Automorphic representations, Whittaker functions and black holes

Daniel Persson Chalmers University of Technology

> "Whittaker Functions: Number Theory, Geometry and Physics" Banff International Research Station July 27, 2016

Outline

- I. Prelude: Black holes
- 2. Fourier coefficients of Eisenstein series
- 3. Minimal representations of exceptional groups
- 4. Next-to-minimal representations
- 5. Outlook: Conjectures and open problems

I. Prelude: Black holes

Black holes are some of the most fascinating objects in the universe

A black hole forms in the final stage of the collapse of a sufficiently large star

Nothing may escape after crossing the black hole horizon

Black holes are some of the most fascinating objects in the universe

A black hole forms in the final stage of the collapse of a sufficiently large star

At its centre space and time breaks down into a singularity

Quantum effects should resolve the singularity

But black holes are not black!

Hawking radiation!

Black holes behave like a black body with entropy

$$S = \frac{\text{Area}}{4G_N\hbar}$$

Bekenstein-Hawking formula

Black holes behave like a black body with entropy

$$S = \frac{\text{Area}}{4G_N\hbar}$$

Bekenstein-Hawking formula

This is an amazing equation!

Statistical Physics =
$$\frac{\text{Gravity}}{\text{Quantum Mechanics}}$$

Statistical Physics =

Gravity Quantum Mechanics

This relates all three pillars of theoretical physics!

A quantum theory of gravity must be able to provide a microscopic account for the black hole entropy

$S = \log(\sharp \text{microstates})$

A quantum theory of gravity must be able to provide a microscopic account for the black hole entropy

$S = \log (\ddagger \text{microstates})$

 $= \log \Omega(Q)$

Q = electromagnetic charge

$$\log \,\Omega(Q) = \frac{A(Q)}{4G_N\hbar}$$

 $\beta = 1/T$

We package the microstates into a **partition function**:

$$Z(\beta) = \sum_{\text{states}} e^{-\beta E_{\text{states}}}$$

We package the microstates into a **partition function**:

$$Z(\beta) = \sum_{\text{states}} e^{-\beta E_{\text{states}}}$$

In string theory the partition function is an **automorphic form!**

 $\beta = 1/T$

We package the microstates into a **partition function**:

$$Z(\beta) = \sum_{\text{states}} e^{-\beta E_{\text{states}}}$$

 $\beta = 1/T$

Finding the black hole microstate degeneracies corresponds to calculating **Fourier coefficients** of automorphic forms

Toroidal compactifications yield the famous chain of U-duality groups

[Cremmer, Julia][Hull, Townsend]

D	G	K	$G(\mathbb{Z})$
10	$\mathrm{SL}(2,\mathbb{R})$	SO(2)	$\mathrm{SL}(2,\mathbb{Z})$
9	$\mathrm{SL}(2,\mathbb{R})\times\mathbb{R}^+$	SO(2)	$\mathrm{SL}(2,\mathbb{Z})$
8	$\mathrm{SL}(3,\mathbb{R}) imes\mathrm{SL}(2,\mathbb{R})$	$\mathrm{SO}(3) imes\mathrm{SO}(2)$	$\mathrm{SL}(3,\mathbb{Z}) imes\mathrm{SL}(2,\mathbb{Z})$
7	$\mathrm{SL}(5,\mathbb{R})$	SO(5)	$\mathrm{SL}(5,\mathbb{Z})$
6	$\mathrm{Spin}(5,5,\mathbb{R})$	$(\operatorname{Spin}(5) \times \operatorname{Spin}(5))/\mathbb{Z}_2$	${ m Spin}(5,5,\mathbb{Z})$
5	$\mathrm{E}_6(\mathbb{R})$	$\mathrm{USp}(8)/\mathbb{Z}_2$	$\mathrm{E}_6(\mathbb{Z})$
4	$\mathrm{E}_7(\mathbb{R})$	$\mathrm{SU}(8)/\mathbb{Z}_2$	$\mathrm{E}_7(\mathbb{Z})$
3	$\mathrm{E}_8(\mathbb{R})$	$\operatorname{Spin}(16)/\mathbb{Z}_2$	$\mathrm{E}_8(\mathbb{Z})$

Partition functions are given by automorphic forms on $G(\mathbb{Z})\backslash G(\mathbb{R})/K$

Green, Gutperle, Sethi, Vanhove, Kiritsis, Pioline, Obers, Kazhdan, Waldron, Basu, Russo, Cederwall, Bao, Nilsson, D.P., Lambert, West, Gubay, Miller, Fleig, Kleinschmidt,...

