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Aim of study

I To show normal limit laws for the number of fringe subtrees
that are isomorphic to an arbitrary fixed tree T in
preferential attachment trees.

I To show multivariate normal limit laws for random vectors
of such numbers for different fringe subtrees in the
preferential attachment trees.



The linear preferential attachment trees

I Suppose that we are given a sequence of non-negative
weights (wk )∞k=0, with w0 > 0.

I Start with a single node, the root node. Each new node is
added as a child of some randomly chosen existing node.

I The probability of choosing a node v as the parent is
proportional to wd+(v), where d+(v) is the out-degree of v .

I When all n nodes are added we get the preferential
attachment tree Λn.

I We will mainly consider the linear preferential attachment
tree with wk = χk + ρ.



The linear preferential attachment trees

I We will mainly consider the linear preferential attachment
tree with wk = χk + ρ.

I Note that we obtain the same random tree Λn if we multiply
wk with some constant.

I Hence, only the quotient χρ matters, and thus it suffices to
consider χ ∈ {−1,0,1}.

I The most interesting and most general of these cases is
the case when χ = 1.



Example of a random recursive tree (wk = 1)

I Nodes are added one by one.

I Each new node is attached as a child of a uniformly
randomly chosen node.

I Thus wk = 1 and (recalling that a linear preferential
attachment tree has wk = χk + ρ) this is the only case with
χ = 0.
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Example of a plane-oriented recursive tree (wk = 1)

I This is similar to the random recursive tree, but now we
consider the tree as ordered; an existing node with k
children thus has k + 1 positions in which a new node can
be added.

I All possible positions for adding the new node has the
same probability.

I The probability of choosing a node v as the parent is thus
proportional to d+(v) + 1, so the plane oriented recursive
tree is the case of a linear preferential attachment tree with
wk = k + 1, i.e., χ = ρ = 1 (recalling that a linear
preferential attachment tree has wk = χk + ρ).



Example of a plane-oriented recursive tree
(wk = k + 1)
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Example of a plane-oriented recursive tree
(wk = k + 1)



The linear preferential attachment trees

I It is often natural to consider preferential attachment trees
as unordered.

I It is also possible to consider them as ordered, either by
assigning random orders as for the plane oriented
recursive tree or by ordering the children of each node in
the order that they are added to the tree.
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Main Result

I Let Λ1, . . . ,Λd be a fixed sequence of non-isomorphic
unordered (or ordered) trees.

I Let Zn = (X Λ1

n ,X Λ2

n , . . . ,X Λd

n ), where X Λi

n is the number of
fringe subtrees that are isomorphic to Λi in the linear
preferential attachment tree Λn.

I Let ki be the number of nodes in Λi .

I Let

µn := E Zn =
(

E(X Λ1

n ),E(X Λ2

n ), . . . ,E(X Λd

n )
)
.



Main Result

Recall that Zn = (X Λ1

n ,X Λ2

n , . . . ,X Λd

n ), and that µn = E Zn.

Theorem
Then, as n→∞,

n−1/2(Zn − µn)
d−→ N (0,Σ), (1)

where the vector µn can be replaced with the vector µ̂n := nµ̂
with

µ̂ :=
( P(Λk1 = Λ1) · κ

(k1 + κ− 1)(k1 + κ)
, . . . ,

P(Λkd = Λd ) · κ
(kd + κ− 1)(kd + κ)

)
, (2)

with
κ :=

ρ

χ+ ρ
=

w0

w1
, (3)

and Σ = (σij)
d
i,j=1 is some non-singular covariance matrix .



Corollary of Main Result

Let k be an arbitrary fixed integer. Let Yn,k be the number of
subtrees with k nodes in the linear preferential attachment tree.

Corollary 1
As n→∞,

n−1/2(Yn,k − E Yn,k
) d−→ N (0, σ2

k ), (4)

where σ2
k is some constant with σ2

k > 0. Furthermore, we also
have

n−1/2
(

Yn,k −
κ

(k + κ− 1)(k + κ)
n
)

d−→ N (0, σ2
k ), (5)

again with
κ =

ρ

χ+ ρ
=

w0

w1
.

.
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Generalised Pólya urns

I There are balls of q types (or colours) 1, . . . ,q, and for
each n a random vector Xn = (Xn,1, . . . ,Xn,q), where Xn,i is
the number of balls of type i in the urn at time n.

