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The guiding question

How do eigenvalue algorithms perform on large, random matrices?



Three stories

(1) Eigenvalue algorithms as dynamical systems (flashback to the 1980s).

(2) Random matrices and empirical universality (with Pfrang, Deift, Trogdon).

(3) Afew explanations (with Pujals).



Part 1. Eigenvalue algorithms as dynamical systems



The QR factorization

Assume L is a real, symmetrix matrix. The Gram-Schmidt procedure
may be viewed as the matrix factorization

L=QR

Q is an orthogonal matrix

R is an upper triangular matrix



The naive QR algorithm

The QR algorithm is an iterative scheme to compute the eigenvalues of L.
There are two steps:

Step 1: Compute QR factors at iterate k.
Ly = Qr Ry

Step 2: Intertwine these factors to obtain the next iterate

Lixy1 = RpQp.

Observe that Lk—H — Q%Lka

The unshifted QR algorithm generates a sequence of isospectral matrices that
typically converges to the desired diagonal matrix of eigenvalues.




The practical QR algorithm

(1) Reduce the initial matrix to tridiagonal form.
(2) Use a shift while iterating as follows.

At the k-th step compute the QR factorization: Lk — ,ukl — QkRk.

Then set Lii1 = ReQr + prl.

Again, we find Lk—l—l = QZLka

The shift parameter is often chosen to be the eigenvalue of the lower right 2x2 block
that is closer to the right-hand corner entry of the matrix (Wilkinson).



Jacobi matrices

Assume L is tridiagonal

a1 bl 0
bi a2 b
L = 0 bQ as
0 O by, —1

and that the off-diagonal entries are positive.




Spectral and inverse spectral theory (Stieltjes).

The spectral data consist of the eigenvalues of L and the top row of U:

L=UAU", uw=(1,0,...,0)U.
Given L, clearly we may find A and w.

Stieltjes [1894]: given A and u, reconstruct [, using continued fractions.




QR as a dynamical system: the phase space
Assume L is a Jacobi matrix with distinct eigenvalues, say
L=UAU".
The QR iterates are isospectral Jacobi matrices.

L, =U,AU;, Lo=1L.

A modern inverse spectral theorem [Bloch, Flaschka, Ratiu] reveals that
the isospectral manifold is a convex polytope --the permutahedron.

The iterates of the QR algorithm live in the interior of this polytope.



Phase space and QR iterates for 3x3 matrices
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Convention: The eigenvalues are labelled in decreasing order: A1 > Ao > ... > A\,

Deift, Nanda, Tomei (SIAM J. Numer. Anal., 1983).



The Toda lattice on the line

Hamiltonian system of n particles with unit mass on the line. Each interacts
with its neighbors through an exponential potential.
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Particle system to tridiagonal matrices (Flaschka, Manakov)
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Moser's solution formula (1975)

The Toda lattice may be solved explicitly by inverse spectral theory.
Suppose we know the spectral data for the initial matrix. If we denote

L) =UMAU®)", wu(t)=(1,0,...,0)U(t)

Then

- et 0)
ult) = JeRu(o)]

Thus, L(t) may be recovered by Stieltjes inverse spectral mapping.



Completely integrable Hamiltonian flows on Jacobi matrices
Consider a scalar function G with derivative g and extend it to a function on matrices.
L=UANU", G(L)=UGANU".
Fundamental fact: the Lax equation
L= [PS(Q(L))7 L]a

defines a completely integrable Hamiltonian flow, with Hamiltonian

H(L) = Tr G(L).

PS IS the projection onto skew-symmetric matrices.

Complete integrability: all these flows commute, and all of them may be
solved by Moser's recipe.



Generalized solution formula

Consider the flow with Hamiltonian Tr(G(L)), and g= G'".

Suppose we know the spectral data for the initial matrix. If we denote
L) =UMAU®)", wu(t)=(1,0,...,0)U(t)

Then

_ e u(0)
w(t) = s o)

Thus, L(t) may be recovered by Stieltjes inverse spectral mapping.



Symes theorem (1980)

The iterates of the QR algorithm are exactly the same as the
solutions to the QR flow evaluated at integer times!

The Hamiltonian for the QR flow is the spectral entropy.

diag (A1, A2, A3) diag (A1, A3, A2)

diag (A2, A1, A3) diag (A3, A1, A2)

dlag (Az, A3, Al) dlag (A3, )\2, A 1)



Hamiltonian = algorithm

The Toda algorithm:
7 1 5

The QR algorithm:
G(x)=xz(logx—1), H(L)=Tr(LlogL—1L).

The signum algorithm (Pfrang, Deift, M.):

G(z) = |z|, H(L)=Tr|L|.



Part 2. Random matrices and empirical universality



Motivation

An important feature of many numerical algorithms is that “typical
behaviour” is often much better than ““worst case” behaviour. It is
interesting to try to quantify this. Some examples:

1) Testing Gaussian elimination on random matrices: (Goldstine, von
Neumann 1947, Demmel 1988, Edelman, 1988).

2) Average runtime for the simplex method (Smale, 1983).

3) Smoothed analysis (Spielman, Sankar, Teng, 2004).



