Density of states and level statistics for 1-d Schrödinger operators

> Shinnichi Kotani, Fumihiko Nakano

Backgroun

Decaying Potential Model IDS

Level Statisti

Decaying Coupling Model

References

Density of states and level statistics for 1-d Schrödinger operators

Shinnichi Kotani¹ Fumihiko Nakano²

¹Kwansei Gakuin University

²Gakushuin University

2016年4月12日

Backgroun

Potential Model

IDS Level Statistic

Decaying Coupling Model

Reference

1 Background

2 Decaying Potential Model IDS Level Statistics

3 Decaying Coupling Model

4 References

Decaying Potential Model

IDS Level Statistic

Coupling Model

Reference

Known Facts on RSO

 $(\Omega, \mathcal{F}, \textbf{P})$: probability space

$$(H_{\omega}\phi)(x) := \sum_{|y-x|=1} \phi(y) + V_{\omega}(x)\phi(x), \quad \omega \in \Omega, \quad \phi \in \ell^2(\mathbf{Z}^d)$$

 $\{V_{\omega}(x)\}_{x\in\mathbf{Z}^d}$: i.i.d. with "good" distribution μ .

Decaying Potential Model

IDS Level Statistic

Decaying Coupling Model

Reference

Known Facts on RSO

 $(\Omega, \mathcal{F}, \mathbf{P})$: probability space

$$(H_{\omega}\phi)(x):=\sum_{|y-x|=1}\phi(y)+V_{\omega}(x)\phi(x),\quad \omega\in\Omega,\quad \phi\in\ell^2(\mathbf{Z}^d)$$

 $\{V_{\omega}(x)\}_{x\in\mathbf{Z}^d}$: i.i.d. with "good" distribution μ .

(1) Spectrum

$$\sigma(H_{\omega}) = \Sigma := [-2d, 2d] + \text{ supp } \mu, \quad a.s.$$

Decaying Potential Model

IDS Level Statistic

Decaying Coupling Model

Reference

Known Facts on RSO

 $(\Omega, \mathcal{F}, \textbf{P})$: probability space

$$(H_{\omega}\phi)(x) := \sum_{|y-x|=1} \phi(y) + V_{\omega}(x)\phi(x), \quad \omega \in \Omega, \quad \phi \in \ell^2(\mathbf{Z}^d)$$

 $\{V_{\omega}(x)\}_{x\in\mathbf{Z}^d}$: i.i.d. with "good" distribution μ .

(1) Spectrum

$$\sigma(H_{\omega}) = \Sigma := [-2d, 2d] + \text{ supp } \mu, \quad a.s.$$

(2) Anderson localization : $\exists I (\subset \Sigma)$ s.t. $\sigma(H_{\omega}) \cap I$ is a.s. pp with exponentially decaying e.f.'s.

operators

Background

Decaying
Potential
Model
IDS
Level Statistics

Decaying Coupling Model

References

IDS and Level Statistics

(1) Integrated Density of States (Macroscopic Limit) : Let $H_L:=H|_{[0,L]^d}$ with D-bc.

Background

Decaying Potential Model IDS Level Statistic

Decayin Coupling

Reference

IDS and Level Statistics

(1) Integrated Density of States (Macroscopic Limit) : Let $H_L:=H|_{[0,L]^d}$ with D-bc. Then $\exists IDS(\cdot)$ s.t.

$$\sharp \{ \text{ e.v.'s of } H_L \leq E \} = L^d \cdot IDS(E)(1 + o(1)), \quad L \to \infty$$

Background

Decaying Potentia Model

IDS Level Statistic

Decaying Coupling

Reference

IDS and Level Statistics

(1) Integrated Density of States (Macroscopic Limit) : Let $H_L := H|_{[0,L]^d}$ with D-bc. Then $\exists IDS(\cdot)$ s.t.

$$\sharp \{ \text{ e.v.'s of } H_L \leq E \} = L^d \cdot IDS(E)(1 + o(1)), \quad L \to \infty$$

(2) Level Statistics (Microscopic Limit, Minami 1996) : Let $E_0 \in I$ be in the "localized region" .

IDS Level Statistic

Decaying Coupling Model

Reference

IDS and Level Statistics

(1) Integrated Density of States (Macroscopic Limit) : Let $H_L:=H|_{[0,L]^d}$ with D-bc. Then $\exists IDS(\cdot)$ s.t.

$$\sharp \{ \text{ e.v.'s of } H_L \leq E \} = L^d \cdot IDS(E)(1 + o(1)), \quad L \to \infty$$

(2) Level Statistics (Microscopic Limit, Minami 1996) : Let $E_0 \in I$ be in the "localized region".

$$\mathbf{P}\left(\sharp\left\{\text{ e.v.'s of }H_L\text{ in }E_0+\frac{1}{L^d}[a_k,b_k]\right\}=n_k,\ k=1,2,\cdots,K\right)$$

$$\stackrel{L\to\infty}{\to}\prod_{k=1}^K\frac{(DS(E_0)(b_k-a_k))^{n_k}}{(n_k!)}e^{-DS(E_0)(b_k-a_k)}$$

where $DS(E_0) := \frac{d}{dE}IDS(E_0)$.

Decaying Potentia Model

IDS Level Statistic

Decaying Coupling Model

Reference

IDS and Level Statistics

(1) Integrated Density of States (Macroscopic Limit) : Let $H_L:=H|_{[0,L]^d}$ with D-bc. Then $\exists IDS(\cdot)$ s.t.

$$\sharp \{ \text{ e.v.'s of } H_L \leq E \} = L^d \cdot IDS(E)(1 + o(1)), \quad L \to \infty$$

(2) Level Statistics (Microscopic Limit, Minami 1996) : Let $E_0 \in I$ be in the "localized region".

$$\mathbf{P}\left(\sharp\left\{\text{ e.v.'s of }H_L\text{ in }E_0+\frac{1}{L^d}[a_k,b_k]\right\}=n_k,\ k=1,2,\cdots,K\right)$$

$$\stackrel{L\to\infty}{\to}\prod_{k=1}^K\frac{(DS(E_0)(b_k-a_k))^{n_k}}{(n_k!)}e^{-DS(E_0)(b_k-a_k)}$$

where $DS(E_0) := \frac{d}{dE}IDS(E_0)$. In other words,

$$\xi_n := \sum_{L} \delta_{L^d(E_k(L) - E_0)}(dE) \stackrel{d}{ o} Poisson(DS(E_0)dE)$$

Decaying Potential Model IDS Level Statistics

Decaying Coupling Model

Reference

An Extension (Killip-N, N, 2007)

(1) (Macroscopic Limit) Let $\phi_k \in \ell^2([0,L]^d)$: normalized e.f. corresponding to $E_k(L)$,

Background

Decaying Potential Model IDS

Decaying Coupling

Reference

An Extension (Killip-N, N, 2007)

(1) (Macroscopic Limit) Let $\phi_k \in \ell^2([0,L]^d)$: normalized e.f. corresponding to $E_k(L)$, $x_k := \langle x \rangle_{\phi_k} \in \mathbf{R}^d$: localization center of ϕ_k .

Background

Decaying Potential Model

IDS Level Statistic

Decaying Coupling Model

Reference

An Extension (Killip-N, N, 2007)

(1) (Macroscopic Limit) Let $\phi_k \in \ell^2([0,L]^d)$: normalized e.f. corresponding to $E_k(L)$, $x_k := \langle x \rangle_{\phi_k} \in \mathbf{R}^d$: localization center of ϕ_k . Then

$$ar{\xi}_L := rac{1}{L^d} \sum_k \delta_{(E_k(L), \, x_k/L^d)} \stackrel{v}{
ightarrow}
u \otimes dx, \quad a.s.$$

where ν is the IDS measure.