I The urn starts with a given vector X0. Each type i is given
an activity ai ≥ 0 and a random vector ξi = (ξi1, . . . , ξiq),
which describes the change of the composition of balls in
the urn when a ball of type i is drawn. (In fact it often
happens that ξi is deterministic, and thus the randomness
in the urn process only comes from drawing of the balls.)
We will assume that ξii ≥ −1 and ξij ≥ 0, i 6= j .

I The urn evolves according to a discrete time Markov
process. At each time n ≥ 1, one ball is drawn at random,
with the probability of any ball proportional to its activity.



Generalised Pólya urns

I If the drawn ball has type i , it is replaced by ∆X (i)
n,j balls of

type j , j = 1, . . . ,q, where the random vector
∆X (i)

n = (∆X (i)
n,1, . . . ,∆X (i)

n,q) has the same distribution as

ξi = (ξi1, . . . , ξiq). (We allow ∆X (i)
n,i = −1, which means that

the drawn ball is not replaced.)

I We let A denote the q × q matrix

A = (aj E ξji)
q
i,j=1.

The intensity matrix A with its eigenvalues and eigenvectors is
central for proving limit theorems for Xn = (Xn,1, . . . ,Xn,q).



Generalised Pólya urns and normal limit theorem

The following theorem holds under some conditions of the
random process (these are often easy to verify using the
Perron-Frobenius theory). Recall that Xn = (Xn,1, . . . ,Xn,q),
where Xn,i is the number of balls of type i in the urn at time n.
Let λ1 denote the largest real eigenvalue of A and a certain
right eigenvector v1 corresponding to λ1, i.e., Av1 = λ1v1.

Theorem (Janson (2004) Theorem 3.22)
Assume that Reλ < λ1/2 for each eigenvalue λ 6= λ1.
Then, as n→∞,

n−1/2(Xn − nµ)
d→ N (0,Σ),

with µ = λ1v1 and some covariance matrix Σ.
The covariance matrix Σ is expressed in Janson (2004) and
can be evaluated using the intensity matrix A.



Applying Pólya urns to count fringe subtrees

I Recall that we want to count the total number of fringe
subtrees that are isomorphic to some fixed trees Λ1, . . . ,Λd

in the linear preferential attachment tree Λn.

I We will model our process as a Pólya urn, by subdividing
the linear preferential attachment tree into subtrees that
represent the types {1,2, . . . ,q}, where some of the types
represent the fringe subtrees isomorphic to Λ1, . . . ,Λd in
the tree.

I We consider adding a node to the tree in terms of the
Pólya urn process of drawing a ball. In particular this will
show a multivariate normal limit law for the vector
Zn = (X Λ1

n ,X Λ2

n , . . . ,X Λd

n ), i.e., the number of fringe
subtrees that are isomorphic to Λ1, . . . ,Λd in Λn.



Types in the Pólya urn counting fringe subtrees

I Let Λn be a given linear preferential attachment tree with n
nodes. Let Λn(v) be the fringe subtree of Λn rooted at node
v .

I We may consider either ordered or unordered trees.

I There is a natural partial order on the set of ordered or
unordered trees, such that T � T ′ if T ′ can be obtained
from T by adding nodes (including the case T ′ = T ).



Types in the Pólya urn counting fringe subtrees

I Recall that we want to count the number of fringe subtrees
Λ1, . . . ,Λd in the preferential attachment tree Λn.

I We say that a node v is living if Λn(v) � Λi for some
i ∈ {1, . . . ,d}, i.e., if Λn(v) is isomorphic to some Λi or can
be grown to one of them by adding more nodes. We let all
descendants of a living node be living (all nodes of Λn(v)
are living if v is living). All other nodes of Λn are dead.

I Now erase all edges from dead nodes to their children.
This yields a forest of small trees, where each tree either
consists of a single dead node or is living (all nodes are
living) and can be grown to one of the Λi .

I We regard these small trees as the balls in the Pólya urn.



Types in the Pólya urn counting fringe subtrees

I However, we can not ignore the dead nodes, since they
may get new children; furthermore, the probability of this
depends on their degree. Hence we label each dead node
by the number of children it has in Λn.