What is known?

Certain partition functions are Eisenstein series attached to small automorphic representations of G.

[Green, Miller, Vanhove][Pioline]

minimal automorphic representation			
π_{min}			

Fourier coefficients of these functions reveal perturbative and non-perturbative quantum effects. Very hard to compute!

2. Fourier coefficients of Eisenstein series

Mainly based on our recent papers: [1511.04265] w/ Fleig, Gustafsson, Kleinschmidt [1412.5625] w/ Gustafsson, Kleinschmidt [1312.3643] w/ Fleig, Kleinschmidt

and work in progress with Gourevitch and Sahi

\blacktriangleright G split, simply-laced semisimple Lie group over \mathbb{Q}

B = AN Borel subgroup

quasi-character: $\chi : B(\mathbb{A}) \to \mathbb{C}^{\times}$

induced representation: $\operatorname{Ind}_{B(\mathbb{A})}^{G(\mathbb{A})}\chi = \prod_{p} \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{G(\mathbb{Q}_{p})}\chi_{p}$

 $f_{\chi} \in \operatorname{Ind}_{B(\mathbb{A})}^{G(\mathbb{A})} \chi \quad \text{unique spherical standard section}$ $f_{\chi}(g) = f_{\chi}(nak) = \chi(na) = \chi(a)$ $f_{\chi} = \prod f_{\chi_p}$

Associated to this data we construct the **Eisenstein series**

$$E(f_{\chi},g) = \sum_{\gamma \in B(\mathbb{Q}) \setminus G(\mathbb{Q})} f_{\chi}(\gamma g) \qquad g \in G(\mathbb{A})$$

Associated to this data we construct the **Eisenstein series**

$$E(f_{\chi},g) = \sum_{\gamma \in B(\mathbb{Q}) \setminus G(\mathbb{Q})} f_{\chi}(\gamma g) \qquad g \in G(\mathbb{A})$$

It is also convenient to represent this in the following form:

$$E(\lambda,g) = \sum_{\gamma \in B(\mathbb{Q}) \setminus G(\mathbb{Q})} e^{\langle \lambda + \rho | H(\gamma g) \rangle} \qquad \lambda \in \mathfrak{h}^* \otimes \mathbb{C}$$

It converges absolutely in the Godement range of λ .

Associated to this data we construct the **Eisenstein series**

$$E(f_{\chi},g) = \sum_{\gamma \in B(\mathbb{Q}) \setminus G(\mathbb{Q})} f_{\chi}(\gamma g) \qquad g \in G(\mathbb{A})$$

For a unitary character $\psi: N(\mathbb{Q}) \setminus N(\mathbb{A}) \to U(1)$ we have the Whittaker-Fourier coefficient

$$W_{\psi}(f_{\chi},g) = \int_{N(\mathbb{Q})\setminus N(\mathbb{A})} E(f_{\chi},ng)\overline{\psi(n)}dn$$

It is well-known that this is Eulerian: [Langlands]

$$W_{\psi}(f_{\chi},g) = W_{\infty}(f_{\chi_{\infty}},g_{\infty}) \times \prod_{p < \infty} W_p(f_{\chi_p},g_p)$$

with $g_{\infty} \in G(\mathbb{R}), g_p \in G(\mathbb{Q}_p)$ and

It is well-known that this is Eulerian: [Langlands]

$$W_{\psi}(f_{\chi},g) = W_{\infty}(f_{\chi_{\infty}},g_{\infty}) \times \prod_{p < \infty} W_p(f_{\chi_p},g_p)$$

with $g_{\infty} \in G(\mathbb{R}), g_p \in G(\mathbb{Q}_p)$ and

$$W_{\infty}(f_{\chi_{\infty}}, g_{\infty}) = \int_{N(\mathbb{R})} f_{\chi_{\infty}}(ng_{\infty}) \overline{\psi_{\infty}(n)} dn$$

$$W_p(f_{\chi_p}, g_p) = \int_{N(\mathbb{Q}_p)} f_{\chi_p}(ng_p) \overline{\psi_p(n)} dn$$

can be computed using the CS-formula

More general Fourier coefficients

P = LU standard parabolic of G

More general Fourier coefficients

P = LU standard parabolic of G

• unitary character $\psi_U : U(\mathbb{Q}) \setminus U(\mathbb{A}) \to U(1)$

More general Fourier coefficients

P = LU standard parabolic of G

unitary character $\psi_U : U(\mathbb{Q}) \setminus U(\mathbb{A}) \to U(1)$

We then have the U -Fourier coefficient:

$$F_{\psi_U}(f_{\chi},g) = \int_{U(\mathbb{Q})\setminus U(\mathbb{A})} E(f_{\chi},ug)\overline{\psi_U(u)}du$$

much less is known in general in this case...