Background

Decaying Potentia Model

IDS Level Statistic

Decaying Coupling Model

Reference

An Extension (Killip-N, N, 2007)

(1) (Macroscopic Limit) Let $\phi_k \in \ell^2([0,L]^d)$: normalized e.f. corresponding to $E_k(L)$, $x_k := \langle x \rangle_{\phi_k} \in \mathbf{R}^d$: localization center of ϕ_k . Then

$$ar{\xi}_L := rac{1}{L^d} \sum_k \delta_{(E_k(L), \, x_k/L^d)} \stackrel{v}{
ightarrow}
u \otimes dx, \quad a.s.$$

where ν is the IDS measure.

(2) (Microscopic Limit)

$$\xi_L := \sum_k \delta_{(L^d(E_k(L) - E_0), \ x_k/L^d)} \stackrel{d}{ o} \textit{Poisson}(\textit{DS}(E_0) \textit{dE} \otimes \textit{dx})$$

Deference

Decaying Potential Model

We consider

$$H:=-\frac{d^2}{dt^2}+a(t)F(X_t) \quad \text{on} \quad L^2(\mathbf{R})$$

where a: decaying factor, and F: random potential.

Reference

Decaying Potential Model

We consider

$$H:=-\frac{d^2}{dt^2}+a(t)F(X_t)\quad \text{on}\quad L^2(\mathbf{R})$$

where a: decaying factor, and F: random potential.

$$a(t) \in C^{\infty}(\mathbf{R}), \quad a(-t) = a(t), \quad \searrow \text{ for } t > 0$$

 $a(t) = t^{-\alpha}(1 + o(1)), \quad t \to \infty, \quad \alpha > 0$

Reference

Decaying Potential Model

We consider

$$H:=-\frac{d^2}{dt^2}+a(t)F(X_t)\quad \text{on}\quad L^2(\mathbf{R})$$

where a: decaying factor, and F: random potential.

$$a(t) \in C^{\infty}(\mathbf{R}), \quad a(-t) = a(t), \quad \searrow \text{ for } t > 0$$
 $a(t) = t^{-\alpha}(1 + o(1)), \quad t \to \infty, \quad \alpha > 0$
 $F \in C^{\infty}(M), \quad M : torus, \quad \langle F \rangle := \int_{M} F(x) dx = 0,$
 $\{X_{t}\}_{t \in \mathbf{R}} : \text{BM. on } M.$

Spectrum of *H*

Kotani-Ushiroya(1988) : $\sigma(H) \cap [0, \infty)$ is

Shinnichi Kotani, Fumihiko Nakano

Background

Decaying Potential Model IDS Level Statistics

Decaying Coupling Model

Reference

Decaying Potential Model IDS

Decaying

Reference

Spectrum of *H*

Kotani-Ushiroya(1988) : $\sigma(H) \cap [0, \infty)$ is

(1)(Rapid decay)

$$\alpha > \frac{1}{2} \implies \frac{ac}{0}$$

Backgroun

Decaying Potential Model

IDS Level Statisti

Coupling Model

Reference

Spectrum of H

Kotani-Ushiroya(1988) : $\sigma(H) \cap [0, \infty)$ is

(1)(Rapid decay)

$$\alpha > \frac{1}{2} \implies \qquad \qquad \frac{\mathsf{ac}}{\mathsf{0}}$$

(2)(Slow decay)

$$0 \le \alpha < \frac{1}{2} \implies \frac{pp}{0}$$

Backgroun

Decaying Potential Model

IDS Level Statistic

Decaying Coupling Model

Reference

Spectrum of H

Kotani-Ushiroya(1988) : $\sigma(H) \cap [0, \infty)$ is

(1)(Rapid decay)

$$\alpha > \frac{1}{2} \implies \qquad \qquad \frac{ac}{1}$$

(2)(Slow decay)

$$0 \le \alpha < \frac{1}{2} \implies \frac{pp}{0}$$

(3)(Critical decay)

$$\alpha = \frac{1}{2} \implies \frac{pp}{E_C}$$

Backgroun

Decaying Potentia Model

IDS

evel Statistic

Decaying Coupling Model

References

We have

$$IDS(E) = IDS_{free}(E) = \frac{1}{\pi}\sqrt{E}.$$

as far as $\alpha > 0$.

Backgroun

Potentia Model

IDS

Level Statistic

Coupling Model

References

We have

$$IDS(E) = IDS_{free}(E) = \frac{1}{\pi}\sqrt{E}.$$

as far as $\alpha > 0$. Let

$$H_L := H|_{[0,L]},$$
 Dirichlet bc

"
$$\kappa := \sqrt{E}$$
"

$$N_L(\kappa_1, \kappa_2) := \sharp \left\{ \text{ e.v.'s of } H_L \text{ in } (\kappa_1^2, \kappa_2^2) \right\}, \quad 0 < \kappa_1 < \kappa_2.$$

Backgroun

Decaying Potentia Model

IDS

Level Statistic

Coupling Model

Reference

We have

$$IDS(E) = IDS_{free}(E) = \frac{1}{\pi}\sqrt{E}.$$

as far as $\alpha > 0$. Let

$$H_L := H|_{[0,L]},$$
 Dirichlet bo
" $\kappa := \sqrt{F}$ "

$$N_L(\kappa_1, \kappa_2) := \sharp \{ \text{ e.v.'s of } H_L \text{ in } (\kappa_1^2, \kappa_2^2) \}, \quad 0 < \kappa_1 < \kappa_2.$$

Then

$$N_L(\kappa_1,\kappa_2) = rac{L}{\pi} \left(\kappa_2 - \kappa_1\right) (1 + o(1)), \quad L o \infty.$$

Backgroun

Decaying Potentia Model

IDS

Level Statistic

Coupling Model

Reference

We have

$$IDS(E) = IDS_{free}(E) = \frac{1}{\pi}\sqrt{E}.$$

as far as $\alpha > 0$. Let

$$H_L := H|_{[0,L]},$$
 Dirichlet bo

"
$$\kappa := \sqrt{E}$$
"

$$N_L(\kappa_1, \kappa_2) := \sharp \left\{ \text{ e.v.'s of } H_L \text{ in } (\kappa_1^2, \kappa_2^2) \right\}, \quad 0 < \kappa_1 < \kappa_2.$$

Then

$$N_L(\kappa_1,\kappa_2) = rac{L}{\pi} \left(\kappa_2 - \kappa_1\right) (1 + o(1)), \quad L o \infty.$$

Q: 2nd order ("CLT")?

Backgroun

Decayin Potentia Model

IDS

Level Statistic

Decaying Coupling Model

Reference

Fluctuation of IDS (Notation)

Let

(1) $\{G(x)\}_{x>0}$: the Gaussian field with

$$\langle G(x), G(y) \rangle = \delta_{xy} C(x),$$

(2) G_0 : a Gaussian independent of $\{G(\cdot)\}$.

Reference

Fluctuation of IDS (Notation)

Let

(1) $\{G(x)\}_{x>0}$: the Gaussian field with

$$\langle G(x), G(y) \rangle = \delta_{xy} C(x),$$

(2) G_0 : a Gaussian independent of $\{G(\cdot)\}$.