I Hence, the types in this urn are all trees Λ such that Λ � Λi

for some i ∈ {1, . . . ,d} (these are called normal types),
plus one type ∗k for each positive integer k , consisting of a
single dead node labelled by k (these are called special
types).
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Types in the Pólya urn counting fringe subtrees
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The replacement rule

I If a ball of a special type ∗k is drawn, it is replaced by one
ball of type ∗k+1 and one living single node.

I If a normal type is drawn, we add a new child to one of its
nodes, with probabilities determined by the weights wk .

I If the root of that subtree still is living after the addition,
then that subtree becomes a living subtree of a different
type; if the root becomes dead, then the subtree is further
decomposed into one or several dead nodes and one or
several living subtrees.

I The random evolution of the forest obtained by
decomposing Λn is thus described by a Pólya urn, where
each type has activity equal to the sum of all weights for
the nodes in that type.
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An infinite Pólya urn

I Unfortunately, the number of dead (special) types is infinite
since they depend on the number of children of the single
node that corresponds to the the dead node.

I Hence, this is a Pólya urn with infinitely many types. The
normal limit theorem for generalised Pólya urns stated as

Theorem (Janson (2004) Theorem 3.22)
Assume that Reλ < λ1/2 for each eigenvalue λ 6= λ1.
Then, as n→∞, n−1/2(Xn − nµ)

d→ N (0,Σ), with µ = λ1v1 and
some covariance matrix Σ.

does not apply to such urns.

I However, for the linear case i.e., wk = χk + ρ, we can
reduce the urn to a finite-type one.



Trick to reduce the infinite urn to a finite urn

I Recall that in the preferential attachment tree wk = χk + ρ
and we can assume that χ ∈ {−1,0,1}.

I For simplicity consider the case when ρ is an integer and
thus wk is an integer (when ρ is real-valued the same trick
works by interpreting the number of balls as a real
number).

I Change each dead (special) ball of type ∗k to wk balls of a
new type ∗. Let ∗ have activity 1; then the activities are
preserved by the change.

I Recall that if a ball of type ∗k is drawn, it is replaced by one
ball of type ∗k+1 and one single living node; after the
change, this means that the number of balls ∗ is increased
by wk+1 − wk = χ. (This is where the linearity is essential.)



Number of unordered fringe subtrees with 3 nodes

Type 4 Type 5

Type 1 Type 2 Type 3

*
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Finding the intensity matrix A

*

Type 3

Type 3

Type 3

(1+ρ)/(2+3ρ)

(1+ρ)/(2+3ρ)

ρ/(2+3ρ)

*

*

Type 1+Type2+(2+ρ).Type5

Type 4+(1+ρ).Type5

Type 3+(1+ρ).Type5



Finding the intensity matrix A

Thus, we get the intensity matrix A as

A =



−ρ 0 ρ+ 1 5ρ+ 6 1

ρ −2ρ− 1 ρ+ 1 2ρ 0

0 ρ −2ρ− 2 0 0

0 ρ+ 1 ρ+ 1 −3ρ− 2 0

0 0 3(ρ+ 1)2 3(ρ+ 1)(ρ+ 2) 1


.

The eigenvalues are

ρ+ 1,−ρ,−2ρ− 1,−3ρ− 2,−3ρ− 2.

Theorem (Janson (2004) Theorem 3.22)
Assume that Reλ < λ1/2 for each eigenvalue λ 6= λ1.
Then, as n→∞, n−1/2(Xn − nµ)

d→ N (0,Σ), with µ = λ1v1 and
some covariance matrix Σ.



The eigenvalues for the general intensity matrices

I To show asymptotic normality in general Polya urns one
needs to check Reλ < λ1/2 for each eigenvalue λ 6= λ1
(e.g., Janson 2004).

I We will find the eigenvalues of A by using induction on the
size of the set of different types.

I Let q be the number of types and ∗ the dead type. Choose
a numbering T1, . . . ,Tq−1 of these q − 1 types that is
compatible with the partial order �. For k ≤ q, let

Sk := {T1, . . . ,Tk−1, ∗} .



The eigenvalues for the general intensity matrices

I The activities of the types in Sk := {T1, . . . ,Tk−1, ∗} are
(a1, . . . ,ak−1,1), where

ai = wTi = |Ti |(χ+ ρ)− χ,

which is the sum of all weights wk in Ti . (Recall that ∗
always has weight 1.)

