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(2, F,P) : probability space

(Hot)(x) = Y o(y) + Vu(x)d(x), weQ, ¢e*(Z9)

ly—x|=1
{Vu(x)}xeze : i.i.d. with “good” distribution .
(1) Spectrum
o(H,) =X :=[-2d,2d] + supp p, a.s.

(2) Anderson localization : 3/(C X) s.t. o(H,) N/ is a.s. pp
with exponentially decaying e.f.’s.
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Let Hy := Hlpg ¢ with D-bc. Then 3IDS() s.t.

#{ ev.sof HL < E} = L9 IDS(E)(1+ o(1)), L— o0

(2) Level Statistics (Microscopic Limit, Minami 1996) :
Let Ep € | be in the “localized region”.

1
P (ﬁ{ ev.'sof H; in Eg + Ld[a/ﬁbk]} =n, k=1,2,--- ,K)
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Lo H (DS(Eo)(bk — ak))"™ o~ DS(Eo)(bc—ax)
00

where DS(Ep) := £ IDS(Eo).
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(1) Integrated Density of States (Macroscopic Limit) :
Let Hy := Hlpg ¢ with D-bc. Then 3IDS() s.t.

#{ ev.sof HL < E} = L9 IDS(E)(1+ o(1)), L— o0

(2) Level Statistics (Microscopic Limit, Minami 1996) :
Let Ep € | be in the “localized region”.

1
P (ﬁ{ ev.'sof H; in Eg + Ld[a/ﬁbk]} =n, k=1,2,--- ,K)

K n
Lo H (DS(Eo)(bk — ak))"™ o~ DS(Eo)(bc—ax)
00

where DS(Ep) = %IDS(EO). In other words,

£n = Zde(Ek(L)—EO)(dE) 4 Poisson(DS(Ep)dE)
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(1) (Macroscopic Limit) Let

dx € £2([0,L]) : normalized e.f. corresponding to Ex(L),
xk = (x)¢, € RY : localization center of ¢y.

Then

_ 1 v
§L = F Zé(Ek(L), Xk/Ld) — Vv dX, a.s.
k

where v is the IDS measure.
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(1) (Macroscopic Limit) Let

dx € £2([0,L]) : normalized e.f. corresponding to Ex(L),
xk = (x)¢, € RY : localization center of ¢y.

Then

— 1
§L = Fzé(Ek(L)’Xk/Ld) —V)V®dX, a.s.
k
where v is the IDS measure.
(2) (Microscopic Limit)

£ = Zé(Ld(Ek(L)on), /L9 i Poisson(DS(Ep)dE ® dx)
k
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IDS(E) =
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/Dsfree(E) = *\/E-

™

Dirichlet bc

0 < K1 < K.
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H = H’[O,L]a Dirichlet bc
IL??&\ Statistics “/{ = \/E”
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Then
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Ni(k1,k2) =

L
- (k2 — K1)

+Crandom(’€1, /f2) + MOO(’le '%2) + 0(1)

(2) (Critical Case) a = 3 :

Ni(k1,k2) =

L
;(Hz — K1)

+C(k1,k2) log L+ G(k1, Kk2)+/log L
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Fluctuation of IDS (Results 1)

s Theorem 0
(1) (AC case) a > 3 :

L
Ni(k1,k2) = = (K2 — K1)

+Crandom(’€1a /f2) + MOO(’le '%2) + 0(1)

(2) (Critical Case) a = 3 :

L
Ni(k1, k2) = = (k2 — K1)
+C(k1,k2) log L+ G(k1, Kk2)+/log L
(3) (PP Case) ar < 1

L
Ni(k1,k2) = - (K2 — K1)

+Go(K1. ko) LY72Y + Calky, o) L1173
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L
Ny (K1, k2) = - (k2 — K1)

IDS
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(3) (PP Case)ﬁ§a<ﬁ,m:2,3,-~,

L
Ni(k1, k2) = = (k2 — K1)
+C2(/<51, /12)L172a + C3(/€1, /€2)L173a + ..