Further, let

$$G(\kappa_1, \kappa_2) := G(\kappa_2) - G(\kappa_1) + \left(\frac{1}{\kappa_1} - \frac{1}{\kappa_2}\right) G_0$$

evel Statistic

Decaying Coupling Model

Reference

Fluctuation of IDS (Results 1)

Theorem 0

(1) (AC case)
$$\alpha > \frac{1}{2}$$
 :

$$N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1) + C_{random}(\kappa_1, \kappa_2) + M_{\infty}(\kappa_1, \kappa_2) + o(1)$$

Decaying Potentia Model

IDS

Level Statistic

Decaying Coupling Model

Reference

Fluctuation of IDS (Results 1)

Theorem 0

(1) (AC case)
$$\alpha > \frac{1}{2}$$
 :

$$N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1) + C_{random}(\kappa_1, \kappa_2) + M_{\infty}(\kappa_1, \kappa_2) + o(1)$$

(2) (Critical Case)
$$\alpha = \frac{1}{2}$$
:

$$N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1) + C(\kappa_1, \kappa_2) \log L + G(\kappa_1, \kappa_2) \sqrt{\log L} + \cdots$$

IDS

Fluctuation of IDS (Results 1)

 $+C_{random}(\kappa_1,\kappa_2)+M_{\infty}(\kappa_1,\kappa_2)+o(1)$

 $+C(\kappa_1,\kappa_2)\log L+G(\kappa_1,\kappa_2)\sqrt{\log L+\cdots}$

 $+C_2(\kappa_1,\kappa_2)L^{1-2\alpha}+C_3(\kappa_1,\kappa_2)L^{1-3\alpha}+\cdots$

Theorem 0

(1) (AC case) $\alpha > \frac{1}{2}$:

(2) (Critical Case) $\alpha = \frac{1}{2}$:

 $N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1)$

(3) (PP Case) $\alpha < \frac{1}{2}$:

 $N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1)$

 $N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1)$

evel Statisti

Decaying Coupling Model

Reference

Fluctuation of IDS (Results 2)

Theorem 0 (continued)

(2) (Critical Case)
$$\alpha = \frac{1}{2}$$
:

$$N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1) + C(\kappa_1, \kappa_2) \log L + G(\kappa_1, \kappa_2) \sqrt{\log L} + \cdots$$

Level Statisti

Decaying Coupling Model

Reference

Fluctuation of IDS (Results 2)

Theorem 0 (continued)

(2) (Critical Case) $\alpha = \frac{1}{2}$:

$$N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1) + C(\kappa_1, \kappa_2) \log L + G(\kappa_1, \kappa_2) \sqrt{\log L} + \cdots$$

(3) (PP Case)
$$\frac{1}{2m} \le \alpha < \frac{1}{2(m-1)}$$
, $m=2,3,\cdots$, :

$$N_L(\kappa_1, \kappa_2) = \frac{L}{\pi} (\kappa_2 - \kappa_1)$$

$$+ C_2(\kappa_1, \kappa_2) L^{1-2\alpha} + C_3(\kappa_1, \kappa_2) L^{1-3\alpha} + \cdots$$

$$+ C_m(\kappa_1, \kappa_2) L^{1-m\alpha} + L^{\frac{1}{2}-\alpha} G(\kappa_1, \kappa_2) + \cdots$$

 $C_i(\kappa_1, \kappa_2)$: non-random const.'s

Background

Decaying Potential Model

Level Statistics

Decaying Coupling Model

References

Level statistics

 $\label{eq:HL} \textit{H}_{\textit{L}} := \textit{H}|_{[0,\textit{L}]}, \quad \text{ Dirichlet b.c. } \; ,$

ackground

Decaying Potentia Model

IDS

Level Statistics

Decaying Coupling

References

Level statistics

$$H_L:=H|_{[0,L]}, \quad \text{Dirichlet b.c.} \ ,$$

$$0<\kappa^2_{n_0}(L)<\kappa^2_{n_0+1}(L)<\cdots, \quad \text{positive e.v.'s of } H_L$$

Backgroun

Decaying Potential Model

IDS Level Statistics

Decaying Coupling

Reference

Level statistics

$$\begin{split} &H_L:=H|_{[0,L]}, \quad \text{Dirichlet b.c.} \ , \\ &0<\kappa_{n_0}^2(L)<\kappa_{n_0+1}^2(L)<\cdots, \quad \text{positive e.v.'s of } H_L \\ &E_0=\kappa_0^2>0 \ : \quad \text{reference energy (fixed)} \end{split}$$

IDS Level Statistics

Decaying Coupling

Reference

Level statistics

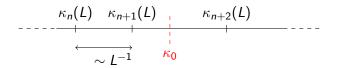
$$H_L := H|_{[0,L]}, \quad \text{Dirichlet b.c.} ,$$
 $0 < \kappa_{n_0}^2(L) < \kappa_{n_0+1}^2(L) < \cdots, \quad \text{positive e.v.'s of } H_L$ $E_0 = \kappa_0^2 > 0 : \quad \text{reference energy (fixed)}$

Decaying Coupling

Reference

Level statistics

$$H_L:=H|_{[0,L]}, \quad \text{Dirichlet b.c.} \ ,$$
 $0<\kappa^2_{n_0}(L)<\kappa^2_{n_0+1}(L)<\cdots, \quad \text{positive e.v.'s of } H_L$ $E_0=\kappa^2_0>0 \ : \quad \text{reference energy (fixed)}$



To study the local statistics of e.v.'s near E_0 , we consider

$$\xi_{L} := \sum_{n \geq n_0} \delta_{L(\kappa_n(L) - \kappa_0)}.$$

IDS Level Statistics

Decaying Coupling

Reference

Level statistics

$$H_L:=H|_{[0,L]}, \quad \text{Dirichlet b.c.} \ ,$$
 $0<\kappa^2_{n_0}(L)<\kappa^2_{n_0+1}(L)<\cdots, \quad \text{positive e.v.'s of } H_L$ $E_0=\kappa^2_0>0 \ : \quad \text{reference energy (fixed)}$

To study the local statistics of e.v.'s near E_0 , we consider

$$\xi_{L} := \sum_{n \geq n_0} \delta_{L(\kappa_n(L) - \kappa_0)}.$$

Problem : $\xi_L \rightarrow ?$ as $L \rightarrow \infty$.

Backgroun

Potential Model IDS

Level Statistics

Decaying Coupling Model

References

Known Results

(1) Killip-Stoiciu (2009) : For CMV matrices,

Backgroun

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling

Reference

Known Results

(1) Killip-Stoiciu (2009): For CMV matrices,

$$\xi_L \to \left\{ \begin{array}{l} \text{(i) } \alpha > \frac{1}{2} : \text{ clock process} \\ \text{(ii) } \alpha < \frac{1}{2} : \text{ Poisson process} \\ \text{(iii) } \alpha = \frac{1}{2} : \text{ limit of circular } \beta\text{-ensembles} \end{array} \right.$$

Decaying Coupling Model

Reference

Known Results

(1) Killip-Stoiciu (2009): For CMV matrices,

$$\xi_L \to \left\{ \begin{array}{c} \text{(i) } \alpha > \frac{1}{2} : \text{clock process} \\ \text{(ii) } \alpha < \frac{1}{2} : \text{Poisson process} \\ \text{(iii) } \alpha = \frac{1}{2} : \text{limit of circular } \beta\text{-ensembles} \end{array} \right.$$

(2) Krichevski-Valko-Virag (2012) : For 1-dim discrete Sch. op., $\alpha = \frac{1}{2}$,

Known Results

(1) Killip-Stoiciu (2009): For CMV matrices,

$$\xi_L \to \left\{ \begin{array}{c} \text{(i) } \alpha > \frac{1}{2} : \text{ clock process} \\ \text{(ii) } \alpha < \frac{1}{2} : \text{ Poisson process} \\ \text{(iii) } \alpha = \frac{1}{2} : \text{ limit of circular } \beta\text{-ensembles} \end{array} \right.$$

(2) Krichevski-Valko-Virag (2012) : For 1-dim discrete Sch. op., $\alpha = \frac{1}{2}$,

$$\xi_L \to \alpha = \frac{1}{2}$$
: Sine_{\beta}-process (limit of Gaussian \beta-ensembles)

Backgroun

Decaying Potentia Model

Level Statistics

Decaying Coupling

Deference

Fast Decay $(\alpha > \frac{1}{2})$: Assumption

For free Hamiltonian ($V\equiv 0$), $\kappa_n=n\pi/L$, so that the atoms of ξ_L are

$$L(\kappa_n - \kappa_0) = n\pi - \kappa_0 L.$$

Background

Decaying Potentia Model

Level Statistics

Decayin Coupling

Reference

Fast Decay $(\alpha > \frac{1}{2})$: Assumption

For free Hamiltonian ($V \equiv 0$), $\kappa_n = n\pi/L$, so that the atoms of ξ_L are

$$L(\kappa_n - \kappa_0) = n\pi - \kappa_0 L.$$

 $\kappa_0 L$: must converge modulo π .