Deflation as a stopping criterion

When computing eigenvalues we must choose a stopping criterion to decide on
convergence. Typically, we try to split the matrix L into blocks as follows:

Lll L12 T L11 0
L p— ] L p— .
( Loy Lo ) ( 0 Lo >

We call this deflation. For a given tolerance, we define the deflation time

T, = min{k > O‘ max ‘)\](Lk) — )\](zk)‘ < 6}
J



Christian Pfrang’s thesis (2011)

Empirically investigates the performance of three eigenvalue
algorithms on random matrices from different ensembles.

The algorithms:

(1) QR -- with and without shifts.
(2) The Toda algorithm.
(3) The signum algorithm.

The random matrix _ensembles:

1) Gaussian Orthogonal Ensemble (GOE).

2) Gaussian Wigner ensemble.

3) Bernoulli ensemble.

4) Hermite-1 ensemble.

5) Jacobi uniform ensemble (JUE).

6) Uniform doubly stochastic Jacobi ensemble (UDSJ)
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Empirical universality

For each algorithm, the rescaled (zero mean, unit variance) empirical
distributions collapse onto a single curve that depends only on the
algorithm (i.e. not on the ensemble, matrix size or deflation tolerance).




Empirical deflation time statistics: unshifted QR on GOE
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Figure 1: The QR algorithm applied to GOE. (a) Histogram for the
empirical frequency of 7, ¢ as n ranges from 10, 30, ...,190 for a fixed defla-
tion tolerance € = 1078, The curves (there are 10 of them plotted one on top
of another) do not depend significantly on n. (b) Histogram for empirical
frequency of 7, ¢ when € = 107", k =2,4,6,8 for fixed matrix size n = 190.
The curves move to the right as ¢ decreases.



Part 3. The largest gap conjecture, gradient flows
on the permutahedron and sorting networks



The largest gap conjecture

Denote the largest gap in the spectrum by

gn = max (Aj = Ajt1)

Our guess: The observed "universal distribution” for the Toda flow is the
edge-scaling limit of 1/gn. QR and signum are more subtle.



The largest gap conjecture: numerical evidence
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Overlay of statistics of 1/(largest gap) and observed deflation time.



The largest gap via stochastic Airy

The edge-scaling limit of the spectrum is given by the Stochastic Airy operator.

d2

_dxf | (:U+26>90:)\g0, 0 <z < oo, gp(()):gclingogp(x):o.

Heuristically, the spectrum of stochastic Airy is a random perturbation of the
spectrum of the Airy operator, i.e. minus the zeros of the Airy function

—20—0-@ 20— 90-2—208—@

@ Eigenvalues of Airy. @® Eigenvalues of stochastic Airy.



Why the largest gap?

Conventional wisdom: Toda rates are determined by the smallest gap, since the smallest
gap determines the rate of convergence to equilibrium (Moser).

But convergence fo equilibrium is not the same as deflation.

r=—pr, yY=-—Ay, 0O0<u<<A
Convergence fo equilibrium occurs at slow rate [

Approach to x-axis occurs at fast rate A



Understanding deflation (M, E. Pujals, 2015)

Main new idea: Combine analysis of Toda with combinatorics of permutations.

Invariant manifolds:

Each (n-k)-face on the polytope is invariant.

Each such face corresponds to block diagonal matrices with k blocks.

Li 0 0 0
0 Ly 0
;-] 0 0 Ly 0
0



Normal hyperbolicity (M, Pujals)

Main observation : order relations between eigenvalues of blocks imply
normal hyperbolicity of invariant manifolds.

Simplest example (enough to understand largest gap):

The stable equilibrium lies at the intersection of (n-1) invariant manifolds.
Each such manifold is of the form b =0, 1<k <n —1.

The normal rate of attraction for any such manifold is at least )\kz — )\k;—l—l-

Easy consequence of Schur-Horn theorem for Toda.

Analogous statement requires more care for other flows.



Joda phase space for 4x4 matrices
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Deift, Nanda, Tomei (SIAM J. Numer. Anal., 1983).



Sorting networks
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From random matrix theory to a sorting network

With probability 1, each choice of initial condition
determines a sorting network.

Interesting fact: "natural” restriction of Toda flow
to a sorting network, gives a uniform sorting
network.

J. Moser -- Finitely many mass-points on the line (1976)



Statistics of saddles

Theorem [Moser/Tomei]: Each equilibrium is a permutation. The dimension of the
unstable manifold is given by the number of acents in the permutation.

The number of saddles with index k, is given by the Eulerian number A(n,k).

Asymptotics: Sobolev, Sirazhdinov.

lim l 2_: A(n, k)2 = exp (/OO iig : i;f()\) d)x) , z€C\(—00,0).




Summary

(1) Several iterative eigenvalue algorithms are tied to integrable systems.

(2) Empirical universality for fluctuations of deflation times emerges from
universality of gap statistics for Tracy-Widom point process.

(3) Each algorithm and matrix ensemble determines a class of random
sorting networks.

It seems reasonable to hope that universality could hold for the sorting
networks (this has not been tested).