I We may thus consider the Pólya urn with the k types in Sk
constructed by chopping the whole tree Tn into a forest of
small trees in Sk . Let Ak be the intensity matrix of this
Pólya urn. Thus A = Aq.



The eigenvalues for the general intensity matrices

Proposition
Let 2 ≤ k ≤ q.

1. For every normal (living) type Tj , j = 1, . . . , k − 1, except
the type that is a path (rooted at an endpoint) of maximal
length,

(Ak )jj = −aj .

2. For the normal type Ti that is a path of maximal length
among all paths in Sk , we have (Ak )ii = ρ− ai .

3. For the special type ∗, we have (Ak )kk = χ.
Consequently,

tr(Ak ) = χ+ ρ−
k−1∑
j=1

aj .



Idea of the proof

Recall that
A = (aj E ξji)

q
i,j=1. (6)

I The diagonal entry (A)jj is the expected change of the
number of balls of type j when such a ball is drawn
multiplied by the activity of type j .

I The idea is that if a living ball of type j is drawn it is
”usually” not replaced by balls of the same type, thus
ξjj = −1 and, by (6), (Ak )jj = −aj .

I The only way such a drawn ball can be replaced by itself is
if it corresponds to a path of maximal length. Then it is
replaced by itself in case the new node is attached to the
end-node of this path.



The eigenvalues for the general intensity matrices

Proposition
Let 2 ≤ k ≤ q.

1. For every normal (living) type Tj , j = 1, . . . , k − 1, except
the type that is a path (rooted at an endpoint) of maximal
length,

(Ak )jj = −aj .

2. For the normal type Ti that is a path of maximal length
among all paths in Sk , we have (Ak )ii = ρ− ai .

3. For the special type ∗, we have (Ak )kk = χ.
Consequently,

tr(Ak ) = χ+ ρ−
k−1∑
j=1

aj .



The eigenvalues for the general intensity matrices

Recall that we deduced from the proposition that for 2 ≤ k ≤ q,

tr(Ak ) = χ+ ρ−
k−1∑
j=1

aj .

Applying this result we show by induction on k that the
eigenvalues correspond to the activities of the types in the urn.

Theorem
For the linear preferential attachment trees, the eigenvalues of
the intensity matrix A are χ+ ρ and −ai for i ∈ {1, . . . ,q − 1},
where ai is given by ai = wTi = |Ti |(χ+ ρ)− χ.



The eigenvalues for the general intensity matrices

Theorem
For the linear preferential attachment trees, the eigenvalues of
the intensity matrix A are χ+ ρ and −ai for i ∈ {1, . . . ,q − 1},
where ai is given by ai = wTi = |Ti |(χ+ ρ)− χ.

I We prove by induction on k ≥ 2 that the theorem holds for
Ak . For A2 the eigenvalues are χ+ ρ and −a1 = −ρ.

I We show that the eigenvalues of Ak+1 are inherited from
Ak , i.e., that the eigenvalues of Ak+1 can be listed (with
multiplicities) as λ1, . . . , λk+1, where λ1, . . . , λk are the
eigenvalues of Ak .



The eigenvalues for the general intensity matrices

I The trace of a matrix is equal to the sum of the
eigenvalues; hence,

tr Ak+1 = λ1 + · · ·+ λk+1 = tr Ak + λk+1.

Recall that we deduced from the proposition that for 2 ≤ k ≤ q,

tr(Ak ) = χ+ ρ−
k−1∑
j=1

aj .

I Hence, this proposition implies

λk+1 = tr(Ak+1)− tr(Ak ) = −ak+1.

I Thus, by induction the theorem holds for every Ak , with
2 ≤ k ≤ q, and in particular for k = q.



Summary

I We studied fringe subtrees in preferential attachment
trees, by putting them in context of generalised Pólya urns.

I We showed that the number of fringe subtrees that are
isomorphic to Λ1, . . . ,Λd in the linear preferential
attachment tree Λn has a multivariate normal distribution.

I As a corollary we showed that the number of fringe
subtrees with k nodes in such a tree has a normal
distribution.

I By using induction and the traces of the intensity matrices
we saw that the eigenvalues for any Pólya urn
corresponding to a set of finite fringe subtrees in the linear
preferential attachment tree correspond to the activities of
the types in the urns. Thus, it followed that Reλ < λ1/2.


