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Motivating Problem

Restricted Moment Model with Measurement Error

Yi = m(Xi ,Zi ;β) + εi , E (εi |Xi ,Zi ) = 0

Wij = Xi + Uij , j = 1, . . . , `, i = 1, . . . , n.

1. m(X ,Z ;β): linear or nonlinear.

2. Model error ε may depend on (X ,Z ) (heteroskedasticity) and
its conditional distribution pε|X ,Z is unspecified.

3. pX |Z , pZ are unspecified.

4. Classical measurement error; pU(u; ΩU) is a general
parametric distribution with ΩU unknown. [Can be relaxed.]

2 / 17



Estimation challenges

1. Bias if we arbitrarily adopt models for pε|X ,Z or pX |Z .

2. Estimating pX |Z is challenging.
I Need inverse operation such as deconvolution (Stefanski and

Carroll, 1990).
I This has a very slow rate (Carroll and Hall, 1988; Fan, 1991).
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Estimation challenges

3. Estimating pε|X ,Z is even more difficult:
I Residuals unobtainable in measurement error models even if

model parameters known.
I Unavailable residuals makes it difficult to correctly estimate

the model error’s variance-covariance.
I This is particularly problematic with heteroskedastic model

error which needs a proper variance-covariance model for
consistent parameter estimation.

I Methods exist to estimate unknown variance-covariance, but
they are approximate (Carroll and Wang, 2008) or involved
(Delaigle and Hall, 2011).

4 / 17



Approach and its Features

We use a semiparametric approach and view unknown distributions
pε|X ,Z and pX |Z as nuisance parameters.

1. We bypass estimation of pε|X ,Z and pX |Z .

2. We handle model error heteroskedasticity.

3. We handle mismeasured covariates X .
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Our Approach

1. Use components of variance analysis (Carroll et al., 2006) to
solve for Ω̂U in pU(u; ΩU) based on replicates W1, . . . ,W`.

2. Propose working density models η∗1 for η1 ≡ pX |Z , and
η∗2 = pε|X ,Z for η2 such that E∗(ε|X ,Z ) = 0.

3. Compute f (Y ,W ,Z ) such that∫
f (Y ,W ,Z )pW |X ,Z (W |X ,Z ; Ω) = g(X ,Z )ε.

Note: f is a function of Ω̂U , η
∗
1, η
∗
2.

4. Solve for β̂ from
∑n

i=1 f (Yi ,Wi ,Zi ;β, Ω̂U , η
∗
1, η
∗
2) = 0.
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Some Computational Issues

We provide one way to find f (Y ,W ,Z ). It involves solving an
ill-posed problem.

But it is a “good” ill-posed problem: there is more than one
solution and we only need to find one.

Problem is solved using numerical approximation which does
not affect efficiency.
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Selection and Impact of Working Models

Property 1. When either or both η∗1, η
∗
2 are misspecified and the

measurement error distribution is estimated as pW |X ,Z (w |x , z ; Ω̂U),
the algorithm provides a consistent estimator.

I Under regularity conditions, we show estimating equation is
unbiased even when η∗1, η

∗
2 are misspecified.

I We are thus free to choose any working model; simple choice
is Gaussian.
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Selection and Impact of Working Models

Property 2. Choice of working models η∗1, η
∗
2 affects efficiency.

I When η∗1 = η10, η∗2 = η20 [truth], we obtain optimal estimator
(i.e., semiparametric efficiency bound obtained).

I Otherwise, efficiency loss is positive definite and must be
evaluated on a case-by-case basis.

I From our limited empirical studies, the efficiency loss is
generally small. The estimation variance is quite insensitive to
the choice of the working models.
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Theoretical Results

Theorem 1. Estimator from proposed method is asymptotically
normal.

Theorem 2. Asymptotic efficiency of estimator does not depend on
how efficiently we estimate parameters in working parametric
models.
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Empirical Performance of the Method

Nonlinear restricted moment model with measurement error.

Yi = β2 exp(−β1X 2
i ) + β3Zi + εi ,

Wij = Xi + Uij , Uij ∼ Normal(0, 2α), j = 1, 2.