+Cm(/€1, /€2)L1_ma + L%_OCG(Hl, KQ) + .-

Cj(k1, K2) 1 non-random const.’s

N

+C(K1,k2) log L+ G(k1,k2)\/logL+ ---
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Hi := H|p,, Dirichlet b.c. ,
0< /<a,2,0(L) < “%o+1(L) < .-+, positive e.v.'s of H;

Eo = k3 >0 : reference energy (fixed)

mngL) f@n+}(L) : Hn+?(L)

T
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§Li= Z OL(kn(L)—ro)-

n>ng
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Level statistics

Hi := H|p,, Dirichlet b.c. ,
0< m,Q,O(L) < “%o+1(L) < .-+, positive e.v.'s of H;

Eo = k3 >0 : reference energy (fixed)

kn(L)  Knt1(L) ”n+?(L)

|
|

T T | T
|

—>

~ L1 Ro

To study the local statistics of e.v.’s near Eg, we consider

§Li= Z OL(kn(L)—ro)-

n>ng

Problem : & —7 as L — oo.
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(

i) o>
& — (ii)a<

(i) a =

: clock process
: Poisson process

. limit of circular S-ensembles

IR =N [+
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(2) Krichevski-Valko-Virag (2012) :
For 1-dim discrete Sch. op., @ = %,
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Assumption (A)
Subsequence {L;} satisfies L; 728 50 and

IioLj = mjm + B8+ O(].), Jj — 00, mj € N, pe [0,71').
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Assume (A). Then we have

JI_I}TOE [e*ij(f)] = /Oﬂ— d,LL,B eXp < Zf nm — )

neZ

for some probability measure 15 on [0, 7).

N J
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Assume (A). Then we have

J|—|>r.20E [e*ij(f)] = /Oﬂ— d,uﬂ eXp < Zf nm — )

neZ

for some probability measure 15 on [0, 7).

Remark.
(1) pp = distribution of {f + lim;—0(0¢(ko) — Kot)}, 7

_ [ not uniform on [0, 7] « >
Ko uniform on [0, 7]

Q
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Fast Decay (o > 3) : Results
e Theorem 1 (AC-case = clock process) —

Assume (A). Then we have

j|_i>r’20E [e*ij(f)] = /07r dps(¢) exp ( Zf nm — )

neZ

for some probability measure 115 on [0, 7.

Remark.
(1) pp = distribution of {f + lim;—0(0¢(ko) — Kot)}, 7

_ [ not uniform on [0, 7] « >
Be = uniform on [0, 7] «a <

NN =

(2) pg : uniform on [0, 27], for CMV matrices (Killip-Stoiciu).
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To study the eigenvalue spacing in the second order, we set

Xj(n) := {(f‘?mj+n+1(Lj) — Kmn(Ly)) Lj — W}Ljh%,

where n € Z.
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2nd Limit Theorem

-~ Theorem 2 (2nd Limit Theorem)

{Xj(n)},,J%—>OO Gaussian system with covariance

_ C(ro)
8/@%

1
Re/ s720g2i(n=m)7s2(1 — cos 2rs)ds
0

C(k) == /M V(L + 2i/<;)—1F\2 dx.

J
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2nd Limit Theorem

-~ Theorem 2 (2nd Limit Theorem)

{Xj(n)},,J%—>OO Gaussian system with covariance

_ C(ro)
8/@%

C(k) == /M V(L + 2i/<;)—1F\2 dx.

1
Re/ 5720 g2(n=n")msp(1 _ cos27s)ds
0

So, roughly speaking,

1
(a+%)

(Gaussian)
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Sl If we consider two reference energies Ey # E(’), then the
Kotani,

Rl corresponding {X;(k)};, {X](k)}; jointly converge to two
Natano independent Gaussian systems.