Reference

Fast Decay $(\alpha > \frac{1}{2})$: Assumption

For free Hamiltonian ($V \equiv 0$), $\kappa_n = n\pi/L$, so that the atoms of ξ_L are

$$L(\kappa_n - \kappa_0) = n\pi - \kappa_0 L.$$

 $\kappa_0 L$: must converge modulo π .

Assumption (A)

Subsequence $\{L_j\}$ satisfies $L_j \overset{j \to \infty}{\to} \infty$ and

$$\kappa_0 L_j = m_j \pi + \frac{\beta}{\beta} + o(1), \quad j \to \infty, \quad m_j \in \mathbf{N}, \quad \frac{\beta}{\beta} \in [0, \pi).$$

Fast Decay $(\alpha > \frac{1}{2})$: Results

Theorem 1 (AC-case \Longrightarrow clock process)

Assume (A). Then we have

$$\lim_{j\to\infty} \mathbf{E}\left[e^{-\xi_{L_j}(f)}\right] = \int_0^\pi d\mu_\beta(\phi) \exp\left(-\sum_{n\in\mathbf{Z}} f(n\pi - \phi)\right)$$

for some probability measure μ_{β} on $[0,\pi]$.

Backgroun

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling Model

Reference

Fast Decay $(\alpha > \frac{1}{2})$: Results

Theorem 1 (AC-case \Longrightarrow clock process)

Assume (A). Then we have

$$\lim_{j\to\infty}\mathbf{E}\left[e^{-\xi_{L_j}(f)}\right] = \int_0^\pi d\mu_\beta(\phi) \exp\left(-\sum_{n\in\mathbf{Z}} f(n\pi-\phi)\right)$$

for some probability measure μ_{β} on $[0, \pi]$.

Remark.

(1)
$$\mu_{\beta} = \text{distribution of } \{\beta + \lim_{t \to \infty} (\theta_t(\kappa_0) - \kappa_0 t)\}_{\pi \mathbf{Z}}$$

$$\mu_{\beta} = \begin{cases} & \text{not uniform on } [0, \pi] \quad \alpha > \frac{1}{2} \\ & \text{uniform on } [0, \pi] \quad \alpha \leq \frac{1}{2} \end{cases}$$

Backgroun

Decaying Potentia Model

Level Statistics

Decaying Coupling Model

Reference

Fast Decay $(\alpha > \frac{1}{2})$: Results

- Theorem 1 (AC-case \Longrightarrow clock process)

Assume (A). Then we have

$$\lim_{j\to\infty} \mathbf{E}\left[e^{-\xi_{L_j}(f)}\right] = \int_0^\pi d\mu_\beta(\phi) \exp\left(-\sum_{n\in\mathbf{Z}} f(n\pi - \phi)\right)$$

for some probability measure μ_{β} on $[0, \pi]$.

Remark.

(1)
$$\mu_{\beta} = \text{distribution of } \{\beta + \lim_{t \to \infty} (\theta_t(\kappa_0) - \kappa_0 t)\}_{\pi \mathbf{Z}}$$

$$\mu_{\beta} = \begin{cases} & \text{not uniform on } [0, \pi] \quad \alpha > \frac{1}{2} \\ & \text{uniform on } [0, \pi] \quad \alpha \leq \frac{1}{2} \end{cases}$$

(2) μ_{β} : uniform on $[0, 2\pi]$, for CMV matrices (Killip-Stoiciu).

Backgroun

Decaying Potential Model

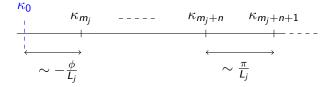
IDS

Level Statistics

Decaying Coupling Model

Reference

Eigenvalue spacing: 2nd order



Backgroun

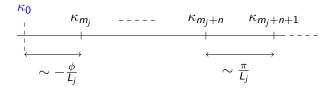
Decaying Potentia Model

Level Statistics

Decaying Coupling

Reference

Eigenvalue spacing: 2nd order



To study the eigenvalue spacing in the second order, we set

$$X_{j}(n) := \left\{ \left(\kappa_{m_{j}+n+1}(L_{j}) - \kappa_{m_{j}+n}(L_{j}) \right) L_{j} - \pi \right\} L_{j}^{\alpha - \frac{1}{2}},$$

where $n \in \mathbf{Z}$.

2nd Limit Theorem

- Theorem 2 (2nd Limit Theorem)

 $\{X_j(n)\}_n \overset{j o \infty}{ o}$ Gaussian system with covariance

$$C(n,n') := \frac{C(\kappa_0)}{8\kappa_0^2} Re \int_0^1 s^{-2\alpha} e^{2i(n-n')\pi s} 2(1-\cos 2\pi s) ds$$
$$C(\kappa) := \int_M \left| \nabla (L+2i\kappa)^{-1} F \right|^2 dx.$$

Backgroun

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling

Reference

2nd Limit Theorem

Theorem 2 (2nd Limit Theorem)

$$\{X_j(n)\}_n \overset{j \to \infty}{\to}$$
 Gaussian system with covariance

$$C(n,n') := \frac{C(\kappa_0)}{8\kappa_0^2} Re \int_0^1 s^{-2\alpha} e^{2i(n-n')\pi s} 2(1-\cos 2\pi s) ds$$
$$C(\kappa) := \int_M \left| \nabla (L+2i\kappa)^{-1} F \right|^2 dx.$$

So, roughly speaking,

$$\kappa_{m_j}$$
 ---- κ_{m_j+n} ---- κ_{m_j+n} ---- κ_{m_j} κ_0 κ_0

operators

Backgrour

Decaying Potentia Model

Level Statistics

Decaying Coupling Model

References

Two reference energies

Remark.

If we consider two reference energies $E_0 \neq E_0'$,

Background

Decaying Potentia Model

IDS Level Statistics

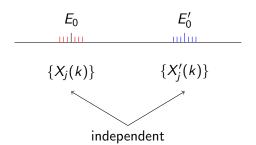
Coupling Model

Reference

Two reference energies

Remark.

If we consider two reference energies $E_0 \neq E_0'$, then the corresponding $\{X_j(k)\}_j$, $\{X_j'(k)\}_{j'}$ jointly converge to two independent Gaussian systems.



Same for the critical case $(\alpha = \frac{1}{2})$.

Backgroun

Decayin Potentia Model

IDS Level Statistics

Decaying Coupling

Reference

Circular β -ensemble

Definition

(1) The circular β -ensemble with n-points is given by

$$\mathbf{P} \left(egin{array}{c} \mathrm{e}^{i heta_n} \ \mathrm{e}^{i heta_1} \ \mathrm{e}^{i heta_2} \ \end{array}
ight) \propto | riangle (\mathrm{e}^{i heta_1},\cdots,\mathrm{e}^{i heta_n})|^{oldsymbol{eta}}$$

 \triangle : Vandermonde determinant, $\beta > 0$.

