…



Decompactification limit

- perturbative parameter: radius of decompactified circle

- non-perturbative effects: KK-instantons, BPS-instantons

String perturbation limit
- perturbative parameter: string coupling

- non-perturbative effects: D-instantons, NS5-instantons

M-theory limit
- perturbative parameter: volume of M-theory torus
- non-perturbative effects: M2- & M5-instantons

String theory limits - choices of unipotent subgroups



3. Minimal representations  
of exceptional groups



Minimal automorphic representations

Definition:  An automorphic representation 

⇡ =
O
p1

⇡p

is minimal if each factor       has smallest non-trivial ⇡p

Gelfand-Kirillov dimension.

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin].…



Minimal automorphic representations

Definition:  An automorphic representation 

⇡ =
O
p1

⇡p

is minimal if each factor       has smallest non-trivial ⇡p

Gelfand-Kirillov dimension.

[Ginzburg, Rallis, Soudry]

' 2 ⇡minAutomorphic forms                 are characterised by having

very few non-vanishing Fourier coefficients.

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin].…



Now consider the case when                 is a maximal parabolicP = LU

This implies that      only contains a single simple root U ↵

Now choose a representative in the Levi orbit which is only 

sensitive to this simple root:

 U =  
��
U
=  ↵

This is non-trivial only on the simple root space        N↵

Maximal parabolic subgroups



Theorem [Miller-Sahi]: Let      be a split group of type       orG E6 E7

Then any Fourier coefficient of                  of       is completely  ' 2 ⇡min G

determined by the maximally degenerate Whittaker coefficients

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn



Theorem [Miller-Sahi]: Let      be a split group of type       orG E6 E7

Then any Fourier coefficient of                  of       is completely  ' 2 ⇡min G

determined by the maximally degenerate Whittaker coefficients

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

Can one use this to calculate 

F U (', g) =

Z

U(Q)\U(A)
E(', ug) U (u)du

in terms of            ?W ↵



What is the relation between the degenerate Whittaker coefficient: 

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

and the      -coefficient:U

F U (', g) =

Z

U(Q)\U(A)
E(', ug) U (u)du ?



W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

U

F U (', g) =

Z

U(Q)\U(A)
E(', ug) U (u)du ?

A priori they live on different spaces!

W ↵(nak) =  ↵(n)W ↵(a)

and the      -coefficient:

What is the relation between the degenerate Whittaker coefficient: 

F U (ulk) =  U (u)F U (l)



W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

U

F U (', g) =

Z

U(Q)\U(A)
E(', ug) U (u)du ?

Conjecture [Gustafsson, Kleinschmidt, D.P.]:

' 2 ⇡minFor                  these two functions are equal. 

and the      -coefficient:

Proof: In progress with [Gourevitch, Gustafsson, Kleinschmidt, D.P., Sahi]

What is the relation between the degenerate Whittaker coefficient: 



G = SL(3,A)Example: Let

F Um,n
(', g) = W n

 
',

✓
�1 0
0 0 �1
0 �1 m/n

◆
g

!

 ↵(x) =  ↵(e
2⇡i(uE↵+vE�)) = e

2⇡inu
, n 2 Q, u 2 A

In this case we find the following equality

[Gustafsson, Kleinschmidt, D.P.]

so the functions are equal up to a Levi translate of the argument!



Functional dimension of minimal representations:

Exceptional groups



Automorphic realization

Consider the Borel-Eisenstein series on G(A)

E(�, g) =
X

�2B(Q)\G(Q)

eh�+⇢|H(�g)i

� = 2s⇤1 � ⇢

Now fix the weight to

where       is the fundamental weight associated to node    .⇤1 1



Theorem [Ginzburg,Rallis,Soudry][Green,Miller,Vanhove]

For                            the Eisenstein series                   E(2s⇤� ⇢, g)G = E6, E7, E8

evaluated at                 is attached to the representation  s = 3/2 ⇡min

with wavefront set                                .WF (⇡min) = Omin

This theorem yields an explicit automorphic realisation of the 
minimal representation. 

Our aim is to use this to calculate Fourier coefficients 

associated with maximal parabolic subgroups.



Example: 

Consider the 3-grading of the Lie algebra 

The space             is the Lie algebra of a maximal g0 � g1

parabolic               with 27-dim unipotent  P = LU U

and Levi L = E6 ⇥GL(1)

G = E7



The degenerate Whittaker vector associated with        is given by: ↵1
[Fleig, Kleinschmidt, D.P.]