DS EO Eé

Level Statistics
Ll il

{X;(k)} {Xj(K)}

~_

independent

Same for the critical case (a = 3).
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i6n ei01

P eit2 o ’A(eml,_” ’eie,,)‘;ﬁ
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A : Vandermonde determinant, 5 > 0.
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Definition
(1) The circular S-ensemble with n-points is given by

ei@,, i01

P ei@z o ’A(eml, e ei@,,) Ié]

e

A : Vandermonde determinant, 5 > 0.
(2) The scaling limit Cﬁc of the circular -ensemble is defined by

C[)g = I|m Zéng
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~ Theorem (Killip-Stoiciu (2009))

Characterization of Cjc

(vit(2nm + e)))]

~
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Characterization of Cjc

~ Theorem (Killip-Stoiciu (2009))

c 27
Ele (D =E [/O g exp (- > (vt + 9)))]

neZ

where {W(-)}+>0 is the strictly-increasing function valued
process s.t. {W¢(A)}¢>o0 is the solution to :

~
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Characterization of Cg

~ Theorem (Killip-Stoiciu (2009))

c 27
Ele (D =E [/O g exp (- > (vt + 9)))]

neZ

where {W(-)}+>0 is the strictly-increasing function valued
process s.t. {W¢(A)}¢>o0 is the solution to :

2

dW,(\) = Adt + VT

Re {(eiwt(/\) - 1)dZt},
Wo(A) =0

Z; . complex B.M.

~
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Gaussian -ensemble

Definition
(1) The Gaussian [3-ensemble with n-points is given by

P(A <X < - < Ap) ocexp (—f Zﬁ) AN
k=1

(2) The scaling limit Cﬁc of the Gaussian [-ensemble is defined
by

which is called the Sineg-process.
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Yo~ Theorem (Valko-Virag 2009)

Fumihiko

pakane Let () be the solution to the following SDE.
B —B¢ i
dai(A) =X\ i dt + Re [(e'*t — 1) dZ;],
E;jel Statistics ao()\) = 0'

Then for A > 0, t — |a¢(\)/27] is non-decreasing and
Qoo(A) := Flimoo ¢(X) € 27Z, a.s. Then Sineg-process
on each interval is given by

¢STh1, M) £ %o()\z)z;%o()\l).
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Remark

(1)(Valko-Virag (2009) Universality in the bulk)
Let 1, (reference energy) is away from the Tracy-Widom

region : n%(2f— |ien]) — oo.
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(1)(Valko-Virag (2009) Universality in the bulk)
Let 1, (reference energy) is away from the Tracy-Widom

region : n%(2f— |ien]) — oo.
Then

Z(S/\j — (g, where Aj :=\/4n — p2(\j — pn).
j=1
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Remark

(1)(Valko-Virag (2009) Universality in the bulk)
Let 1, (reference energy) is away from the Tracy-Widom

region : n%(2f— |ien]) — oo.
Then

Z(S/\j — (g, where Aj :=\/4n — p2(\j — pn).
j=1

(2) We have two SDE'’s which are similar each other, however,
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Remark

(1)(Valko-Virag (2009) Universality in the bulk)
Let 1, (reference energy) is away from the Tracy-Widom

region : n%(2f— |ien]) — oo.
Then

Z(S/\j — (g, where Aj :=\/4n — p2(\j — pn).
j=1

(2) We have two SDE'’s which are similar each other, however,

(i) Killip-Stoiciu : SDE has singularity at t = 0, but WK is
continuous for any t >0
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Remark

(1)(Valko-Virag (2009) Universality in the bulk)
Let 1, (reference energy) is away from the Tracy-Widom

region : n%(2f— |ien]) — oo.
Then

Z(S/\j — (g, where Aj :=\/4n — p2(\j — pn).
j=1

(2) We have two SDE'’s which are similar each other, however,

(i) Killip-Stoiciu : SDE has singularity at t = 0, but WK is
continuous for any t >0

ii) Valko-Virag : as no singularity, but VY € 27
(ii) Valko-Virag : SDE h ingularity, b \UYV 2nZ
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Go back to our model and let o« =

Critical Case

t72(1+ o(1)).

Theorem 3

(1) & ¢S,

~
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Go back to our model and let o« = 5

Theorem 3

L—o0

(1) &=

1

Critical Case

a(t) = t2(1+ o(1)).