$$F_{\psi_U}(f_{\chi},g) = \int_{U(\mathbb{Q})\setminus U(\mathbb{A})} E(f_{\chi},ug)\overline{\psi_U(u)}du$$

These are not Eulerian in general, no CS-formula...

- It is sufficient to determine the coefficient for one representative in each Levi orbit of ψ_U
- $lacel{eq:constraint}$ Each Levi orbit is contained in some complex nilpotent G -orbit

It is fruitful to restrict to small automorphic representations.

String theory limits - choices of unipotent subgroups

Decompactification limit

- perturbative parameter: radius of decompactified circle
- non-perturbative effects: KK-instantons, BPS-instantons

String perturbation limit

- perturbative parameter: string coupling
- non-perturbative effects: D-instantons, NS5-instantons

M-theory limit

- perturbative parameter: volume of M-theory torus
- non-perturbative effects: M2- & M5-instantons

3. Minimal representations of exceptional groups

Minimal automorphic representations

Definition: An automorphic representation

$$\pi = \bigotimes_{p \le \infty} \pi_p$$

is minimal if each factor π_p has smallest non-trivial Gelfand-Kirillov dimension.

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]....

Minimal automorphic representations

Definition: An automorphic representation

$$\pi = \bigotimes_{p \le \infty} \pi_p$$

is minimal if each factor π_p has smallest non-trivial Gelfand-Kirillov dimension.

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]....

Automorphic forms $\varphi \in \pi_{min}$ are characterised by having

very few non-vanishing Fourier coefficients. [Ginzburg, Rallis, Soudry]

Maximal parabolic subgroups

Now consider the case when P = LU is a maximal parabolic This implies that U only contains a single simple root α

Now choose a representative in the Levi orbit which is only sensitive to this simple root:

$$\psi_U = \psi \big|_U = \psi_\alpha$$

This is non-trivial only on the simple root space N_{lpha}

Theorem [Miller-Sahi]: Let G be a split group of type E_6 or E_7 Then any Fourier coefficient of $\varphi \in \pi_{min}$ of G is completely determined by the maximally degenerate Whittaker coefficients

$$W_{\psi_{\alpha}}(\varphi,g) = \int_{N(\mathbb{Q})\setminus N(\mathbb{A})} \varphi(ng) \overline{\psi_{\alpha}(n)} dn$$

Theorem [Miller-Sahi]: Let G be a split group of type E_6 or E_7 Then any Fourier coefficient of $\varphi \in \pi_{min}$ of G is completely determined by the maximally degenerate Whittaker coefficients

$$W_{\psi_{\alpha}}(\varphi,g) = \int_{N(\mathbb{Q})\setminus N(\mathbb{A})} \varphi(ng) \overline{\psi_{\alpha}(n)} dn$$

Can one use this to calculate

$$F_{\psi_U}(\varphi, g) = \int_{U(\mathbb{Q}) \setminus U(\mathbb{A})} E(\varphi, ug) \overline{\psi_U(u)} du$$

in terms of $W_{\psi_{\alpha}}$?

What is the relation between the **degenerate Whittaker coefficient**:

$$W_{\psi_{\alpha}}(\varphi,g) = \int_{N(\mathbb{Q})\setminus N(\mathbb{A})} \varphi(ng) \overline{\psi_{\alpha}(n)} dn$$

and the U -coefficient:

$$F_{\psi_U}(\varphi, g) = \int_{U(\mathbb{Q}) \setminus U(\mathbb{A})} E(\varphi, ug) \overline{\psi_U(u)} du$$

7
What is the relation between the **degenerate Whittaker coefficient**:

$$W_{\psi_{\alpha}}(\varphi,g) = \int_{N(\mathbb{Q})\setminus N(\mathbb{A})} \varphi(ng) \overline{\psi_{\alpha}(n)} dn$$

and the U -coefficient:

$$F_{\psi_U}(\varphi,g) = \int_{U(\mathbb{Q})\setminus U(\mathbb{A})} E(\varphi,ug) \overline{\psi_U(u)} du$$