Decaying Potentia Model

IDS Level Statistics

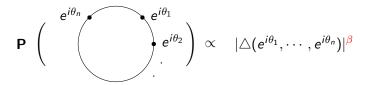
Decaying Coupling

Reference

Circular β -ensemble

Definition

(1) The circular β -ensemble with n-points is given by



- \triangle : Vandermonde determinant, $\beta > 0$.
- (2) The scaling limit ζ_{β}^{C} of the circular β -ensemble is defined by

$$\zeta_{\beta}^{\mathbf{C}} := \lim_{n \to \infty} \sum_{j=1}^{n} \delta_{n\theta_{j}}.$$

Backgroun

Decaying

Potentia Model

Level Statistics

Decayin Coupling

Reference

Characterization of $\zeta_{\beta}^{\mathcal{C}}$

Theorem (Killip-Stoiciu (2009))

$$\mathbf{E}[e^{-\zeta_{\beta}^{\mathcal{C}}(f)}] = \mathbf{E}\left[\int_{0}^{2\pi} \frac{d\theta}{2\pi} \exp\left(-\sum_{n \in \mathbf{Z}} f\left(\Psi_{1}^{-1}(2n\pi + \theta)\right)\right)\right]$$

Reference

Characterization of $\zeta_{\beta}^{\mathcal{C}}$

Theorem (Killip-Stoiciu (2009))

$$\mathbf{E}[e^{-\zeta_{\beta}^{\mathcal{C}}(f)}] = \mathbf{E}\left[\int_{0}^{2\pi} \frac{d\theta}{2\pi} \exp\left(-\sum_{n \in \mathbf{Z}} f\left(\Psi_{1}^{-1}(2n\pi + \theta)\right)\right)\right]$$

where $\{\Psi_t(\cdot)\}_{t\geq 0}$ is the strictly-increasing function valued process s.t. $\{\Psi_t(\lambda)\}_{t>0}$ is the solution to :

Backgroun

Decaying Potentia Model

Level Statistics

Decaying Coupling Model

Reference

Characterization of $\zeta_{\beta}^{\mathcal{C}}$

Theorem (Killip-Stoiciu (2009))

$$\mathbf{E}[e^{-\zeta_{\beta}^{\mathcal{C}}(f)}] = \mathbf{E}\left[\int_{0}^{2\pi} \frac{d\theta}{2\pi} \exp\left(-\sum_{n \in \mathbf{Z}} f\left(\Psi_{1}^{-1}(2n\pi + \theta)\right)\right)\right]$$

where $\{\Psi_t(\cdot)\}_{t\geq 0}$ is the strictly-increasing function valued process s.t. $\{\Psi_t(\lambda)\}_{t>0}$ is the solution to :

$$d\Psi_t(\lambda) = \lambda dt + rac{2}{\sqrt{\beta t}} Re \left\{ (e^{i\Psi_t(\lambda)} - 1) dZ_t
ight\},$$
 $\Psi_0(\lambda) = 0$

 Z_t : complex B.M.

Decayin Coupling

Reference

Gaussian β -ensemble

Definition

(1) The Gaussian β -ensemble with n-points is given by

$$\mathbf{P}\left(\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}\right) \propto \exp\left(-\frac{\beta}{4} \sum_{k=1}^{n} \lambda_{k}^{2}\right) \left|\triangle(\{\lambda_{j}\})\right|^{\beta}$$

Gaussian β -ensemble

Definition

(1) The Gaussian β -ensemble with n-points is given by

$$\mathbf{P}\left(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n\right) \propto \exp\left(-\frac{\beta}{4} \sum_{k=1}^n \lambda_k^2\right) \left|\triangle(\{\lambda_j\})\right|^{\beta}$$

(2) The scaling limit $\zeta_{\beta}^{\mathcal{G}}$ of the Gaussian β -ensemble is defined by

$$\zeta_{\beta}^{G} := \lim_{n \to \infty} \sum_{i=1}^{n} \delta_{\sqrt{4n}\lambda_{i}}$$

which is called the Sine β -process.

Characterization of ζ_{β}^{G}

Theorem (Valko-Virag 2009)

Let $\alpha_t(\lambda)$ be the solution to the following SDE.

$$d\alpha_t(\lambda) = \lambda \cdot \frac{\beta}{4} e^{-\frac{\beta}{4}t} dt + Re\left[\left(e^{i\alpha_t} - 1\right) dZ_t\right],$$

 $\alpha_0(\lambda) = 0.$

Then for $\lambda>0$, $t\mapsto \lfloor\alpha_t(\lambda)/2\pi\rfloor$ is non-decreasing and $\alpha_\infty(\lambda):=\exists \lim_{t\to\infty}\alpha_t(\lambda)\in 2\pi \mathbf{Z}$, a.s. Then Sine_β -process on each interval is given by

$$\zeta_{\beta}^{G}[\lambda_{1}, \lambda_{2}] \stackrel{d}{=} \frac{\alpha_{\infty}(\lambda_{2}) - \alpha_{\infty}(\lambda_{1})}{2\pi}.$$

Decaying Coupling

Reference

Remark

(1)(Valko-Virag (2009) Universality in the bulk) Let μ_n (reference energy) is away from the Tracy-Widom region : $n^{\frac{1}{6}}(2\sqrt{n} - |\mu_n|) \to \infty$.

Backgroun

Decaying Potentia Model

IDS Level Statistics

Docaving

Coupling Model

Reference

Remark

(1)(Valko-Virag (2009) Universality in the bulk) Let μ_n (reference energy) is away from the Tracy-Widom region : $n^{\frac{1}{6}}(2\sqrt{n}-|\mu_n|)\to\infty$. Then

$$\sum_{j=1}^n \delta_{\Lambda_j} o \zeta_{eta}^{oldsymbol{G}}, \quad ext{ where } \Lambda_j := \sqrt{4n - \mu_n^2} (\lambda_j - \mu_n).$$

Backgroun

Decaying Potentia Model

Level Statistics

Decaying Coupling Model

Reference

Remark

(1)(Valko-Virag (2009) Universality in the bulk) Let μ_n (reference energy) is away from the Tracy-Widom region : $n^{\frac{1}{6}}(2\sqrt{n}-|\mu_n|)\to\infty$. Then

$$\sum_{j=1}^n \delta_{\Lambda_j} \to \zeta_\beta^{\textit{G}}, \quad \text{ where } \Lambda_j := \sqrt{4n - \mu_n^2} (\lambda_j - \mu_n).$$

(2) We have two SDE's which are similar each other, however,

Backgroun

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling Model

Reference

Remark

(1)(Valko-Virag (2009) Universality in the bulk) Let μ_n (reference energy) is away from the Tracy-Widom region : $n^{\frac{1}{6}}(2\sqrt{n}-|\mu_n|)\to\infty$. Then

$$\sum_{j=1}^n \delta_{\Lambda_j} \to \zeta_\beta^{\textbf{\textit{G}}}, \quad \text{ where } \Lambda_j := \sqrt{4n - \mu_n^2} (\lambda_j - \mu_n).$$

- (2) We have two SDE's which are similar each other, however,
- (i) Killip-Stoiciu : SDE has singularity at t=0, but Ψ_t^{KS} is continuous for any t>0

Remark

(1)(Valko-Virag (2009) Universality in the bulk) Let μ_n (reference energy) is away from the Tracy-Widom region : $n^{\frac{1}{6}}(2\sqrt{n}-|\mu_n|)\to\infty$. Then

$$\sum_{j=1}^n \delta_{\Lambda_j} \to \zeta_\beta^{\textbf{\textit{G}}}, \quad \text{ where } \Lambda_j := \sqrt{4n - \mu_n^2} (\lambda_j - \mu_n).$$

- (2) We have two SDE's which are similar each other, however,
- (i) Killip-Stoiciu : SDE has singularity at t=0, but Ψ_t^{KS} is continuous for any t>0
- (ii) Valko-Virag : SDE has no singularity, but $\Psi_{t-}^{VV} \in 2\pi \mathbf{Z}$

Model

Level Statistics

Couplin Model

Reference

Critical Case

Go back to our model and let $\alpha = \frac{1}{2}$: $a(t) = t^{-\frac{1}{2}}(1 + o(1))$.

Theorem 3

$$(1) \; \xi_L \stackrel{L \to \infty}{\to} \zeta_{\beta}^{\mathbf{C}},$$

Level Statistics

Critical Case

Go back to our model and let $\alpha = \frac{1}{2}$: $a(t) = t^{-\frac{1}{2}}(1 + o(1))$.