W k(3/2, a) = |k|3/2��3(k)K3/2(2⇡|k|a)

where                       and 

�s(k) =
X

d|k

ds

a 2 A ⇢ E7



W k(3/2, a) = |k|3/2��3(k)K3/2(2⇡|k|a)

The degenerate Whittaker vector associated with        is given by: ↵1
[Fleig, Kleinschmidt, D.P.]

where                       and 

�s(k) =
X

d|k

ds

a 2 A ⇢ E7

We now want to relate this to the      - Fourier coefficient 

F U (3/2, g) =

Z

U(Q)\U(A)
E(3/2, ug) U (u)du

U

This captures instantons in the decompactification limit of string theory! 



Conjecture:

F U (3/2;h, r) = |k|3/2��3(k)K3/2(2⇡r|k|⇥ ||h�1
~x||)

where                                 and h 2 E6, r 2 GL(1)
~x 2 Z27

[Pioline][Gustafsson, Kleinschmidt, D.P.][Bossard, Verschinin]



F U (3/2;h, r) = |k|3/2��3(k)K3/2(2⇡r|k|⇥ ||h�1
~x||)

where                                 and h 2 E6, r 2 GL(1)
~x 2 Z27

Proof: To appear by [Gustafsson, Gourevitch, Kleinschmidt, D.P., Sahi]

This gives the complete abelian Fourier expansion of the 
minimal representation

Physically the vector     corresponds to the instanton charges of 
~x

the 27 vector fields in D=5. 

Conjecture: [Pioline][Gustafsson, Kleinschmidt, D.P.][Bossard, Verschinin]



4. Next-to-minimal representations



Properties of ⇡ntm

No multiplicity one theorem known for            .⇡ntm



Properties of ⇡ntm

Theorem [Green, Miller, Vanhove]:  Let G = E6, E7, E8

The Eisenstein series 

evaluated at                is a spherical vector in            .⇡ntms = 5/2

E(s, g) =
X

�2B(Q)\G(Q)

eh2s⇤1|H(�g)i

No multiplicity one theorem known for            .⇡ntm



Whittaker coefficients attached to ⇡ntm

Theorem [Fleig, Kleinschmidt, D.P.]:

E(5/2, g)The abelian term of the Fourier expansion of                  is given by  

X

 :N(Q)\N(A)!U(1)
 6=1

W (5/2, na) =
X

↵2⇧

X

 ↵

c↵(a)W ↵(5/2, na)

+
X

↵,�2⇧
[E↵,E� ]=0

X

 ↵,�

c↵,�(a)W ↵,� (5/2, na)



Whittaker coefficients attached to ⇡ntm

Theorem [Fleig, Kleinschmidt, D.P.]:

E(5/2, g)The abelian term of the Fourier expansion of                  is given by  

X

 :N(Q)\N(A)!U(1)
 6=1

W (5/2, na) =
X

↵2⇧

X

 ↵

c↵(a)W ↵(5/2, na)

+
X

↵,�2⇧
[E↵,E� ]=0

X

 ↵,�

c↵,�(a)W ↵,� (5/2, na)

Bala-Carter type          (product of two K-Bessel functions) 2A1



Conjecture [Gustafsson, Kleinschmidt, D.P.]:

Let     be a semisimple, simply laced Lie group.G

Then all Fourier coefficients of                   are completely ' 2 ⇡ntm

determined by degenerate Whittaker vectors of the form

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

W ↵,� (', g) =

Z

N(Q)\N(A)
'(ng) ↵,�(n)dn

where             are commuting simple roots.(↵,�)

Proof. In progress with [Gustafsson, Gourevitch, Kleinschmidt, D.P., Sahi]



5. Outlook: Conjectures and open problems



Spherical vectors for Kac-Moody groups

Let                            .  The Eisenstein series G = E9, E10, E11 E(3/2, g)

has a partial Fourier expansion [Fleig, Kleinschmidt, D.P.]

E(3/2, g) = E0 +

X

↵2⇧

X

 ↵

c↵(a)W ↵(3/2, na) + “non-ab”

where                                                         .W ↵(3/2, na) =
Y

p1
Wp(3/2, na)



Conjecture: The minimal representation of                      exists, factorizes  

Wp(3/2, na)

⇡min = ⌦p⇡min,p

E9, E10, E11

satisfies a uniqueness property, and                       is (the abelian limit of)  
a spherical vector in             ⇡min,p

Spherical vectors for Kac-Moody groups

Let                            .  The Eisenstein series G = E9, E10, E11 E(3/2, g)

has a partial Fourier expansion [Fleig, Kleinschmidt, D.P.]