A priori they live on **different spaces**!

$$W_{\psi_{\alpha}}(nak) = \psi_{\alpha}(n)W_{\psi_{\alpha}}(a) \qquad F_{\psi_{U}}(ulk) = \psi_{U}(u)F_{\psi_{U}}(l)$$

What is the relation between the **degenerate Whittaker coefficient**:

$$W_{\psi_{\alpha}}(\varphi,g) = \int_{N(\mathbb{Q})\setminus N(\mathbb{A})} \varphi(ng) \overline{\psi_{\alpha}(n)} dn$$

and the U -coefficient:

$$F_{\psi_U}(\varphi, g) = \int_{U(\mathbb{Q}) \setminus U(\mathbb{A})} E(\varphi, ug) \overline{\psi_U(u)} du \qquad ?$$

Conjecture [Gustafsson, Kleinschmidt, D.P.]:

For $\varphi \in \pi_{min}$ these two functions are equal.

Proof: In progress with [Gourevitch, Gustafsson, Kleinschmidt, D.P., Sahi]

Example: Let $G = SL(3, \mathbb{A})$ [Gustafsson, Kleinschmidt, D.P.]

$$\psi_{\alpha}(x) = \psi_{\alpha}(e^{2\pi i(uE_{\alpha} + vE_{\beta})}) = e^{2\pi i nu}, \qquad n \in \mathbb{Q}, \ u \in \mathbb{A}$$

$$U = \left\{ \begin{pmatrix} 1 & u_1 & u_2 \\ & 1 & \\ & & 1 \end{pmatrix} : u_i \in \mathbb{A} \right\}$$

In this case we find the following equality

$$F_{\psi_{U_{m,n}}}(\varphi,g) = W_{\psi_n}\left(\varphi, \begin{pmatrix} -1 & 0 & \\ 0 & 0 & -1 \\ 0 & -1 & m/n \end{pmatrix} g\right)$$

so the functions are equal up to a Levi translate of the argument!

Exceptional groups

Functional dimension of minimal representations:

GKdim
$$\pi_{min} = \begin{cases} 11, & E_6 \\ 17, & E_7 \\ 29, & E_8 \end{cases}$$

Automorphic realization

Consider the Borel-Eisenstein series on $G(\mathbb{A})$

$$E(\lambda, g) = \sum_{\gamma \in B(\mathbb{Q}) \setminus G(\mathbb{Q})} e^{\langle \lambda + \rho | H(\gamma g) \rangle}$$

Now fix the weight to

$$\lambda = 2s\Lambda_1 - \rho$$

where Λ_1 is the fundamental weight associated to node 1.

Theorem [Ginzburg,Rallis,Soudry][Green,Miller,Vanhove] For $G = E_6, E_7, E_8$ the Eisenstein series $E(2s\Lambda - \rho, g)$ evaluated at s = 3/2 is attached to the representation πmin with wavefront set $WF(\pi_{min}) = \overline{\mathcal{O}_{min}}$.

This theorem yields an explicit automorphic realisation of the minimal representation.

Our aim is to use this to calculate Fourier coefficients associated with maximal parabolic subgroups.

Example: $G = E_7$

Consider the **3-grading** of the Lie algebra

$$\mathfrak{e}_7 = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 = \mathbf{27} \oplus (\mathfrak{e}_6 \oplus \mathbf{1}) \oplus \mathbf{27}$$

The space $\mathfrak{g}_0 \oplus \mathfrak{g}_1$ is the Lie algebra of a maximal parabolic P = LU with 27-dim unipotent Uand Levi $L = E_6 \times GL(1)$ The degenerate Whittaker vector associated with α_1 is given by: [Fleig, Kleinschmidt, D.P.]

$$W_{\psi_k}(3/2, a) = |k|^{3/2} \sigma_{-3}(k) K_{3/2}(2\pi |k|a)$$

where $a \in A \subset E_7$ and

$$\sigma_s(k) = \sum_{d|k} d^s$$

The degenerate Whittaker vector associated with α_1 is given by: [Fleig, Kleinschmidt, D.P.]

$$W_{\psi_k}(3/2, a) = |k|^{3/2} \sigma_{-3}(k) K_{3/2}(2\pi |k|a)$$

where $a \in A \subset E_7$ and

$$\sigma_s(k) = \sum_{d|k} d^s$$

We now want to relate this to the $\,U\,$ - Fourier coefficient

$$F_{\psi_U}(3/2,g) = \int_{U(\mathbb{Q})\setminus U(\mathbb{A})} E(3/2,ug)\overline{\psi_U(u)}du$$

This captures instantons in the decompactification limit of string theory!

