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Theorem (Shi - Tam, 02)

Let (Ω, g) be a compact, connected, Riemannian 3-manifold with
nonnegative scalar curvature, and with nonempty boundary Σ.
Suppose Σ has finitely many components Σj , j = 1, . . . , k, so that
each Σj is a topological 2-sphere which has positive Gauss
curvature and positive mean curvature H. Then∫

Σj

H dσ ≤
∫

Σj

H0 dσ, (1)

where dσ denotes the induced area element on Σj , and H0 is the
mean curvature of the isometric embedding of Σj in R3. Moreover,
equality holds for some Σj if and only if k = 1 and (Ω, g) is
isometric to a convex domain in R3.
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Question: Without assuming Σ has positive Gauss curvature K,

what can be said about

∫
Σ
Hdσ?

Proposition (Mantoulidis - M)

Suppose Σ is topologically a 2-sphere. There exists a constant
Λ > 0, depending only on (Σ, γ), where γ is the induced metric on

Σ from (Ω, g), such that

∫
Σ
Hdσ ≤ Λ.

Remark:

This fact was also independently derived and made used by Lu
recently on isometric embeddings into Riemannian manifolds.

The proof makes key use of results of Wang-Yau and Shi-Tam
on boundary behavior of compact manifolds with a negative
lower bound on scalar curvature.
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Implications:

Given any metric γ on Σ = S2, one defines

F(Σ,γ) = {(Ω, g) | (Ω, g) is a compact three dimensional

manifold with R ≥ 0, ∂Ω isometric to

(Σ, γ),with H > 0} .

It follows that

Λ(Σ,γ) := sup

{
1

8π

∫
∂Ω

Hdσ | (Ω, g) ∈ F(Σ,γ)

}
<∞, (2)

which is an invariant of the metric γ on Σ = S2.
Remark:

On Σ = S2, if γ is a metric with λ1(−∆ + K ) > 0, then by
the method of Mantoulidis-Schoen (2014), F(Σ,γ) 6= ∅.
A related but different set of fill-ins was used by Jauregui
(2011).
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Recall that, given a compact 3-manifold (Ω, g) with boundary Σ
being a 2-sphere, if the induced metric γ on Σ has K > 0, the
Brown-York mass of Σ in (Ω, g) is defined as

m
BY

(Σ; Ω) :=
1

8π

∫
Σ

(H0 − H)dσ. (3)

Note that the mean curvature H0 of the isometric embedding of Σ
is not used pointwisely in (3).

Without assuming γ on Σ has positive K , one may consider

Definition (Mantoulidis - M)

Given a compact 3-manifold (Ω, g) with Σ = ∂Ω being a 2-sphere,
define

m̃
BY

(Σ; Ω) := Λ(Σ,γ) −
1

8π

∫
Σ
Hdσ. (4)
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For those (Ω, g) which has R ≥ 0 and H > 0, one has

a) m̃
BY

(Σ; Ω) ≥ 0,

b) m̃
BY

(Σ; Ω) = 0 only if (Ω, g) is flat, and

c) m̃
BY

(Σ; Ω) = m
BY

(Σ; Ω) when K > 0.

The third property, which is equivalent to the assertion

Λ(Σ,γ) =
1

8π

∫
Σ
H0dσ when K > 0,

is provided by the Shi-Tam theorem.
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Remark:

Given a surface Σ with a metric γ, one may also consider

F̊(Σ,γ) = {(Ω, g) | (Ω, g) satisfies conditions imposed on

elements in F(Σ,γ), except that ∂Ω \ Σ

may consist of minimal surfaces} .

If one lets Λ̊(Σ,γ) := sup

{
1

8π

∫
∂Ω

Hdσ | (Ω, g) ∈ F̊(Σ,γ)

}
, then it

can be shown
Λ(Σ,γ) = Λ̊(Σ,γ). (5)

So it does not matter whether one uses Λ(Σ,γ) or Λ̊(Σ,γ) in the
definition of m̃

BY
(Σ; Ω).
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Next, we consider fill-ins of multiple surfaces.

Let

(Σ1, γ1), . . . , (Σk , γk)

be a collection of k ≥ 1 closed, connected, orientable 2-surface Σj

where γj is any metric on Σj , j = 1, . . . , k. Denote by

F(Σ1,γ1),...,(Σk ,γk )

the set of all compact, connected 3-manifolds (Ω, g) satisfying:

∂Ω, with the induced metric, is isometric to the disjoint union
of (Σj , γj), j = 1, . . . , k,

H > 0, where H is the mean curvature of ∂Ω, and

R(g) ≥ 0, where R(g) is the scalar curvature of g .
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Given F = F(Σ1,γ1),...,(Σk ,γk ), let

Λ(Σ1,γ1),...,(Σk ,γk ) := sup

{
1

8π

∫
∂Ω

Hdσ | (Ω, g) ∈ F
}
. (6)

If F = ∅, Λ(Σ1,γ1),...,(Σk ,γk ) := −∞.

In this notation, the Shi-Tam theorem can be rephrased as:

“Suppose Σ is a 2-sphere and γ, γ1, . . . , γk are metrics on Σ with
K > 0, then

(I) Λ(Σ,γ) =
1

8π

∫
Σ
H0dσ;

(II)

∫
Σj

H dσ ≤ 8πΛ(Σ,γj ), ∀ (Ω, g) ∈ F(Σ,γ1),...,(Σ,γk ).”
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One has the following analogue of Part (II) in general.

