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|. Prelude: Black holes


https://www.youtube.com/embed/fjSPJTo51lM?rel=0&amp;showinfo=0

Black holes are some of the most fascinating
objects in the universe

A black hole forms in the final stage of the
collapse of a sufficiently large star

Nothing may escape after crossing the black hole horizon


https://www.youtube.com/embed/fjSPJTo51lM?rel=0&amp;showinfo=0

Black holes are some of the most fascinating
objects in the universe

A black hole forms in the final stage of the
collapse of a sufficiently large star

At its centre space and time breaks down into a

Quantum effects should
Event Horizon the singularity

Singularity


https://www.youtube.com/embed/fjSPJTo51lM?rel=0&amp;showinfo=0

But black holes are !

Hawking radiation!

— Bekenstein-Hawking

4G]\[h formula



Black holes behave like a black body with entropy

Area, | |
S = Bekenstein-Hawking

4GNh formula

This Is an amazing equation!




Gravity

Statistical Physics =

Quantum Mechanics

This relates all three
oillars of theoretical physics!
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A quantum theory of gravity must be able to provide a
microscopic account for the black hole entropy
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A quantum theory of gravity must be able to provide a
microscopic account for the black hole entropy
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Enter number theory In physics

log 2(Q) = fég;




Enter number theory In physics

We package the microstates into a partition function:

Z(B) = Z o~ BEstates B—1/T

states
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In string theory the partition function is an automorphic form!



Enter number theory In physics

We package the microstates into a partition function:

Z(8) = Z o~ BEstates B—1/T

states

In string theory the partition function is an automorphic form!




Toroidal compactifications yield the famous chain of U-duality groups

[Cremmer, Julia][Hull, Townsend]

o

i D G K G(z)

i 10 SL(2,R) S0(2) SL(2,7)

) SL(2,R) x R* SO(2) SL(2,7)

; 8 | SL(3,R) x SL(2, R) SO(3) x SO(2) SL(3,Z) x SL(2,Z)
7 SL(5,R) SO(5) SL(5,Z)

o O 6 Spin(5, 5, R) (Spin(5) x Spin(5))/Z, Spin(5, 5, Z)

® 5 Eg(R) USp(8)/Zs E¢(Z)
4 E7(R) SU(8)/Z E+(Z)

® 3 Es(R) Spin(16)/Z Es(Z)

Partition functions are given by automorphic forms on
G(Z)\GR)/K

Green, Gutperle, Sethi,Vanhove, Kiritsis, Pioline, Obers, Kazhdan,Waldron, Basu, Russo,
Cederwall, Bao, Nilsson, D.P, Lambert, West, Gubay, Miller, Fleig, Kleinschmidet,...



What is known?

Certain partition functions are Eisenstein series attached to small
automorphic representations of G .
[Green, Miller,Vanhove][Pioline]

minimal automorphic next-to-minimal automorphic
representation representation
Tmin Tntm

Fourier coefficients of these functions reveal perturbative and
non-perturbative quantum effects. Very hard to compute!



2. Fourier coefficients of Eisenstein series



Mainly based on our recent papers:
[1511.04265] w/ Fleig, Gustafsson, Kleinschmidt

[1412.5625] w/ Gustafsson, Kleinschmidt
[1312.3643] w/ Fleig, Kleinschmidt
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Adelic Eisenstein series
» (G split, simply-laced semisimple Lie group over Q
» B = AN Borel subgroup

} quasi-character: X : B(A) — C~*

» induced representation: Indggﬁi;x = Hlﬂdgggi %xp
p

} Iy € Indggﬁ%x unique spherical standard section

fx(9) = fi(nak) = x(na) = x(a)



Adelic Eisenstein series

Associated to this data we construct the Eisenstein series

E(fx,9) = Z Ix(vg) g € G(A)
7€B(Q\G(Q)



Adelic Eisenstein series

Associated to this data we construct the Eisenstein series

E(fx,9) = Z Ix(vg) g € G(A)
7€B(Q\G(Q)

It is also convenient to represent this in the following form:

E(\, g) = Z o AP H (7g)) Aeh* @C
Y€B(Q\G(Q)

It converges absolutely in the Godement range of .