Variance of model error ε considered to be heteroskedastic and
homoskedastic.
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Methods Evaluated

1. Our method: Set working models η∗1, η
∗
2 very different from

the truth. Working model η∗2 does not account for possible
heteroskedasticity.

2. Homoskedastic and Heteroskedastic sieve estimator (Hu and
Schennach, 2008): Idea is to represent η1 = pX |Z , η2 = pε|X ,Z
with increasingly rich parametric representations (i.e.,
truncated series of basis functions).

I Homoskedastic sieve for η2: ignores dependence between ε and
(X ,Z ).

I Heteroskedastic sieve for η2: captures dependence between ε
and (X ,Z ).
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Methods Evaluated

3. Homoskedastic and Heteroskedastic Tsiatis-Ma estimator:
Uses a working model η∗1 = pX |Z , but requires η∗2 = pε|X ,Z to
be correctly specified, particularly in variance structure.

4. Naive estimator: Least squares estimator that ignores
measurement error.
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Simulation Results
η20 ∼Uniform, Homoskedastic

β̂1 β̂2 β̂3 σ̂2
U

Semipar
bias -0.0065 -0.0080 0.0011 5.1664×10−5

var 0.0030 0.0031 0.0026 1.0255×10−5

v̂ar 0.0030 0.0030 0.0027 1.0255×10−5

CI 0.9500 0.9390 0.9520 0.9490

Sieve-Hom∗

bias 0.0066 0.0008 0.0021 5.1664×10−5

var 0.0033 0.0030 0.0022 1.0255×10−5

v̂ar NA NA NA NA
CI NA NA NA NA

Sieve-Het∗

bias 0.5022 0.8177 0.6900 9.6823×10−6

var 0.0450 0.0458 0.0795 1.0916×10−5

v̂ar NA NA NA NA
CI NA NA NA NA
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Simulation Results
η20 ∼Uniform, Homoskedastic

β̂1 β̂2 β̂3 σ̂2
U

Semipar
bias -0.0065 -0.0080 0.0011 5.1664×10−5

var 0.0030 0.0031 0.0026 1.0255×10−5

v̂ar 0.0030 0.0030 0.0027 1.0255×10−5

CI 0.9500 0.9390 0.9520 0.9490

TM-Hom
bias 0.0019 0.0019 -0.0000 -0.0002
var 0.0035 0.0033 0.0027 1.0396×10−5

v̂ar 0.0035 0.0032 0.0027 9.8539×10−6

CI 0.9460 0.9440 0.9470 0.9490

TM-Het
bias -0.0144 -0.0185 0.0001 -0.0002
var 0.0038 0.0034 0.0032 1.0396×10−5

v̂ar 0.0037 0.0032 0.0031 9.8539×10−6

CI 0.9210 0.9300 0.9480 0.9490
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Evaluation of Efficiency Loss from Proposed Method

Setting β̂1 β̂2 β̂3 σ̂2
U

bias -0.0013 0.0009 -0.0017 -3.9892×10−5

η∗1 = η10, η
∗
2 = η20 v̂ar 0.0044 0.0010 0.0013 9.9257×10−6

CI 0.9500 0.9500 0.9430 0.9430

bias -0.0001 0.0012 -0.0017 -3.9892×10−5

η∗1 6= η10, η
∗
2 = η20 v̂ar 0.0047 0.0010 0.0013 9.9257×10−6

CI 0.9480 0.9500 0.9430 0.9430

bias -0.0104 0.0007 -0.0063 -3.9892×10−5

η∗1 = η10, η
∗
2 6= η20 v̂ar 0.0052 0.0012 0.0018 9.9257×10−6

CI 0.9380 0.9490 0.9410 0.9430

bias -0.0081 0.0011 -0.0064 -3.9892×10−5

η∗1 6= η10, η
∗
2 6= η20 v̂ar 0.0065 0.0013 0.0019 9.9257×10−6

CI 0.9410 0.9470 0.9430 0.9430
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