.

(2) & "0 cs

~
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Critical Case

Go back to our model and let a = 3 : a(t) = t_%(l +0(1)).

Theorem 3

L& S, @a S
with 8 = B(Ep) = 8k3/C(ko) = v(Eo) L.

~
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<hinmich Go back to our model and let v = 5 : a(t) =t 2(1+ o(1)).
otank Theorem 3
FNakahn'; L . \
_)
()&=, (e
with 8 = B(Ep) = 8x3/C (ko) = v(Eo) !
. ~v(E) : “Lyapunov exponent” in the sense that the solution
Lejel Statistics w tO H¢ —= Ew Sat|sf|es ¢(X) ~ |X|7’Y(E)
J
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Critical Case

Go back to our model and let o = 3 : a(t) =t~ %(1 +0(1)).

e Theorem 3

L& S, @a S

with 8 = B(Ep) = 8x3/C (ko) = v(Eo) !
~v(E) : “Lyapunov exponent” in the sense that the solution
1 to Hy = Evp satisfies ¢(x) ~ |x|~(E),

~

J

e “Non-Universality”
0 p-p- E. s.C.
L | EO
0« 8 <2 g=2 8 >2 — 00

N

~

cf. Breuer, Forrester, Smilansky (2006)
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Coincidence of two (3-ensembles

e Corollary 4

The limits of Cg-ensemble and Gg-ensemble are equal :

¢5 £ 5.

for all B > 0.
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Coincidence of two (3-ensembles

e Corollary 4 ~N
The limits of Cg-ensemble and Gg-ensemble are equal :
¢5 £ 5.
for all B > 0.
N J
Remark

(1) This fact had previously been known for specific 5's, e.g.,
8=1224.
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Coincidence of two (3-ensembles

4
e Corollary ~
The limits of Cg-ensemble and Gg-ensemble are equal :
¢5 £ 5.
for all B > 0.
N J
Remark

(1) This fact had previously been known for specific 5's, e.g.,
3=1,24.

(2) Valko-Virag have “direct” proof of this fact (Valko, private
communication)
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Remarks
DS Sineg-process has a “phase transition” between at 3 = 2.

Level Statistics
(1)(Valko-Virag (2009))
(i) B < 2: W(X) approaches to 27Z from below a.s.
(i) B> 2: W¢(A) approaches to 27Z from above with pos.
prob.
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Remarks
DS Sineg-process has a “phase transition” between at 3 = 2.

Level Statistics
(1)(Valko-Virag (2009))
(i) B < 2: W(X) approaches to 27Z from below a.s.
(i) B> 2: W¢(A) approaches to 27Z from above with pos.
prob.

(2)(Valko, private communication)

d ..
IHpirac on s.t. o(Hpirac) = Sines.
8 < 2 = Hpjrac : limit point
B > 2 = Hpjpac : limit circle
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0 p-p. E. s.C.
L |
0« B<2 =2 8>2 S 00

(1) As 8 1 o0, Sineg < Clock process (u uniform on [0, 27])
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0+ fB<2 B=2 B>2 — 0
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(1) As 8 1 o0, Sineg < Clock process (u uniform on [0, 27])

(2) (Allez - Dumaz (2014))
As 310, Sineg < Poisson process with intensity (27) 1d\.
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PP case (o < 3)

Theorem 5 (PP case = Poisson process)

1
&1(dx) < Poisson <dx>
7r

~ Summary

(1) a>3: & (dx) < Clock process

(2) a=1:&(dx) 3 Sineg
() a<3:&(dx) < Poisson (Ldx)
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Let x; be the solution to H;x; = x°x; which we write in the
Shinnichi

Kotani, Prifer coordinate.
Fumihiko

Nakano x sinﬁ
t _ t _
<x{/n>_rt(c059t>’ B0 =0.

Let
IDS A
Level Statistics \UL()\) = 0L(K/O + z) _ HL(K;O)7 K’/O = /EO

be the relative Priifer phase.
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Outline of proof 1

Let x; be the solution to H;x; = x°x; which we write in the
Prifer coordinate.