E(3/2, g) = E0 +

X

↵2⇧

X

 ↵

c↵(a)W ↵(3/2, na) + “non-ab”

where                                                         .W ↵(3/2, na) =
Y

p1
Wp(3/2, na)



String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case.



H3(X,R)/H3(X,Z) = C/Od

Od ⇢ Q(
p�d)

Intermediate Jacobian of       is an elliptic curve:

ring of integers: d > 0(            and square-free)

String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case.

However, consider the case of        a rigid CY3-fold.X (h2,1(X) = 0)

X



H3(X,R)/H3(X,Z) = C/Od

Od ⇢ Q(
p�d)

Intermediate Jacobian of       is an elliptic curve:

ring of integers: d > 0(            and square-free)

Conjecture: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

PU(2, 1;Od) := U(2, 1) \ PGL(3,Od)

String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case.

However, consider the case of        a rigid CY3-fold.X (h2,1(X) = 0)

X

String theory on       is invariant under the Picard modular groupX



E(�s, P, g) =
X

�2P (Od)\PU(2,1;Od)

�s(�g)

has Fourier coefficients

F U (s, g) =

Z

U(Od)\U
E(�s, P, ug) U (u)du

Theorem: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The Borel Eisenstein series



E(�s, P, g) =
X

�2P (Od)\PU(2,1;Od)

�s(�g)

has Fourier coefficients

where

F U (s, g) =

Z

U(Od)\U
E(�s, P, ug) U (u)du

Y

p<1
F U ,p(s, 1) =

= F U ,1(s, g)⇥
Y

p<1
F U ,p(s, 1)

Theorem: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The Borel Eisenstein series



This theory has a lattice of electric magnetic charges 

There are black hole states 
with charge � 2 �

� = H3(X,Z) ⇠= Z2



Question: can we count the number of states of charge     ? �



In general this is tricky since for multi-particle states, 
there is a continuum of possible masses...

Question: can we count the number of states of charge     ? �



BPS-states physical states ⇢

In general this is tricky since for multi-particle states, 
there is a continuum of possible masses...

But, there exists a discrete subsector which is stable!

Question: can we count the number of states of charge     ? �

“small” (non-generic) representations of the super-Poincaré algebra

(BPS = Bogomol'nyi–Prasad–Sommerfeld)

http://en.wikipedia.org/wiki/Bogomol%27nyi%E2%80%93Prasad%E2%80%93Sommerfield_bound


BPS-states physical states ⇢
BPS-index: ⌦(�) ⌘ number of BPS states of charge �

⌦ : �! Z

In general this is tricky since for multi-particle states, 
there is a continuum of possible masses...

But, there exists a discrete subsector which is stable!

Question: can we count the number of states of charge     ? �

Black hole entropy: S(�) = log ⌦(�)



Conjecture: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The counting of BPS-black holes in string theory on      with charges X

� 2 H3(X,Z) is given by the Fourier coefficient

⌦(�) =

for some value             .s = s0



Conjecture: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The counting of BPS-black holes in string theory on      with charges X

� 2 H3(X,Z) is given by the Fourier coefficient

⌦(�) =

for some value             .

Conjecture: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

s = s0

The function          counts the number of special Lagrangian submanifolds ⌦(�)

of        in the homology class                            .X [�] 2 H3(X,Z)



Quaternionic discrete series

For string theory on Calabi-Yau 3-folds with h1,1(X) = 1

we expect that the duality group is the exceptional Chevalley
G2(Z)group             .



Quaternionic discrete series

⌦(�) = 0 unless Q4(�) � 0

For string theory on Calabi-Yau 3-folds with h1,1(X) = 1

we expect that the duality group is the exceptional Chevalley
G2(Z)group             .

The counting of BPS-black holes should satisfy [Pioline][Gundydin, Neitzke, 
Pioline, Waldron][Pioline, D.P.]



Quaternionic discrete series

⌦(�) = 0 unless Q4(�) � 0

quartic invariant of the Levi 

SL(2,Z) ⇢ G2(Z)

For string theory on Calabi-Yau 3-folds with h1,1(X) = 1

we expect that the duality group is the exceptional Chevalley
G2(Z)group             .

