Complexity questions for classes of closed subgroups of $Sym(\mathbb{N})$

André Nies

Permutation Groups, BIRS, Nov 2016

Borelness of classes of closed subgroups

 $\operatorname{Sym}(\mathbb{N})$ is the topological group of permutations of \mathbb{N} . We consider classes \mathcal{C} of closed subgroups of $\operatorname{Sym}(\mathbb{N})$:

- ▶ compact (i.e., profinite),
- ► locally compact,
- oligomorphic (for each n only finitely many n-orbits)
- ▶ topologically finitely generated,

First we ask whether the class is Borel. This means that the groups in the class form points in a space that can be investigated using descriptive set theory.

Leading questions

Suppose a class \mathcal{C} of closed subgroups of $\text{Sym}(\mathbb{N})$ is Borel. Given $G, H \in \mathcal{C}$.

- How complicated is it to recognise whether G, H are conjugate?
- How complicated is it to recognise whether G, H are (topologically) isomorphic?

What do you mean by "how complicated"? One can compare them to benchmark equivalence relations:

- GI isomorphism of countable graphs.
- E_0 , almost equality of infinite bit sequences
- ▶ $id_{\mathbb{R}}$, identity of reals

Borel reducibility \leq_B

- Let X, Y be "standard Borel spaces" (X, Y carry Borel structures of uncountable Polish spaces). A function $g: X \to Y$ is Borel if the preimage of each Borel set in Y is Borel in X.
- ▶ Let E, F equivalence relations on X, Y respectively. We write $E \leq_B F$ (Borel below) if there is a Borel function $g: X \to Y$ such that

$uEv \leftrightarrow g(u)Fg(v)$

for each $u, v \in X$.¹

• Write $E \equiv_B F$ (Borel equivalent) if $E \leq_B F \leq_B E$.

For instance, $\operatorname{id}_{\mathbb{R}} \equiv_B \operatorname{id}_Y$ for an arbitrary uncountable Polish space Y. We have $\operatorname{id}_{\mathbb{R}} <_B E_0 <_B \operatorname{GI}$. ¹See S. Gao, Invariant descriptive set theory, 2009 The space of closed subgroups of $Sym(\mathbb{N})$

The closed subgroups of $\text{Sym}(\mathbb{N})$ can be seen as points in a standard Borel space. To define the Borel sets, we start with sets of the form

 $\{G \leq_c \operatorname{Sym}(\mathbb{N}) \colon G \cap N_{\sigma} \neq \emptyset\},\$

where

•
$$\sigma$$
 is a 1-1 map $\{0, \ldots, n-1\} \to \mathbb{N}$

• $N_{\sigma} = \{ \alpha \in \operatorname{Sym}(\mathbb{N}) \colon \sigma \prec \alpha \}$

The Borel sets are generated from these basic sets by complementation and countable union.

For instance, for every $\alpha \in \text{Sym}(\mathbb{N})$ we have the Borel set $\bigcap_k \{H \colon H \cap N_{\alpha}|_k \neq \emptyset\}$ which says that the closed subgroup contains α .

Borelness of classes of groups

Recall we consider classes \mathcal{C} of closed subgroups G of $Sym(\mathbb{N})$:

- (a) compact (i.e., profinite)
- (b) locally compact
- (c) oligomorphic (for each n only finitely many n-orbits)
- (d) topologically finitely generated

(e)

The first three classes are known to be Borel. E.g. for (a) and (b), given G consider the tree $\{\sigma : G \cap N_{\sigma} \neq \emptyset\}$.

The class (d) is not known to be Borel. Within the profinite groups, being f.g. is Borel.

Topologically finitely generated profinite groups I

Theorem

The isomorphism relation $E_{f.g.}$ between finitely generated profinite groups is Borel-equivalent to $id_{\mathbb{R}}$.