Adelic Eisenstein series

Associated to this data we construct the Eisenstein series

E(fx,9) = Z Ix(vg) g € G(A)
7€B(Q\G(Q)

For a unitary character ¥ : N(Q)\N(A) — U(1)

we have the Whittaker-Fourier coefficient

Wolfy,g) = / E(fy,ng)d(n)dn
N(Q)\N(A)



It is well-known that this is Eulerian: [Langlands]

Wi (frr9) = Woo(Frwer 9o0) X T Wo(Fxyp» 9p)

p<oo

with 9~ € G(R), g, € G(Qp) and



It is well-known that this is Eulerian: [Langlands]

Wi (frr9) = Woo(Frwer 9o0) X T Wo(Fxyp» 9p)

p<oo

with 9~ € G(R), g, € G(Qp) and

Woo(fxooagoo) — /N(IR{) ono (ngoo)woo(n)dn

can be computed

Wp(fxp 7 gp) — / pr (ngp)% (n)dn using the
N(Qp) CS-formula




More general Fourier coefficients

p P = LU standard parabolic of GG



More general Fourier coefficients

p P = LU standard parabolic of GG

P unitary character vy : U(Q)\U(A) — U(1)



More general Fourier coefficients

p P = LU standard parabolic of GG
P unitary character ¥y : U(Q)\U(A) — U(1)

D We then have the [J -Fourier coefficient:

FwU(fXMQ) — / E(fX7ug)wU(u)du
U(Q)\U(A)

much less is known in general in this case...



F¢U(fX7g) :/ E(fX7ug)¢U(u)du
U(@\U(A)

® These are not Eulerian in general, no CS-formula...

® It is sufficient to determine the coefficient for one
representative in each Levi orbit of Yu

@® Each Levi orbit is contained in some complex nilpotent (5 -orbit

® It is fruitful to restrict to small automorphic representations.



String theory limits - choices of unipotent subgroups

- Decompactification limit

- perturbative parameter: radius of decompactified circle

- non-perturbative effects: KK-instantons, BPS-instantons

=P String perturbation limit

- perturbative parameter: string coupling

- non-perturbative effects: D-instantons, NS5-instantons

= M-theory limit

- perturbative parameter: volume of M-theory torus
- non-perturbative effects: M2- & Mb5-instantons



3. Minimal representations
of exceptional groups



Minimal automorphic representations

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]....



Minimal automorphic representations

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]....

Automorphic forms ¥ € Tmin are characterised by having

very few non-vanishing Fourier coefficients. [Ginzburg, Rallis, Soudry]



Maximal parabolic subgroups

Now consider the case when P = LU is a maximal parabolic

This implies that U only contains a single simple root &

Now choose a representative in the Levi orbit which is only

sensitive to this simple root:

wU:MUZMX

This is non-trivial only on the simple root space NV,



Theorem [Miller-Sahi]: Let G be a split group of type Es or Er
Then any Fourier coefficient of ¥ € Tmin of GG is completely

determined by the maximally degenerate Whittaker coefficients

Wy, (©,9) = / p(ng)e(n)dn
N(Q)\N(A)



Theorem [Miller-Sahi]: Let G be a split group of type Es or Er
Then any Fourier coefficient of ¥ € Tmin of GG is completely

determined by the maximally degenerate Whittaker coefficients

Wy, (©,9) = / p(ng)e(n)dn
N(Q)\N(A)

Can one use this to calculate

Fyu(p,9) = / E(p,ug)yy(u)du
U(Q)\U(A)

in terms of W% ?



What is the relation between the degenerate Whittaker coefficient:

W (019) = / o(ng)dan)dn
N(Q)\N(A)

and the U -coefficient;

Fyu (@, 9) = / E(p,ug)dy(u)du ?
U(Q)\U(A)



What is the relation between the degenerate Whittaker coefficient:

Wyalp,g) = / p(ng)Ya(n)dn

N(@Q)\N(A)

and the U -coefficient;

Fyu (@, 9) = / E(p,ug)dy(u)du ?
U(Q)\U(A)

A priori they live on different spaces!

Wy, (nak) = Yo (n)Wy, (a)  Fy,(ulk) = Yy (u)Fy,, (1)



What is the relation between the degenerate Whittaker coefficient:

W (019) = / o(ng)dan)dn
N(Q)\N(A)

and the U -coefficient;

Fyu (@, 9) = / E(p,ug)dy(u)du ?
U(Q)\U(A)

Conjecture [Gustafsson, Kleinschmidt, D.P]:

For ¥ € Tmin these two functions are equal.