Conjecture: [Pioline][Gustafsson, Kleinschmidt, D.P.][Bossard, Verschinin]

$$F_{\psi_U}(3/2;h,r) = |k|^{3/2} \sigma_{-3}(k) K_{3/2}(2\pi r|k| \times ||h^{-1}\vec{x}||)$$

where $h \in E_6, r \in GL(1)$ and $\vec{x} \in \mathbb{Z}^{27}$

Conjecture: [Pioline][Gustafsson, Kleinschmidt, D.P.][Bossard, Verschinin]

$$F_{\psi_U}(3/2;h,r) = |k|^{3/2} \sigma_{-3}(k) K_{3/2}(2\pi r|k| \times ||h^{-1}\vec{x}||)$$

where $h \in E_6, r \in GL(1)$ and $\vec{x} \in \mathbb{Z}^{27}$

Proof: To appear by [Gustafsson, Gourevitch, Kleinschmidt, D.P., Sahi]

This gives the **complete abelian Fourier expansion** of the minimal representation

Physically the vector \vec{x} corresponds to the instanton charges of the 27 vector fields in D=5.

4. Next-to-minimal representations

Properties of π_{ntm}

No multiplicity one theorem known for π_{ntm} .

Properties of π_{ntm}

No multiplicity one theorem known for π_{ntm} .

Theorem [Green, Miller, Vanhove]: Let $G = E_6, E_7, E_8$ The Eisenstein series

$$E(s,g) = \sum_{\gamma \in B(\mathbb{Q}) \setminus G(\mathbb{Q})} e^{\langle 2s\Lambda_1 | H(\gamma g) \rangle}$$

evaluated at s = 5/2 is a spherical vector in π_{ntm} .

Whittaker coefficients attached to πntm

Theorem [Fleig, Kleinschmidt, D.P.]:

The abelian term of the Fourier expansion of E(5/2,g) is given by

$$\sum_{\substack{\psi:N(\mathbb{Q})\setminus N(\mathbb{A})\to U(1)\\\psi\neq 1}} W_{\psi}(5/2,na) = \sum_{\alpha\in\Pi} \sum_{\psi_{\alpha}} c_{\alpha}(a) W_{\psi_{\alpha}}(5/2,na)$$

+
$$\sum_{\substack{\alpha,\beta\in\Pi\\[E_{\alpha},E_{\beta}]=0}}\sum_{\psi_{\alpha,\beta}}c_{\alpha,\beta}(a)W_{\psi_{\alpha,\beta}}(5/2,na)$$

Whittaker coefficients attached to π_{ntm}

Theorem [Fleig, Kleinschmidt, D.P.]:

The abelian term of the Fourier expansion of $\,E(5/2,g)\,$ is given by

Bala-Carter type $2A_1$ (product of two K-Bessel functions)

Conjecture [Gustafsson, Kleinschmidt, D.P.]:

Let G be a semisimple, simply laced Lie group. Then all Fourier coefficients of $\varphi \in \pi_{ntm}$ are completely determined by degenerate Whittaker vectors of the form

$$W_{\psi_{\alpha}}(\varphi,g) = \int_{N(\mathbb{Q})\setminus N(\mathbb{A})} \varphi(ng) \overline{\psi_{\alpha}(n)} dn$$

$$W_{\psi_{\alpha,\beta}}(\varphi,g) = \int_{N(\mathbb{Q})\setminus N(\mathbb{A})} \varphi(ng) \overline{\psi_{\alpha,\beta}(n)} dn$$

where (α, β) are commuting simple roots.

Proof. In progress with [Gustafsson, Gourevitch, Kleinschmidt, D.P., Sahi]

5. Outlook: Conjectures and open problems

Spherical vectors for Kac-Moody groups

Let $G = E_9, E_{10}, E_{11}$. The Eisenstein series E(3/2, g)has a partial Fourier expansion [Fleig, Kleinschmidt, D.P.]

$$E(3/2, g) = E_0 + \sum_{\alpha \in \Pi} \sum_{\psi_{\alpha}} c_{\alpha}(a) W_{\psi_{\alpha}}(3/2, na) +$$
 "non-ab"

where
$$W_{\psi_{lpha}}(3/2,na) = \prod_{p \leq \infty} W_p(3/2,na)$$
 .