Theorem (Mantoulidis - M )

Let Σ1, . . . ,Σk be k ≥ 1 closed, connected, orientable surfaces
endowed with metrics γ1, . . . , γk . Given (Ω, g) ∈ F(Σ1,γ1),...,(Σk ,γk ),
one has ∫

Σj

H dσ ≤ 8πΛ(Σj ,γj ), ∀ j = 1, . . . , k. (7)

Moreover, equality holds for some j only if k = 1 and (Ω, g) is
isometric to a mean-convex handlebody with flat interior whose
genus is that of Σ1. In particular, if genus(Σ1) = 0 then (Ω, g) is a
flat 3-ball.
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Moreover, one can show that the functional Λ(Σ1,γ1),...,(Σk ,γk )

satisfies an additivity property.

Theorem (Mantoulidis - M )

Let Σ1, . . . ,Σk be k ≥ 2 closed, connected, orientable surfaces
endowed with metrics γ1, . . . , γk . One has

Λ(Σ1,γ1),...,(Σk ,γk ) =
k∑

j=1

Λ(Σj ,γj ), (8)

provided each set F(Σj ,γj ), j = 1, . . . , k, is nonempty.

In the course of the proof, it is shown that F(Σ1,γ1),...,(Σk ,γk ) = ∅ if
and only if F(Σj ,γj ) = ∅ for some j .

Pengzi Miao University of Miami (joint work with Christos Mantoulidis)Total mean curvature, scalar curvature, etc.



Moreover, one can show that the functional Λ(Σ1,γ1),...,(Σk ,γk )

satisfies an additivity property.

Theorem (Mantoulidis - M )

Let Σ1, . . . ,Σk be k ≥ 2 closed, connected, orientable surfaces
endowed with metrics γ1, . . . , γk . One has

Λ(Σ1,γ1),...,(Σk ,γk ) =
k∑

j=1

Λ(Σj ,γj ), (8)

provided each set F(Σj ,γj ), j = 1, . . . , k, is nonempty.

In the course of the proof, it is shown that F(Σ1,γ1),...,(Σk ,γk ) = ∅ if
and only if F(Σj ,γj ) = ∅ for some j .

Pengzi Miao University of Miami (joint work with Christos Mantoulidis)Total mean curvature, scalar curvature, etc.



Moreover, one can show that the functional Λ(Σ1,γ1),...,(Σk ,γk )

satisfies an additivity property.

Theorem (Mantoulidis - M )

Let Σ1, . . . ,Σk be k ≥ 2 closed, connected, orientable surfaces
endowed with metrics γ1, . . . , γk . One has

Λ(Σ1,γ1),...,(Σk ,γk ) =
k∑

j=1

Λ(Σj ,γj ), (8)

provided each set F(Σj ,γj ), j = 1, . . . , k, is nonempty.

In the course of the proof, it is shown that F(Σ1,γ1),...,(Σk ,γk ) = ∅ if
and only if F(Σj ,γj ) = ∅ for some j .

Pengzi Miao University of Miami (joint work with Christos Mantoulidis)Total mean curvature, scalar curvature, etc.



Proof of “ Λ(Σ,γ) <∞” when Σ is a 2-sphere

Theorem (Wang - Yau, 06)

Let (Ω, g) be a compact 3-manifold with scalar curvature
R ≥ −6κ2 for some κ > 0. Suppose its boundary Σ is a
topological 2-sphere which has Gauss curvature K > −κ2 and
positive mean curvature H. Then there exists a future-directed
time-like vector-valued function W 0 : Σ→ R3,1, which depends on
H and the embedding of Σ into H3

−κ2 ⊂ R3,1 such that∫
Σ

(H0 − H)W 0dσ (9)

is a future-directed non-spacelike vector. Here H0 is the mean
curvature of the isometric embedding of Σ in H3

−κ2 .
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Shi and Tam later found that W 0 in Wang-Yau’s theorem can be
taken as W 0 = (x1, x2, x3, αt) for some α > 1 depending only on
(Σ, γ).

From this, Shi and Tam proved

Theorem (Shi - Tam, 06)

Let (Ω, g) be a compact 3-manifold with scalar curvature
R ≥ −6κ2 for some κ > 0. Suppose its boundary Σ is a
topological 2-sphere which has Gauss curvature K > −κ2 and
positive mean curvature H. Then∫

Σ
H coshκr dσ ≤

∫
Σ
H0 coshκr dσ, (10)

where H0 is the mean curvature of the isometric embedding of Σ
in H3

−κ2 and r(·) denotes the distance to any fixed point in the

interior of the image of Σ in H3
−κ2 . Moreover, equality in (10)

holds if and only if (Ω, g) is isometric to a convex domain in H3
−κ2 .
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interior of the image of Σ in H3
−κ2 . Moreover, equality in (10)

holds if and only if (Ω, g) is isometric to a convex domain in H3
−κ2 .
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Some open questions
pau

If γ is a metric on a higher genus surface Σ, is it true

Λ(Σ,γ) <∞ ?

If Λ(Σ,γ) <∞ and if (Σ, γ) isometrically embeds in R3, does

Λ(Σ,γ) =
1

8π

∫
Σ
H0dσ ?
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