 $\operatorname{id}_{\mathbb{R}} \leq_B E_{f.g.}$: Let $\widehat{\mathbb{Z}}$ be the profinite completion of the ring \mathbb{Z} . For any set P of primes, let^2

$$G_P = \prod_{p \in P} \operatorname{SL}_2(\mathbb{Z}_p) = \operatorname{SL}_2(\widehat{\mathbb{Z}}) / \prod_{q \notin P} \operatorname{SL}_2(\mathbb{Z}_q).$$

 $P = Q \leftrightarrow G_P \cong G_Q.$ $P \to G_P \text{ is a Borel map.}$

 $^{^{2}}$ Lubotzky (2005), Prop 6.1

Topologically finitely generated profinite groups II

The isomorphism relation $E_{f.g.}$ between finitely generated profinite groups is Borel equivalent to $id_{\mathbb{R}}$.

 $E_{f.g.} \leq_B \operatorname{id}_{\mathbb{R}} (\operatorname{smoothness})$:

- ► A finitely generated profinite group *G* is determined by its isomorphism types of finite quotients.
- ▶ Let q(G) be the set of these isomorphism types, written in some fixed way as an infinite bit sequence. This map is Borel because from G one can "determine" its finite quotients³.
- Then $G \cong H \iff q(G) = q(H)$. So $E_{f.g.}$ is smooth.

Isomorphism of residually finite f.g. groups is complicated ("weakly universal", Jay Williams '15) and hence not smooth. So taking profinite completion loses information (new proof of a known fact).

 $^{^3\}mathrm{e.g.}$ Fried/Jarden, Field arithmetic, 16.10.7

Graph isomorphism \leq_B isomorphism of profinite groups

A group G is nilpotent-2 if it satisfies the law [[x, y], z] = 1.

Let \mathcal{N}_2^p denote the variety of nilpotent-2 groups of exponent p.

Theorem

Let $p \geq 3$ be prime. Graph isomorphism can be Borel reduced to isomorphism between profinite \mathcal{N}_2^p groups.

Proof: A result of Alan Mekler (1981) implies the theorem for countable abstract groups. We adapt his construction to the profinite setting.

A symmetric and irreflexive countable graph is called nice if it has no triangles, no squares, and for each pair of distinct vertices x, y, there is a vertex z joined to x and not to y.

Mekler's construction

Nice graph isomorphism \leq_B isomorphism of countable groups in \mathcal{N}_2^p .

- Let F be the free \mathcal{N}_2^p group on free generators x_0, x_1, \ldots
- For $r \neq s$ we write $x_{r,s} = [x_r, x_s]$.
- Given a graph with domain \mathbb{N} and edge relation A, let $G(A) = F/\langle x_{r,s} \colon rAs \rangle_{\text{normal closure}}.$
- ▶ The centre of G(A) is abelian of exponent p with a basis consisting of the $x_{r,s}$ such that $\neg rAs$.

Show that A can be reconstructed from G(A). Therefore:

Let A, B be a nice graphs. Then $A \cong B$ iff $G(A) \cong G(B)$.

Profinite version of Mekler's construction

► Elements of $G(A) = F/\langle x_{r,s} : rAs \rangle$ have unique normal form $\prod_{\langle r,s \rangle \in L} x_{r,s}^{\beta_{rs}} \prod_{i \in D} x_i^{\alpha_i}, \ 0 < \alpha_i, \beta_{rs} < p,$

where L is a finite set of non-edges, D a finite set of vertices.

- ► Let R_n be the normal subgroup of G(A) generated by the x_i , $i \ge n$. Let $\overline{G}(A)$ be the completion of G(A) w.r.t. the R_n , i.e., $\overline{G}(A) = \varprojlim_n G(A)/R_n$.
- Each $G(A)/R_n$ is finite, so this is a profinite group.
- ► Elements have normal form $\prod_{\langle r,s\rangle\in L} x_{r,s}^{\beta_{rs}} \prod_{i\in D} x_i^{\alpha_i}$, where L and D are now allowed to be infinite.

Verify that A can be reconstructed from $\overline{G}(A)$:

Let A, B be a nice graphs. Then $A \cong B$ iff $\overline{G}(A) \cong \overline{G}(B)$.

 $A \to \overline{G}(A)$ is Borel. So $GI \leq_B$ isomorphism of profinite \mathcal{N}_2^p groups.

A condition implying that isomorphism on \mathcal{C} is Borel below graph isomorphism Lemma (with Kechris and Tent) Let \mathcal{C} be Borel class of closed subgroups, with \mathcal{C} closed under conjugation in Sym(\mathbb{N}).