Spherical vectors for Kac-Moody groups

Let $G = E_9, E_{10}, E_{11}$. The Eisenstein series E(3/2, g)has a partial Fourier expansion [Fleig, Kleinschmidt, D.P.]

$$E(3/2, g) = E_0 + \sum_{\alpha \in \Pi} \sum_{\psi_{\alpha}} c_{\alpha}(a) W_{\psi_{\alpha}}(3/2, na) +$$
 "non-ab"

where
$$W_{\psi_{\alpha}}(3/2,na) = \prod_{p \leq \infty} W_p(3/2,na)$$
 .

Conjecture: The minimal representation of E_9, E_{10}, E_{11} exists, factorizes

$$\pi_{min} = \otimes_p \pi_{min,p}$$

satisfies a uniqueness property, and $W_p(3/2, na)$ is (the abelian limit of) a spherical vector in $\pi_{min,p}$

String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case.

String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case. However, consider the case of X a rigid CY3-fold. $(h_{2,1}(X) = 0)$ Intermediate Jacobian of X is an elliptic curve:

$$H^3(X,\mathbb{R})/H^3(X,\mathbb{Z}) = \mathbb{C}/\mathcal{O}_d$$

ring of integers: $\mathcal{O}_d \subset \mathbb{Q}(\sqrt{-d})$ (d > 0 and square-free)

String theory on Calabi-Yau 3-folds

In general, very little is known about the duality group in this case. However, consider the case of X a rigid CY3-fold. $(h_{2,1}(X) = 0)$ Intermediate Jacobian of X is an elliptic curve:

$$H^3(X,\mathbb{R})/H^3(X,\mathbb{Z}) = \mathbb{C}/\mathcal{O}_d$$

ring of integers: $\mathcal{O}_d \subset \mathbb{Q}(\sqrt{-d})$ (d > 0 and square-free)

Conjecture: [Bao, Kleinschmidt, Nilsson, D.P., Pioline] String theory on X is invariant under the Picard modular group $PU(2, 1; \mathcal{O}_d) := U(2, 1) \cap PGL(3, \mathcal{O}_d)$ **Theorem:** [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The Borel Eisenstein series

$$E(\chi_s, P, g) = \sum_{\gamma \in P(\mathcal{O}_d) \setminus PU(2, 1; \mathcal{O}_d)} \chi_s(\gamma g)$$

has Fourier coefficients

$$F_{\psi_U}(s,g) = \int_{U(\mathcal{O}_d)\setminus U} E(\chi_s, P, ug) \overline{\psi_U(u)} du$$

Theorem: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The Borel Eisenstein series

$$E(\chi_s, P, g) = \sum_{\gamma \in P(\mathcal{O}_d) \setminus PU(2, 1; \mathcal{O}_d)} \chi_s(\gamma g)$$

has Fourier coefficients

$$F_{\psi_U}(s,g) = \int_{U(\mathcal{O}_d)\setminus U} E(\chi_s, P, ug) \overline{\psi_U(u)} du$$

$$= F_{\psi_U,\infty}(s,g) \times \prod_{p < \infty} F_{\psi_U,p}(s,1)$$

where

$$\prod_{p < \infty} F_{\psi_U, p}(s, 1) = \sum_{\substack{\omega \in \mathcal{O}_d \\ \gamma/\omega \in \mathcal{O}_d^{\star}}} \left| \frac{\gamma}{\omega} \right|^{2s-2} \sum_{\substack{z \in \mathcal{O}_d \\ \gamma/(z\omega) \in \mathcal{O}_d^{\star}}} |z|^{4-4s}$$

This theory has a lattice of electric magnetic charges

$$\Gamma = H_3(X, \mathbb{Z}) \cong \mathbb{Z}^2$$

There are black hole states with charge $\gamma \in \Gamma$

In general this is tricky since for multi-particle states, there is a continuum of possible masses...

In general this is tricky since for multi-particle states, there is a continuum of possible masses...

But, there exists a discrete subsector which is stable!

BPS-states C physical states

"small" (non-generic) representations of the super-Poincaré algebra

(BPS = Bogomol'nyi–Prasad–Sommerfeld)

In general this is tricky since for multi-particle states, there is a continuum of possible masses...

But, there exists a discrete subsector which is stable!