Proof: In progress with [Gourevitch, Gustafsson, Kleinschmidt, D.P, Sahi]



Examp|e: Let GG = SL(S, A) [Gustafsson, Kleinschmidt, D.P]

wa(x) _ wa(GQWi(UEa—H)EB)) _ 627‘(‘7;71’&’ n @, uc A

U:{(“‘f"f) :u,,;EA}

In this case we find the following equality

—1 0
Fyy,, . (9, 9) = Wy, (% ( 0 —1 m/1n> g)

so the functions are equal up to a Levi translate of the argument!



Exceptional groups

Functional dimension of minimal representations:

11, Eg
GKdim TTmin — 17, E7
29, Eg



Automorphic realization

Consider the Borel-Eisenstein series on G (A)

E(\ g) = Z o AP H(vg))
v€B(Q\G(Q)

Now fix the weight to

)\ZQSAl—IO

where A is the fundamental weight associated to node 1.



This theorem yields an explicit automorphic realisation of the
minimal representation.

Our aim is to use this to calculate Fourier coefficients

associated with maximal parabolic subgroups.



Example: G = F-

2I
o—0 o—0 O
1 3 4 5 6 T

Consider the 3-grading of the Lie algebra
e7 = g-19000g1 = 27D (e D1) D27

The space 90 @ 91 is the Lie algebra of a maximal
parabolic P = LU with 27-dim unipotent U
and Levi L = Eg x GL(1)



The degenerate Whittaker vector associated with X1 is given by:
[Fleig, Kleinschmidt, D.P]

Wy (3/2,a) = |k[*2a_3(k) K39 (27| k|a)

where a € A C E~» and

os(k) =) d°
d|k



The degenerate Whittaker vector associated with X1 is given by:
[Fleig, Kleinschmidt, D.P]

Wy, (3/2,a) = |k[*?0_3(k) K3 /2(27|k|a)
where a € A C E~» and

os(k) =) d°
d|k

We now want to relate this to the [/ - Fourier coefficient

Fy (3/2,9) = / E(3/2, ug) by (u)du
U@Q)\U(A)

This captures instantons in the decompactification limit of string theory!



Conjecture: [Pioline][Gustafsson, Kleinschmidt, D.P][Bossard,Verschinin]

qu (3/2; h,?“) — |k|3/20—3(k)K3/2(27TT‘k‘ X Hh_lfH)

where h € Eg, r € GL(1) and 2 € Z°'



Conjecture: [Pioline][Gustafsson, Kleinschmidt, D.P][Bossard,Verschinin]

qu (3/2; h,?“) — |k|3/20—3(k)K3/2(27TT‘k‘ X Hh_lfH)
where h € Eg, r € GL(1) and 2 € Z°'

Proof: To appear by [Gustafsson, Gourevitch, Kleinschmidt, D.P, Sahi]

This gives the complete abelian Fourier expansion of the
minimal representation

Physically the vector £ corresponds to the instanton charges of
the 27 vector fields in D=5.



4. Next-to-minimal representations



Properties of Tntm

No multiplicity one theorem known for Tpntm, .



Properties of Tntm

No multiplicity one theorem known for Tntm, .

Theorem [Green, Miller,Vanhove]: Let G = Eg, 7, E
The Eisenstein series

E(s,g) = Z o(25A1H (v9))
YEB(Q\G(Q)

evaluated at s = 5/2 is a spherical vector in Tntm.



Whittaker coefficients attached to ™ntm




Whittaker coefficients attached to ™ntm

Bala-Carter type 2.A7 (product of two K-Bessel functions)




Conjecture [Gustafsson, Kleinschmidt, D.P.]:
Let G be a semisimple, simply laced Lie group.
Then all Fourier coefficients of ¥ € Tntm are completely

determined by degenerate Whittaker vectors of the form

Wy, (©,9) = / p(ng)ha(n)dn
N(Q)\N(A)

W . (prg) = / o(ng) P (0)dn
N(Q)\N(A)

where (., 3) are commuting simple roots.

Proof. In progress with [Gustafsson, Gourevitch, Kleinschmidt, D.P., Sahi]



5. Outlook: Conjectures and open problems



Spherical vectors for Kac-Moody groups

Let G = Ey, F10, E11. The Eisenstein series F(3/2, g)

has a partial Fourier expansion [Fleig, Kleinschmidt, D.P]

E(3/2,9) = Eg + L LCO‘ (3/2,na) + “non-ab”
acll P,

where Wy, (3/2,na) = H W,(3/2,na) .

p< oo



Spherical vectors for Kac-Moody groups

Let G = Fg, F1¢, E11. The Eisenstein series F(3/2, g)
has a partial Fourier expansion [Fleig, Kleinschmidt, D.P]

E(3/2,9) = Ey + L L ca(a)Wy (3/2,na) + “non-ab”

acll Pq

where Wy, (3/2,na) = H W,(3/2,na) .

p< oo




String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case.