Xt _ sin 0 _
<x{/n>_rt(c059t>’ fo = 0.

V(N =0 (ko + %) —01(ko), ko := VE

be the relative Priifer phase. Then we have

Let

Ele ¢t =E |exp | — > f (V' (7 = ¢(ro, 1))
n>n(L)—m(ko,L)

where 0 (ko, L) = m(ko, L)m + ¢(ko, L),
m(ko, L) € Z, ¢(ko, L) € [0, 7).
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Shinnic_hi (n)

W) = One(2) = O (o),

Nakano

1 nt ) .
~ At + Re/ a(s) (62’95("‘*) - e2’95(m)> F(Xs)ds
2K0 0

A
Ky =ko+— n>0, te]l0,1]
IDS n
Level Statistics

By using “lto’s formula”,

> F(Xs)ds = d(e*"°g.(Xs)) — €™V g, (Xs)dXs
g. = (L+2ir)"'F, L : generator of X;,
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Outline of Proof 2

We replace L by n, and consider

W(A) 1= Bae(k2) — bie(0),
nt ) .
~ At 1R€'/ a(s) (ez’es(”h) - e2’95(”°)> F(Xs)ds
0

2/<Lo

K) = Ko+ —
n

n>0, te]l0,1].

By using “lto’s formula”,

> F(Xs)ds = d(e*"°g.(Xs)) — €™V g, (Xs)dXs
g. = (L+2ir)"'F, L : generator of X;,

we have

" L1
U(A) ~ AL+ n2 o

ate}

t
Re/ s*a(e2’wg (O 1)Vg.dXs
0
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n 1_o 1

Outline of Proof 3

t .. n
Re/ s_‘)‘(emlg ‘o _ 1)Vg.dXs
0
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(2) Critical Case (@ = 1) : W{"(A\) % w,()) : sol. to SDE,
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(2) Critical Case (@ = 1) : W{"(A\) % w,()) : sol. to SDE,

(3) PP case (< 1) : \Ugn)(/\) < Poisson jump process.
(Using the idea of Allez - Dumaz(2014))
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(1) AC case (o > 1) : wiM(\) = At, ass.
Level Statistics

(2) Critical Case (@ = 1) : W{"(A\) % w,()) : sol. to SDE,

(3) PP case (< 1) : \Ugn)(/\) < Poisson jump process.
(Using the idea of Allez - Dumaz(2014))

Moreover in PP, W\ (\) % 7 Poissongz ([0, t] x [0, A]), with
intensity 11 17(s)dsd .
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In 1-dim, H = —A + AV generically has localization length
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~ N2

So, for Hy := Hljg 1], we expect

(1) L %(@ AL ﬁ) — "extended” = £; — clock
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(1) L %(@ AL ﬁ) — "extended” = £; — clock

2) L> %(@ A > ﬁ) — "localized” = £, — Poisson
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Decaying Coupling Model

In 1-dim, H = —A + AV generically has localization length
~ A2

~ N2

So, for Hy := Hljg 1], we expect

(1)L« )\2(<:> AL f) — “extended” = £, — clock
2) L> V(<:> A > 7) — "localized” = £, — Poisson

(B) L~ H(e A~ 7) = “critical” = {; — [-ensemble ?
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H)\ =

d2
dr?

= H)\L|[0,L]7

Hamiltonian

+ AF(X¢)

A =L"¢
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+ AF(Xt)

Hy = ——
A dt?
A =L"¢

Hy := Hx,l[o,135

Level Statistics

IDS
In this section, we always assume :
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Model |
Assumption Subseq. {L;} satisfies L; 72 %0 and

kolj = mim + 3+ o(1), j— oo.

for some m;j € N, g € [0, 7).
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Results

~

s Theorem
(1) (Extended) o > 3 = ¢ — (deterministic) clock pro-

cess with Gaussian 2nd order

(2) (Critical) @ = 3 = & — Sch,-process

(3) (Localized) o < & = &, — Poisson process
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