- ▶ For $G \in C$ suppose \mathcal{N}_G is a countably infinite set of open subgroups of G that forms a nbhd basis of 1.
- Suppose the relation $\{\langle G, U \rangle : U \in \mathcal{N}_G\}$ is Borel, and isomorphism invariant in the sense that

 $\phi: G \cong H \text{ implies } U \in \mathcal{N}_G \iff \phi(U) \in \mathcal{N}_H.$

Then isomorphism on \mathcal{C} is Borel reducible to graph isomorphism.

We will apply this to (1) C = locally compact; \mathcal{N}_G = compact open subgroups of $G_{\frac{12}{16}}$

Proof of Lemma

Lemma (recall). For $G \in \mathcal{C}$ suppose \mathcal{N}_G is a countably infinite set of open subgroups of G that forms a nbhd basis of 1. Suppose the relation $\{\langle G, U \rangle \colon U \in \mathcal{N}_G\}$ is Borel, and isomorphism invariant in the sense that $\phi \colon G \cong H$ implies $U \in \mathcal{N}_G \iff \phi(U) \in \mathcal{N}_H$. Then isomorphism on \mathcal{C} is Borel reducible to graph isomorphism.

- ▶ To $G \in \mathcal{C}$ we can Borel assign a list C_0, C_1, \ldots of the cosets of all the $U \in \mathcal{N}_G$ (using Borelness of the relation " $U \in \mathcal{N}_G$ ").
- ▶ G acts on the cosets from the left. For $g \in G$ let $\hat{g} \in \text{Sym}(\mathbb{N})$ be the corresponding permutation of indices of cosets.
- ▶ $g \mapsto \widehat{g}$ is a topological embedding $G \cong \widehat{G} \leq_c \text{Sym}(\mathbb{N})$. The map $G \mapsto \widehat{G}$ is Borel.
- $G \cong H \iff \widehat{G}$ conjugate to \widehat{H} .
- ► Fact from descriptive set theory: every orbit eqrel of a Borel $\operatorname{Sym}(\mathbb{N})$ action is \leq_B graph isom.

Theorem (with Kechris and Tent)

- Isomorphism of t.d.l.c. groups is Borel equivalent to graph isomorphism. (Asked by P.E. Caprace.)
- ► Same for conjugacy.
- Isomorphism of oligomorphic groups is Borel below graph isomorphism.

 $G \leq_c \operatorname{Sym}(\mathbb{N})$ is Roelcke precompact if for each open subgroup U there is finite $F \subseteq G$ such that UFU = G.

- Same as inverse limit of an ω-chain of oligomorphic (on some countable set) groups (Tsankov)
- ▶ Roelcke precompact ⇒ countably many open subgroups.
 So isomorphism of Roelcke precompact is ≡_B graph isomorphism.

Independently Rosendal and Zielinski (on arXiv Oct 2016).

Oligomorphic groups

The conjugacy relation for oligomorphic groups is smooth.

To see this,

- given G let M_G be the corresponding orbit equivalence structure: introduce a 2n-ary relation for each n > 0, which holds for two *n*-tuples of distinct elements if they are in the same orbit.
- M_G is ω -categorical.
- G, H are conjugate $\iff M_G \cong M_H$.
- ▶ Isomorphism of ω -categorical structures is smooth: take as a real invariant the first-order theory.

NB: The previous result doesn't show \cong on oligormorphic is smooth: \widehat{G} obtained there is not oligomorphic (even though $G \cong \widehat{G}$).

Questions

- ► How complex is isomorphism of arbitrary closed subgroups of S_{∞} ? Is it \leq_B -complete for analytic equivalence relations?
- ► Characterise G ≤_c Sym(N) with only countably many open subgroups. (E.g. PSL₂(Q_p) is another example by a result of Tits.)
- How complex is isomorphism of oligomorphic groups?
 Evans and Hewitt: every profinite group is a topological quotient of an oligomorphic group. This may indicate it's complicated.
- How about if the language of the corresponding ω-categorical orbit structure can be made finite? (For a finite language, isomorphism is a Borel equivalence relation with all classes countable.)

Reference for the results on profinite groups:

N., Complexity of isomorphism between profinite groups, arXiv: $_{16/16}$