String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case.

However, consider the case of X a rigid CY3-fold. (h2,1(X) = 0)

Intermediate Jacobian of X is an elliptic curve:
H3(X,R)/H*(X,Z) = C/O,

ring of integers: Og C Q(v'—d) (d > 0 and square-free)



String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case.

However, consider the case of X a rigid CY3-fold. (h2,1(X) = 0)

Intermediate Jacobian of X is an elliptic curve:
(X, R)/H(X,Z) = C/O,
ring of integers: Og C Q(v'—d) (d > 0 and square-free)

Conjecture: [Bao, Kleinschmidt, Nilsson, D.P, Pioline]

String theory on X is invariant under the Picard modular group

PU(2,1;04) :=U(2,1) N PGL(3,0y4)



Theorem: [Bao, Kleinschmidt, Nilsson, D.P, Pioline]

The Borel Eisenstein series

E(xs, P,g) = > Xs(79)
~yeP(Og)\PU(2,1;04)

has Fourier coefficients

Fy, (s,9) = / E(xs, P,ug)vu(u)du
U(Og)\U



Theorem: [Bao, Kleinschmidt, Nilsson, D.P, Pioline]

The Borel Eisenstein series

E(xs, P,g) = > Xs(79)
~yeP(Og)\PU(2,1;04)

has Fourier coefficients

Fy, (s,9) = / E(xs, P,ug)vu(u)du
U(Og)\U

— FwU,OO(Svg) X H F¢U,p(871)

pP< OO
where
ry 28—2 4—43
[[ Fovnlss =" > |27 > I
p<OO weOy z€0y

v/weO v/ (zw)€EOY



This theory has a lattice of electric magnetic charges

= H3(X,Z) =77

There are black hole states
with charge ~ ¢ T’




Question: can we count the number of states of charge 7 ?



Question: can we count the number of states of charge 7 ?

In general this is tricky since for multi-particle states,
there is a continuum of possible masses...



Question: can we count the number of states of charge 7 ?

In general this is tricky since for multi-particle states,
there is a continuum of possible masses...

But, there exists a discrete subsector which is stable!

BPS-states (_  physical states

“small” (non-generic) representations of the super-Poincare algebra

(BPS = Bogomol'nyi—Prasad—Sommerfeld)


http://en.wikipedia.org/wiki/Bogomol%27nyi%E2%80%93Prasad%E2%80%93Sommerfield_bound

Question: can we count the number of states of charge 7 ?

In general this is tricky since for multi-particle states,
there is a continuum of possible masses...

But, there exists a discrete subsector which is stable!

BPS-states (_  physical states

BPS-index: €2(y) = number of BPS states of charge 7Y
Q1= Z

Black hole entropy: S(’Y) = log Q(’Y)



Conjecture: [Bao, Kleinschmidt, Nilsson, D.P, Pioline]

The counting of BPS-black holes in string theory on X with charges
v € H3(X,7Z) is given by the Fourier coefficient

o - X [T X e
(,y)_ weOy W z€0y
v/ we0} v/ (3w)€0

|
v
&

for some value S =



Conjecture: [Bao, Kleinschmidt, Nilsson, D.P, Pioline]

The counting of BPS-black holes in string theory on X with charges
v € H3(X,7Z) is given by the Fourier coefficient

om- X [T X ke
(,y)_ weOy w z€0y
v/wéoz ’Y/(zw)éo:'i

for some value S = So.

Conjecture: [Bao, Kleinschmidt, Nilsson, D.P, Pioline]

The function $2(7y) counts the number of special Lagrangian submanifolds
of X in the homology class | € H3(X,Z) .



Quaternionic discrete series

For string theory on Calabi-Yau 3-folds with 71,1 (X) =1

we expect that the duality group is the exceptional Chevalley
group G5(Z) .



Quaternionic discrete series

For string theory on Calabi-Yau 3-folds with 71,1 (X) =1

we expect that the duality group is the exceptional Chevalley
group G5(Z) .