BPS-index: $\Omega(\gamma) \equiv$ number of BPS states of charge γ $\Omega \ : \ \Gamma \to \mathbb{Z}$

Black hole entropy: $S(\gamma) = \log \Omega(\gamma)$

Conjecture: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The counting of BPS-black holes in string theory on X with charges $\gamma \in H_3(X,\mathbb{Z})$ is given by the Fourier coefficient

$$\Omega(\gamma) = \sum_{\substack{\omega \in \mathcal{O}_d \\ \gamma/\omega \in \mathcal{O}_d^{\star}}} \left| \frac{\gamma}{\omega} \right|^{2s-2} \sum_{\substack{z \in \mathcal{O}_d \\ \gamma/(z\omega) \in \mathcal{O}_d^{\star}}} |z|^{4-4s}$$

for some value $s = s_0$.

Conjecture: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The counting of BPS-black holes in string theory on X with charges $\gamma \in H_3(X,\mathbb{Z})$ is given by the Fourier coefficient

$$\Omega(\gamma) = \sum_{\substack{\omega \in \mathcal{O}_d \\ \gamma/\omega \in \mathcal{O}_d^{\star}}} \left| \frac{\gamma}{\omega} \right|^{2s-2} \sum_{\substack{z \in \mathcal{O}_d \\ \gamma/(z\omega) \in \mathcal{O}_d^{\star}}} |z|^{4-4s}$$

for some value
$$s = s_0$$
.

Conjecture: [Bao, Kleinschmidt, Nilsson, D.P., Pioline]

The function $\Omega(\gamma)$ counts the number of special Lagrangian submanifolds of X in the homology class $[\gamma] \in H_3(X, \mathbb{Z})$.

For string theory on Calabi-Yau 3-folds with $h_{1,1}(X) = 1$ we expect that the duality group is the exceptional Chevalley group $G_2(\mathbb{Z})$.

For string theory on Calabi-Yau 3-folds with $h_{1,1}(X) = 1$ we expect that the duality group is the exceptional Chevalley group $G_2(\mathbb{Z})$.

The counting of BPS-black holes should satisfy P

[Pioline][Gundydin, Neitzke, Pioline, Waldron][Pioline, D.P.]

 $\Omega(\gamma) = 0$ unless $Q_4(\gamma) \ge 0$

For string theory on Calabi-Yau 3-folds with $h_{1,1}(X) = 1$ we expect that the duality group is the exceptional Chevalley group $G_2(\mathbb{Z})$.

The counting of BPS-black holes should satisfy [Pioli Pioline

[Pioline][Gundydin, Neitzke, Pioline, Waldron][Pioline, D.P.]

 $\Omega(\gamma) = 0$ unless

 $Q_4(\gamma) > 0$

quartic invariant of the Levi

 $SL(2,\mathbb{Z}) \subset G_2(\mathbb{Z})$

For string theory on Calabi-Yau 3-folds with $h_{1,1}(X) = 1$ we expect that the duality group is the exceptional Chevalley group $G_2(\mathbb{Z})$.

The counting of BPS-black holes should satisfy [Pioline][Gundydin, Neitzke, Pioline, Waldron][Pioline, D.P.]

 $\Omega(\gamma) = 0$ unless $Q_4(\gamma) \ge 0$

This is precisely the constraint satisfied by Fourier coefficients of automorphic forms attached to the quaternionic discrete series of $G_2(\mathbb{R})$. [Wallach][Gan, Gross, Savin]
Quaternionic discrete series

The quaternionic discrete series can be realised as [Gross, Wallach]

$$\pi_k = H^1(\mathcal{Z}, \mathcal{O}(-k)) \qquad k \ge 2$$

where \mathcal{Z} is the twistor space:

$$\mathbb{P}^1 \to \mathcal{Z} \to G_2(\mathbb{R})/SO(4)$$

Quaternionic discrete series

The quaternionic discrete series can be realised as [Gross, Wallach]

$$\pi_k = H^1(\mathcal{Z}, \mathcal{O}(-k)) \qquad k \ge 2$$

where \mathcal{Z} is the twistor space:

$$\mathbb{P}^1 \to \mathcal{Z} \to G_2(\mathbb{R})/SO(4)$$

Open problem: Can one construct explicit **automorphic forms attached** to π_k in terms of **holomorphic functions** on \mathcal{Z} ?