Theorem 3

$$(1) \ \xi_L \stackrel{L \to \infty}{\to} \zeta_{\beta}^{\mathbf{C}}, \qquad (2) \ \xi_L \stackrel{L \to \infty}{\to} \zeta_{\beta}^{\mathbf{G}}$$

$$(2) \; \xi_L \stackrel{L \to \infty}{\to} \zeta_\beta^{\mathbf{G}}$$

Backgroun

Decaying Potentia Model

Level Statistics

Decayin Coupling Model

Reference

Critical Case

Go back to our model and let $\alpha = \frac{1}{2}$: $a(t) = t^{-\frac{1}{2}}(1 + o(1))$.

Theorem 3

$$\begin{array}{l} \text{(1) } \xi_L \overset{L \to \infty}{\to} \zeta_\beta^{\textcolor{red}{\textbf{C}}}, & \text{(2) } \xi_L \overset{L \to \infty}{\to} \zeta_\beta^{\textcolor{red}{\textbf{G}}} \\ \text{with } \beta = \beta(\textit{E}_0) = 8\kappa_0^2/\textit{C}(\kappa_0) = \gamma(\textit{E}_0)^{-1}. \end{array}$$

Backgroun

Decaying Potential Model

Level Statistics

Decaying Coupling Model

Reference

Critical Case

Go back to our model and let $\alpha = \frac{1}{2}$: $a(t) = t^{-\frac{1}{2}}(1 + o(1))$.

Theorem 3

(1)
$$\xi_L \stackrel{L \to \infty}{\to} \zeta_{\beta}^{\mathbf{C}}$$
, (2) $\xi_L \stackrel{L \to \infty}{\to} \zeta_{\beta}^{\mathbf{G}}$

with
$$\beta = \beta(E_0) = 8\kappa_0^2/C(\kappa_0) = \gamma(E_0)^{-1}$$
.

 $\gamma(E)$: "Lyapunov exponent" in the sense that the solution ψ to $H\psi=E\psi$ satisfies $\psi(x)\sim |x|^{-\gamma(E)}$.

Background

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling

Reference

Critical Case

Go back to our model and let $\alpha = \frac{1}{2}$: $a(t) = t^{-\frac{1}{2}}(1 + o(1))$.

Theorem 3

$$(1) \ \xi_L \stackrel{L \to \infty}{\to} \zeta_{\beta}^{\mathbf{C}}, \qquad (2) \ \xi_L \stackrel{L \to \infty}{\to} \zeta_{\beta}^{\mathbf{G}}$$

with
$$\beta = \beta(E_0) = 8\kappa_0^2/C(\kappa_0) = \gamma(E_0)^{-1}$$
.

 $\gamma(E)$: "Lyapunov exponent" in the sense that the solution ψ to $H\psi=E\psi$ satisfies $\psi(x)\sim |x|^{-\gamma(E)}$.

"Non-Universality"

$$\begin{array}{cccc}
0 & \text{p.p.} & E_c & \text{s.c.} \\
& & & \\
0 \leftarrow & \beta < 2 & \beta = 2 & \beta > 2 & \rightarrow \infty
\end{array}$$

cf. Breuer, Forrester, Smilansky (2006)

Reference

Coincidence of two β -ensembles

Corollary 4

The limits of C_{eta} -ensemble and G_{eta} -ensemble are equal :

$$\zeta_{\beta}^{C} \stackrel{d}{=} \zeta_{\beta}^{G}$$
.

for all $\beta > 0$.

Coincidence of two β -ensembles

Corollary 4

The limits of C_{β} -ensemble and G_{β} -ensemble are equal :

$$\zeta_{\beta}^{C} \stackrel{d}{=} \zeta_{\beta}^{G}$$
.

for all $\beta > 0$.

Remark

(1) This fact had previously been known for specific β 's, e.g., $\beta=1,2,4$.

Coincidence of two β -ensembles

Corollary 4

The limits of C_{eta} -ensemble and G_{eta} -ensemble are equal :

$$\zeta_{\beta}^{C} \stackrel{d}{=} \zeta_{\beta}^{G}$$
.

for all $\beta > 0$.

Remark

- (1) This fact had previously been known for specific β 's, e.g., $\beta = 1, 2, 4$.
- (2) Valko-Virag have "direct" proof of this fact (Valko, private communication)

ackground

Decaying Potentia Model

Level Statistics

Decaying Coupling Model

Reference

Remarks

0 p.p.
$$E_c$$
 s.c.
$$\beta < 2 \qquad \beta = 2 \qquad \beta > 2$$

ackgroun

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling Model

Reference

Remarks

0 p.p.
$$E_c$$
 s.c.
$$\beta < 2 \qquad \beta = 2 \qquad \beta > 2$$

Remarks

 $\mathsf{Sine}_{\beta}\text{-process}$ has a "phase transition" between at $\beta=2$.

Backgroun

Decaying Potential Model

IDS Level Statistics

Decaying Coupling Model

Reference

Remarks

0 p.p.
$$E_c$$
 s.c.
$$\beta < 2 \qquad \beta = 2 \qquad \beta > 2$$

Remarks

Sine_{β}-process has a "phase transition" between at $\beta = 2$.

- (1)(Valko-Virag (2009))
- (i) $\beta < 2$: $\Psi_t(\lambda)$ approaches to $2\pi \mathbf{Z}$ from below a.s.
- (ii) $\beta > 2$: $\Psi_t(\lambda)$ approaches to $2\pi \mathbf{Z}$ from above with pos. prob.

Backgroun

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling Model

Reference

Remarks

0 p.p.
$$E_c$$
 s.c.
$$\beta < 2 \qquad \beta = 2 \qquad \beta > 2$$

Remarks

 $\mathsf{Sine}_{\beta}\text{-process}$ has a "phase transition" between at $\beta=2$.

- (1)(Valko-Virag (2009))
- (i) $\beta < 2$: $\Psi_t(\lambda)$ approaches to $2\pi \mathbf{Z}$ from below a.s.
- (ii) $\beta > 2$: $\Psi_t(\lambda)$ approaches to $2\pi \mathbf{Z}$ from above with pos. prob.
- (2)(Valko, private communication)
- $\exists H_{Dirac}$ on s.t. $\sigma(H_{Dirac}) \stackrel{d}{=} Sine_{\beta}$.
- $\beta \leq 2 \Longrightarrow H_{Dirac}$: limit point
- $\beta > 2 \Longrightarrow H_{Dirac}$: limit circle

Backgroun

Decaying Potentia Model

IDS

Level Statistics

Decaying Coupling Model

References

Remarks(Continued)

Backgroun

Decaying Potentia Model

IDS Level Statistics

Decaying

Reference

Remarks(Continued)

$$\begin{array}{cccc}
0 & \text{p.p.} & E_c & \text{s.c.} \\
& & & & \\
0 \leftarrow & \beta < 2 & \beta = 2 & \beta > 2 & \rightarrow \infty
\end{array}$$

(1) As $\beta \uparrow \infty$, Sine $_{\beta} \stackrel{d}{\to}$ Clock process (μ uniform on $[0, 2\pi]$)

Background

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling

Reference

Remarks(Continued)

$$0 \quad \text{p.p.} \quad E_c \quad \text{s.c.}$$

$$0 \leftarrow \beta < 2 \quad \beta = 2 \quad \beta > 2 \quad \rightarrow \infty$$

- (1) As $\beta \uparrow \infty$, Sine $_{\beta} \stackrel{d}{\to}$ Clock process (μ uniform on $[0, 2\pi]$)
- (2) (Allez Dumaz (2014)) As $\beta \downarrow 0$, Sine $_{\beta} \stackrel{d}{\to}$ Poisson process with intensity $(2\pi)^{-1}d\lambda$.