The counting of BPS-black holes should satisfy PEE;ﬂ;“wﬁd“rgiﬁ?;?;ﬁ‘nitﬁﬁ]

Q(y) =0 unless Qa(y) >0



Quaternionic discrete series

For string theory on Calabi-Yau 3-folds with 71,1 (X) =1

we expect that the duality group is the exceptional Chevalley
group G5(Z) .

The counting of BPS-black holes should satisfy . "Gy im0 o 0%

Q(y) =0 unless Qa(y) >0

y

quartic invariant of the Levi

SL(Q, Z) C G (Z)



Quaternionic discrete series

For string theory on Calabi-Yau 3-folds with 71,1 (X) =1

we expect that the duality group is the exceptional Chevalley
group G5(Z) .

. . Pioline][Gundydin, Neitzke,
The counting of BPS-black holes should satisfy PEO:;;nwaldur';n)i[F',?O“n(:tg;]

Q(y) =0 unless Qa(y) >0

This is precisely the constraint satisfied by Fourier coefficients
of automorphic forms attached to the quaternionic
discrete series of G5 (IR). [Wallach][Gan, Gross, Savin]



Quaternionic discrete series

The quaternionic discrete series can be realised as [Gross,Wallach]

™, = H' (Z,0(—k)) k> 2

where Z is the twistor space:

P! — Z — G2(R)/SO(4)



Quaternionic discrete series

The quaternionic discrete series can be realised as [Gross,Wallach]

™, = H' (Z,0(—k)) k> 2

where Z is the twistor space:

P! — Z — G2(R)/SO(4)

Open problem: Can one construct explicit automorphic forms
attached to 7Tk in terms of holomorphic functions on Z !



Black hole counting in string theory

Consider string theory on torus 7°
Moduli space: M = E7(Z)\E7(R)/(SU(8)/Z2)

This theory has a lattice of electric magnetic charges

' 22 7°° D Hepen(T°, 7)



Black hole counting in string theory

Consider string theory on torus 7°
Moduli space: M = E7(Z)\E7(R)/(SU(8)/Z2)

This theory has a lattice of electric magnetic charges

' 22 7°° D Hepen(T°, 7)

It has black hole states
with charge ~ T




From the BPS-index we can then obtain a microscopic
derivation of the black hole entropy:

S(v) = log ()



From the BPS-index we can then obtain a microscopic
derivation of the black hole entropy:

S(v) = log ()

For |1/2 BPS-states only charges in a 28-dimensional subspace

C C 7° are realised.



From the BPS-index we can then obtain a microscopic
derivation of the black hole entropy:

S(v) = log ()

For |1/2 BPS-states only charges in a 28-dimensional subspace

C C 7° are realised.

Constraint: Q(v) =0 if v ¢&C

Symmetry: €2(7) must be E7(Z)-invariant




A generating function of these states takes the form

A l,u — () Y)C [ 62"i(‘”1“1"'$56U56)
B
’)’—_(331,...,$56)EZ56
“chemical

56
where [ € E7(R) and (u1,...,us6) € R botentials”



A generating function of these states takes the form

Zlw)= Y Qe (e )
y=(x1,...,x56) EL°°

56  chemical

where [ € E7(R) and (u1,...,us6) € R Jotentials”

This is precisely the structure of the abelian Fourier
coefficients of an automorphic form ¢ on L3

with respect to the Heisenberg unipotent radical () C Ex

Z FQPQ (¢, ZWQ(U)

P:QQN\Q(A)=U(1)



If we take © € Tmin so GKdim(7,in) = 29 then

o (95 9) /Q oo o(ug)qu)du = [ Fyp(e.9)

p< oo

vanishes unless ¥¢ lies in a 28-dimensional subspace of g1(Q).
[Kazhdan, Polishchuk]



If we take © € Tmin so GKdim(7,in) = 29 then

o (95 9) /Q oo o(ug)qu)du = [ Fyp(e.9)

p< oo

vanishes unless ¥¢ lies in a 28-dimensional subspace of g1(Q).
[Kazhdan, Polishchuk]

Conjecture:

The |/2 BPS-states are counted by the p-adic spherical
vectors in the minimal representation of E3 :

Q(,Y) — H FwQ,p(ﬂ-mina 1)

pP< OO
[Pioline][Gunaydin, Neitzke, Pioline,Waldron][Fleig, Gustafsson, Kleinschmidt, D.P]



Final question: [Moore]

Is there a natural role for automorphic L-functions
in BPS-state counting problems?