The counting of BPS-black holes should satisfy [Pioline][Gundydin, Neitzke, 
Pioline, Waldron][Pioline, D.P.]



Quaternionic discrete series

The counting of BPS-black holes should satisfy

This is precisely the constraint satisfied by Fourier coefficients  
of automorphic forms attached to the quaternionic  
discrete series of           . G2(R) [Wallach][Gan, Gross, Savin]

[Pioline][Gundydin, Neitzke, 
Pioline, Waldron][Pioline, D.P.]

For string theory on Calabi-Yau 3-folds with h1,1(X) = 1

we expect that the duality group is the exceptional Chevalley
G2(Z)group             .

⌦(�) = 0 unless Q4(�) � 0



Quaternionic discrete series

The quaternionic discrete series can be realised as

⇡k = H1(Z,O(�k))

where      is the twistor space: Z

P1 ! Z ! G2(R)/SO(4)

[Gross, Wallach]

k � 2



Quaternionic discrete series

⇡k = H1(Z,O(�k))

where      is the twistor space: Z

P1 ! Z ! G2(R)/SO(4)

k � 2

Open problem: Can one construct explicit automorphic forms 
attached to        in terms of holomorphic functions on     ?⇡k Z

The quaternionic discrete series can be realised as [Gross, Wallach]



Consider string theory on torus T 6

Moduli space: M = E7(Z)\E7(R)/(SU(8)/Z2)

� ⇠= Z56 � Heven(T
6,Z)

This theory has a lattice of electric magnetic charges 

Black hole counting in string theory



This theory has a lattice of electric magnetic charges 

� ⇠= Z56 � Heven(T
6,Z)

It has black hole states 
with charge � 2 �

Consider string theory on torus T 6

Moduli space: M = E7(Z)\E7(R)/(SU(8)/Z2)

Black hole counting in string theory



From the BPS-index we can then obtain a microscopic  
derivation of the black hole entropy:

S(�) = log ⌦(�)



From the BPS-index we can then obtain a microscopic  
derivation of the black hole entropy:

S(�) = log ⌦(�)

For 1/2 BPS-states only charges in a 28-dimensional subspace

are realised. C ⇢ Z56



From the BPS-index we can then obtain a microscopic  
derivation of the black hole entropy:

S(�) = log ⌦(�)

For 1/2 BPS-states only charges in a 28-dimensional subspace

are realised. C ⇢ Z56

Constraint:                   if  ⌦(�) = 0 � /2 C

Symmetry:            must be             -invariant ⌦(�) E7(Z)



A generating function of these states takes the form

l 2 E7(R)where                     and (u1, . . . , u56) 2 R56 “chemical 
potentials”

Z(l, u) =
X

�=(x1,...,x56)2Z56

⌦(�)c
�

(l)e2⇡i(x1u1···x56u56)



l 2 E7(R)where                     and (u1, . . . , u56) 2 R56 “chemical 
potentials”

This is precisely the structure of the abelian Fourier  
coefficients of an automorphic form     on   

Z(l, u) =
X

�=(x1,...,x56)2Z56

⌦(�)c
�

(l)e2⇡i(x1u1···x56u56)

' E8

with respect to the Heisenberg unipotent radical Q ⇢ E8

X

 :Q(Q)\Q(A)!U(1)

F Q(', l) Q(u)

A generating function of these states takes the form



If we take                   so                                    then ' 2 ⇡min GKdim(⇡min) = 29

vanishes unless        lies in a 28-dimensional subspace of            . Q g1(Q)

F Q(', g) =

Z

Q(Q)\Q(A)
'(ug) Q(u)du =

Y

p1
F ,p(', g)

[Kazhdan, Polishchuk]



If we take                   so                                    then ' 2 ⇡min GKdim(⇡min) = 29

vanishes unless        lies in a 28-dimensional subspace of            . Q g1(Q)

F Q(', g) =

Z

Q(Q)\Q(A)
'(ug) Q(u)du =

Y

p1
F ,p(', g)

[Kazhdan, Polishchuk]

Conjecture:

The 1/2 BPS-states are counted by the p-adic spherical 
vectors in the minimal representation of       : 

⌦(�) =
Y

p<1
F Q,p(⇡min, 1)

E8

[Pioline][Gunaydin, Neitzke, Pioline,Waldron][Fleig, Gustafsson, Kleinschmidt, D.P.]



Is there a natural role for automorphic L-functions 
in BPS-state counting problems?

Final question: [Moore]