Decayin Coupling Model

Reference

PP case
$$(\alpha < \frac{1}{2})$$

Theorem 5 (PP case \Longrightarrow Poisson process)

$$\xi_L(dx) \stackrel{d}{\to} \mathsf{Poisson}\left(\frac{1}{\pi}dx\right)$$

Reference

PP case
$$(\alpha < \frac{1}{2})$$

Theorem 5 (PP case \Longrightarrow Poisson process)

$$\xi_L(dx) \stackrel{d}{\to} \text{Poisson}\left(\frac{1}{\pi}dx\right)$$

Summary

(1)
$$\alpha > \frac{1}{2}$$
 : $\xi_L(dx) \stackrel{d}{\rightarrow} \text{Clock process}$

(2)
$$\alpha = \frac{1}{2} : \xi_L(dx) \stackrel{d}{\to} Sine_{\beta}$$

(3)
$$\alpha < \frac{1}{2} : \xi_L(dx) \xrightarrow{d} \text{Poisson} \left(\frac{1}{\pi} dx\right)$$

ackground

Decaying Potentia Model

Level Statistics

Decaying Coupling

Reference

Outline of proof 1

Let x_t be the solution to $H_L x_t = \kappa^2 x_t$ which we write in the Prüfer coordinate.

$$\begin{pmatrix} x_t \\ x'_t/\kappa \end{pmatrix} = r_t \begin{pmatrix} \sin \theta_t \\ \cos \theta_t \end{pmatrix}, \quad \theta_0 = 0.$$

Reference

Outline of proof 1

Let x_t be the solution to $H_L x_t = \kappa^2 x_t$ which we write in the Prüfer coordinate.

$$\begin{pmatrix} x_t \\ x'_t/\kappa \end{pmatrix} = r_t \begin{pmatrix} \sin \theta_t \\ \cos \theta_t \end{pmatrix}, \quad \theta_0 = 0.$$

Let

$$\Psi_L(\lambda) := \theta_L(\kappa_0 + \frac{\lambda}{L}) - \theta_L(\kappa_0), \quad \kappa_0 := \sqrt{E_0}$$

be the relative Prüfer phase.

Background

Decaying Potentia Model

IDS Level Statistics

Decaying Coupling Model

Reference

Outline of proof 1

Let x_t be the solution to $H_L x_t = \kappa^2 x_t$ which we write in the Prüfer coordinate.

$$\left(\begin{array}{c} x_t \\ x_t'/\kappa \end{array}\right) = r_t \left(\begin{array}{c} \sin \theta_t \\ \cos \theta_t \end{array}\right), \quad \theta_0 = 0.$$

Let

$$\Psi_L(\lambda) := \theta_L(\kappa_0 + \frac{\lambda}{L}) - \theta_L(\kappa_0), \quad \kappa_0 := \sqrt{E_0}$$

be the relative Prüfer phase. Then we have

$$\mathbf{E}[e^{-\xi_L(f)}] = \mathbf{E}\left[\exp\left(-\sum_{n \geq n(L) - m(\kappa_0, L)} f\left(\Psi_L^{-1}(n\pi - \phi(\kappa_0, L))\right)\right)\right]$$

where
$$\theta_L(\kappa_0, L) = m(\kappa_0, L)\pi + \phi(\kappa_0, L)$$
, $m(\kappa_0, L) \in \mathbf{Z}$, $\phi(\kappa_0, L) \in [0, \pi)$.

Decaying Potentia Model

Level Statistics

Decayin Coupling Model

Reference

Outline of Proof 2

We replace L by n, and consider

$$\begin{split} & \Psi_t^{(n)}(\lambda) := \theta_{nt}(\kappa_{\lambda}) - \theta_{nt}(\kappa_{0}), \\ & \sim \lambda t + \frac{1}{2\kappa_{0}} Re \int_{0}^{nt} a(s) \left(e^{2i\theta_{s}(\kappa_{\lambda})} - e^{2i\theta_{s}(\kappa_{0})} \right) F(X_{s}) ds \\ & \kappa_{\lambda} := \kappa_{0} + \frac{\lambda}{n} \quad n > 0, \quad t \in [0, 1]. \end{split}$$

Decaying Potentia Model

Level Statistics

Decaying Coupling Model

Reference

Outline of Proof 2

We replace L by n, and consider

$$\begin{split} & \Psi_t^{(n)}(\lambda) := \theta_{nt}(\kappa_{\lambda}) - \theta_{nt}(\kappa_{0}), \\ & \sim \lambda t + \frac{1}{2\kappa_{0}} Re \int_{0}^{nt} a(s) \left(e^{2i\theta_{s}(\kappa_{\lambda})} - e^{2i\theta_{s}(\kappa_{0})} \right) F(X_{s}) ds \\ & \kappa_{\lambda} := \kappa_{0} + \frac{\lambda}{n} \quad n > 0, \quad t \in [0, 1]. \end{split}$$

By using "Ito's formula",

$$e^{2i\kappa s}F(X_s)ds = d(e^{2i\kappa s}g_{\kappa}(X_s)) - e^{2i\kappa s}\nabla g_{\kappa}(X_s)dX_s$$

 $g_{\kappa} := (L+2i\kappa)^{-1}F, \quad L : \text{generator of } X_s,$

operators

Decaying Potentia Model

Level Statistics

Decaying Coupling Model

Reference

Outline of Proof 2

We replace L by n, and consider

$$\begin{split} & \Psi_t^{(n)}(\lambda) := \theta_{nt}(\kappa_{\lambda}) - \theta_{nt}(\kappa_{0}), \\ & \sim \lambda t + \frac{1}{2\kappa_{0}} Re \int_{0}^{nt} a(s) \left(e^{2i\theta_{s}(\kappa_{\lambda})} - e^{2i\theta_{s}(\kappa_{0})} \right) F(X_{s}) ds \\ & \kappa_{\lambda} := \kappa_{0} + \frac{\lambda}{n} \quad n > 0, \quad t \in [0, 1]. \end{split}$$

By using "Ito's formula",

$$e^{2i\kappa s}F(X_s)ds = d(e^{2i\kappa s}g_{\kappa}(X_s)) - e^{2i\kappa s}\nabla g_{\kappa}(X_s)dX_s$$

 $g_{\kappa} := (L+2i\kappa)^{-1}F, \quad L: \text{generator of } X_s,$

we have

$$\Psi_t^{(n)}(\lambda) \sim \lambda t + n^{\frac{1}{2}-lpha} rac{1}{2\kappa_0} Re \int_0^t s^{-lpha} (e^{2i\Psi_s^{(n)}(\lambda)} - 1) \nabla g_\kappa dX_s$$

ackground

Decaying Potentia Model

IDS

Level Statistics

Decaying Coupling Model

Reference

$$\Psi_t^{(n)}(\lambda) \sim \lambda t + n^{\frac{1}{2}-\alpha} \frac{1}{2\kappa_0} Re \int_0^t s^{-\alpha} (e^{2i\Psi_s^{(n)}(\lambda)} - 1) \nabla g_\kappa dX_s$$

ackgroun

Decaying Potential Model

Level Statistics

Decayin Coupling Model

Reference

$$\Psi_t^{(n)}(\lambda) \sim \lambda t + n^{\frac{1}{2}-\alpha} \frac{1}{2\kappa_0} Re \int_0^t s^{-\alpha} (e^{2i\Psi_s^{(n)}(\lambda)} - 1) \nabla g_\kappa dX_s$$

(1) AC case
$$(\alpha > \frac{1}{2}): \Psi_t^{(n)}(\lambda) \to \lambda t$$
, a.s.

$$\Psi_t^{(n)}(\lambda) \sim \lambda t + n^{rac{1}{2}-lpha} rac{1}{2\kappa_0} Re \int_0^t s^{-lpha} (e^{2i\Psi_s^{(n)}(\lambda)} - 1)
abla g_\kappa dX_s$$

(1) AC case
$$(\alpha>\frac{1}{2}): \Psi_t^{(n)}(\lambda) o \lambda t$$
, a.s.