Black hole counting in string theory

Consider string theory on torus T^6

Moduli space: $\mathcal{M} = E_7(\mathbb{Z}) \setminus E_7(\mathbb{R}) / (SU(8)/\mathbb{Z}_2)$

This theory has a lattice of electric magnetic charges

$$\Gamma \cong \mathbb{Z}^{56} \supset H_{even}(T^6, \mathbb{Z})$$

Black hole counting in string theory Consider string theory on torus T^6 Moduli space: $\mathcal{M} = E_7(\mathbb{Z}) \setminus E_7(\mathbb{R}) / (SU(8)/\mathbb{Z}_2)$

This theory has a lattice of electric magnetic charges

$$\Gamma \cong \mathbb{Z}^{56} \supset H_{even}(T^6, \mathbb{Z})$$

It has black hole states with charge $\gamma \in \Gamma$

From the BPS-index we can then obtain a **microscopic derivation** of the black hole entropy:

 $S(\gamma) = \log \Omega(\gamma)$

From the BPS-index we can then obtain a **microscopic derivation** of the black hole entropy:

$$S(\gamma) = \log \Omega(\gamma)$$

For I/2 BPS-states only charges in a 28-dimensional subspace $\mathcal{C} \subset \mathbb{Z}^{56}$ are realised.

From the BPS-index we can then obtain a **microscopic derivation** of the black hole entropy:

$$S(\gamma) = \log \Omega(\gamma)$$

For I/2 BPS-states only charges in a 28-dimensional subspace $\mathcal{C} \subset \mathbb{Z}^{56}$ are realised.

Constraint:
$$\Omega(\gamma) = 0$$
 if $\gamma \notin C$
Symmetry: $\Omega(\gamma)$ must be $E_7(\mathbb{Z})$ -invariant

A generating function of these states takes the form

$$Z(l, u) = \sum_{\gamma = (x_1, \dots, x_{56}) \in \mathbb{Z}^{56}} \Omega(\gamma) c_{\gamma}(l) e^{2\pi i (x_1 u_1 \cdots x_{56} u_{56})}$$

where $l \in E_7(\mathbb{R})$ and $(u_1, \ldots, u_{56}) \in \mathbb{R}^{56}$ "chemical potentials"

A generating function of these states takes the form

$$Z(l, u) = \sum_{\gamma = (x_1, \dots, x_{56}) \in \mathbb{Z}^{56}} \Omega(\gamma) c_{\gamma}(l) e^{2\pi i (x_1 u_1 \cdots x_{56} u_{56})}$$

where $l \in E_7(\mathbb{R})$ and $(u_1, \ldots, u_{56}) \in \mathbb{R}^{56}$ "chemical potentials"

This is precisely the structure of the abelian Fourier coefficients of an automorphic form φ on E_8 with respect to the Heisenberg unipotent radical $Q \subset E_8$

$$\sum_{\psi:Q(\mathbb{Q})\setminus Q(\mathbb{A})\to U(1)} F_{\psi_Q}(\varphi,l)\psi_Q(u)$$

If we take $\varphi \in \pi_{min}$ so $\operatorname{GKdim}(\pi_{min}) = 29$ then

$$F_{\psi_Q}(\varphi,g) = \int_{Q(\mathbb{Q})\setminus Q(\mathbb{A})} \varphi(ug) \overline{\psi_Q(u)} du = \prod_{p \le \infty} F_{\psi,p}(\varphi,g)$$

vanishes unless ψ_Q lies in a 28-dimensional subspace of $\mathfrak{g}_1(\mathbb{Q})$. [Kazhdan, Polishchuk] If we take $\varphi \in \pi_{min}$ so $\operatorname{GKdim}(\pi_{min}) = 29$ then

$$F_{\psi_Q}(\varphi,g) = \int_{Q(\mathbb{Q})\setminus Q(\mathbb{A})} \varphi(ug) \overline{\psi_Q(u)} du = \prod_{p \le \infty} F_{\psi,p}(\varphi,g)$$

vanishes unless ψ_Q lies in a 28-dimensional subspace of $\mathfrak{g}_1(\mathbb{Q})$. [Kazhdan, Polishchuk]

Conjecture:

The 1/2 BPS-states are counted by the p-adic spherical vectors in the minimal representation of E_8 :

$$\Omega(\gamma) = \prod_{p < \infty} F_{\psi_Q, p}(\pi_{min}, 1)$$

[Pioline][Gunaydin, Neitzke, Pioline, Waldron][Fleig, Gustafsson, Kleinschmidt, D.P.]

Final question: [Moore]

Is there a <u>natural</u> role for automorphic L-functions in BPS-state counting problems?