(2) Critical Case
$$(\alpha = \frac{1}{2}) : \Psi_t^{(n)}(\lambda) \stackrel{d}{\to} \Psi_t(\lambda) : \text{sol. to SDE,}$$

Reference

$$\Psi_t^{(n)}(\lambda) \sim \lambda t + n^{rac{1}{2}-lpha} rac{1}{2\kappa_0} ext{Re} \int_0^t s^{-lpha} (e^{2i\Psi_s^{(n)}(\lambda)} - 1)
abla g_\kappa dX_s$$

- (1) AC case $(\alpha>\frac{1}{2}): \Psi_t^{(n)}(\lambda) o \lambda t$, a.s.
- (2) Critical Case $(\alpha = \frac{1}{2}) : \Psi_t^{(n)}(\lambda) \stackrel{d}{\to} \Psi_t(\lambda) : \text{sol. to SDE,}$
- (3) PP case $(\alpha < \frac{1}{2}) : \Psi_t^{(n)}(\lambda) \stackrel{d}{\to}$ Poisson jump process. (Using the idea of Allez Dumaz(2014))

Outline of Proof 3

$$\Psi_t^{(n)}(\lambda) \sim \lambda t + n^{rac{1}{2}-lpha} rac{1}{2\kappa_0} ext{Re} \int_0^t s^{-lpha} (\mathrm{e}^{2i\Psi_s^{(n)}(\lambda)} - 1)
abla g_\kappa dX_s$$

- (1) AC case $(\alpha>\frac{1}{2}): \Psi_t^{(n)}(\lambda) o \lambda t$, a.s.
- (2) Critical Case $(\alpha = \frac{1}{2}) : \Psi_t^{(n)}(\lambda) \stackrel{d}{\to} \Psi_t(\lambda) : \text{sol. to SDE,}$
- (3) PP case $(\alpha < \frac{1}{2}): \Psi_t^{(n)}(\lambda) \stackrel{d}{\to}$ Poisson jump process. (Using the idea of Allez Dumaz(2014))

Moreover in PP, $\Psi_t^{(n)}(\lambda) \stackrel{d}{\to} \pi Poisson_{\mathbb{R}^2}([0,t] \times [0,\lambda])$, with intensity $\pi^{-1}1_{[0,1]}(s)dsd\lambda$.

ackground

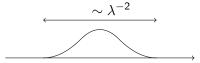
Potential Model IDS

Decaying Coupling Model

Defenses

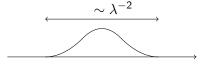
Decaying Coupling Model

In 1-dim, $H=-\triangle+\lambda V$ generically has localization length $\sim \lambda^{-2}$.



Decaying Coupling Model

In 1-dim, $H=-\triangle+\lambda V$ generically has localization length $\sim \lambda^{-2}$.

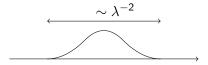


So, for
$$H_L := H|_{[0,L]}$$
,

Reference

Decaying Coupling Model

In 1-dim, $H=-\triangle+\lambda V$ generically has localization length $\sim \lambda^{-2}$.



So, for $H_L := H|_{[0,L]}$, we expect

(1)
$$L \ll \frac{1}{\lambda^2} (\Leftrightarrow \lambda \ll \frac{1}{\sqrt{L}}) \Longrightarrow$$
 "extended" $\Longrightarrow \xi_L \to \operatorname{clock}$

IDS Level Statisti

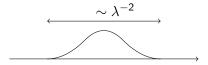
Decaying Coupling

Model

Reference

Decaying Coupling Model

In 1-dim, $H=-\triangle+\lambda V$ generically has localization length $\sim \lambda^{-2}$.



So, for $H_L := H|_{[0,L]}$, we expect

(1)
$$L \ll \frac{1}{\lambda^2} (\Leftrightarrow \lambda \ll \frac{1}{\sqrt{I}}) \Longrightarrow$$
 "extended" $\Longrightarrow \xi_L \to \operatorname{clock}$

(2)
$$L \gg \frac{1}{\lambda^2} (\Leftrightarrow \lambda \gg \frac{1}{\sqrt{L}}) \Longrightarrow$$
 "localized" $\Longrightarrow \xi_L \to \text{Poisson}$

Backgroun

Decaying Potentia Model

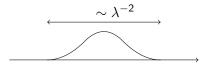
IDS Level Statistic

Decaying Coupling Model

Reference

Decaying Coupling Model

In 1-dim, $H=-\triangle+\lambda V$ generically has localization length $\sim \lambda^{-2}$.



So, for $H_L := H|_{[0,L]}$, we expect

(1)
$$L \ll \frac{1}{\lambda^2} (\Leftrightarrow \lambda \ll \frac{1}{\sqrt{I}}) \Longrightarrow$$
 "extended" $\Longrightarrow \xi_L \to \operatorname{clock}$

(2)
$$L \gg \frac{1}{\lambda^2} (\Leftrightarrow \lambda \gg \frac{1}{\sqrt{I}}) \Longrightarrow$$
 "localized" $\Longrightarrow \xi_L \to \mathsf{Poisson}$

(3)
$$L \sim \frac{1}{\lambda^2} (\Leftrightarrow \lambda \sim \frac{1}{\sqrt{L}}) \Longrightarrow$$
 "critical" $\Longrightarrow \xi_L \to \beta$ -ensemble ?

ackgroun

Decaying Potential Model IDS

Decaying Coupling Model

References

Hamiltonian

$$H_{\lambda} := -\frac{d^2}{dt^2} + \lambda F(X_t)$$

ackgroun

Decaying Potential Model

Level Statist

Decaying Coupling Model

Reference

Hamiltonian

$$egin{aligned} & H_{\lambda} := -rac{d^2}{dt^2} + \lambda F(X_t) \ & H_{L} := H_{\lambda_L}|_{[0,L]}, \quad \lambda_L = L^{-lpha} \end{aligned}$$

Background

Decaying Potentia Model

IDS Level Statisti

Decaying Coupling Model

Reference

Hamiltonian

$$H_{\lambda} := -\frac{d^2}{dt^2} + \lambda F(X_t)$$
 $H_L := H_{\lambda_L}|_{[0,L]}, \quad \lambda_L = L^{-\alpha}$

In this section, we always assume :

Assumption Subseq. $\{L_j\}$ satisfies $L_j \stackrel{j \to \infty}{\to} \infty$ and

$$\kappa_0 L_j = m_j \pi + \beta + o(1), \quad j \to \infty.$$

for some $m_j \in \mathbf{N}$, $\beta \in [0, \pi)$.

Backgroun

Decaying Potentia Model

Level Statisti

Decaying Coupling Model

Reference

Results

Theorem

(1) (Extended) $\alpha > \frac{1}{2} \Longrightarrow \xi_L \to \text{(deterministic) clock process with Gaussian 2nd order}$

Nakano

Level Statisti

Decaying Coupling Model

Reference

Results

Theorem

- (1) (Extended) $\alpha>\frac{1}{2}\Longrightarrow \xi_L\to$ (deterministic) clock process with Gaussian 2nd order
- (2) (Critical) $\alpha = \frac{1}{2} \Longrightarrow \xi_L \to \mathsf{Sch}_{\tau}\mathsf{-process}$

Results

Theorem

- (1) (Extended) $\alpha > \frac{1}{2} \Longrightarrow \xi_L \to$ (deterministic) clock process with Gaussian 2nd order
- (2) (Critical) $\alpha = \frac{1}{2} \Longrightarrow \xi_L \to \mathsf{Sch}_{\tau}\mathsf{-process}$
- (3) (Localized) $\alpha < \frac{1}{2} \Longrightarrow \xi_L \to \text{Poisson process}$

Backgroun

Decaying Potentia Model

IDS Level Statistic

Decaying Coupling Model

References

References

[1] S. Kotani and F. Nakano Level statistics for the one-dimensional Schrödinger operators with random decaying potential, Interdisciplinary Mathematical Sciences, **17**(2014), 343-373.

[2] F. Nakano Level statistics for one-dimensional Schrödinger operators and Gaussian beta ensemble, J. Stat. Phys. 156(2014), 66-93.

[3] S. Kotani and F. Nakano, Poisson statistics for 1d Schrödinger operators with random decaying potentials, preprint.

[4] F. Nakano, Fluctuation of density of states for 1d Schrödinger operators, in preparation.