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André Nies

Permutation Groups, BIRS, Nov 2016

1 / 16



Borelness of classes of closed subgroups

Sym(N) is the topological group of permutations of N.

We consider classes C of closed subgroups of Sym(N):

I compact (i.e., profinite),

I locally compact,

I oligomorphic (for each n only finitely many n-orbits)

I topologically finitely generated, ....

First we ask whether the class is Borel. This means that the

groups in the class form points in a space that can be investigated

using descriptive set theory.
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Leading questions

Suppose a class C of closed subgroups of Sym(N) is Borel.

Given G,H ∈ C.

I How complicated is it to recognise whether G,H are

conjugate?

I How complicated is it to recognise whether G,H are

(topologically) isomorphic?

What do you mean by “how complicated”?

One can compare them to benchmark equivalence relations:

I GI isomorphism of countable graphs.

I E0, almost equality of infinite bit sequences

I idR, identity of reals
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Borel reducibility ≤B
I Let X, Y be “standard Borel spaces”

(X, Y carry Borel structures of uncountable Polish spaces).

A function g : X → Y is Borel if the preimage of each Borel

set in Y is Borel in X.

I Let E,F equivalence relations on X, Y respectively. We write

E ≤B F (Borel below) if there is a Borel function g : X → Y

such that

uEv ↔ g(u)Fg(v)

for each u, v ∈ X.1

I Write E ≡B F (Borel equivalent) if E ≤B F ≤B E.

For instance, idR ≡B idY for an arbitrary uncountable Polish

space Y . We have idR <B E0 <B GI.
1See S. Gao, Invariant descriptive set theory, 2009
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The space of closed subgroups of Sym(N)

The closed subgroups of Sym(N) can be seen as points in a

standard Borel space. To define the Borel sets, we start with sets

of the form

{G ≤c Sym(N) : G ∩Nσ 6= ∅},

where

I σ is a 1-1 map {0, . . . , n− 1} → N
I Nσ = {α ∈ Sym(N) : σ ≺ α}

The Borel sets are generated from these basic sets by

complementation and countable union.

For instance, for every α ∈ Sym(N) we have the Borel set⋂
k{H : H ∩Nα �k 6= ∅} which says that the closed subgroup contains α.
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Borelness of classes of groups

Recall we consider classes C of closed subgroups G of Sym(N):

(a) compact (i.e., profinite)

(b) locally compact

(c) oligomorphic (for each n only finitely many n-orbits)

(d) topologically finitely generated

(e) ....

The first three classes are known to be Borel.

E.g. for (a) and (b), given G consider the tree {σ : G ∩Nσ 6= ∅}.

The class (d) is not known to be Borel. Within the profinite

groups, being f.g. is Borel.
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Topologically finitely generated profinite groups I

Theorem
The isomorphism relation Ef.g. between finitely generated profinite

groups is Borel-equivalent to idR.

idR ≤B Ef.g.: Let Ẑ be the profinite completion of the ring Z.

For any set P of primes, let2

GP =
∏
p∈P

SL2(Zp) = SL2(Ẑ)/
∏
q 6∈P

SL2(Zq).

P = Q↔ GP
∼= GQ.

P → GP is a Borel map.

2Lubotzky (2005), Prop 6.1
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Topologically finitely generated profinite groups II

The isomorphism relation Ef.g. between finitely generated profinite

groups is Borel equivalent to idR.

Ef.g. ≤B idR (smoothness):

I A finitely generated profinite group G is determined by its

isomorphism types of finite quotients.
I Let q(G) be the set of these isomorphism types, written in

some fixed way as an infinite bit sequence. This map is Borel

because from G one can “determine” its finite quotients3.
I Then G ∼= H ⇐⇒ q(G) = q(H). So Ef.g. is smooth.

Isomorphism of residually finite f.g. groups is complicated (“weakly

universal”, Jay Williams ’15) and hence not smooth. So taking profinite

completion loses information (new proof of a known fact).
3e.g. Fried/Jarden, Field arithmetic, 16.10.7
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Graph isomorphism ≤B isomorphism of profinite

groups

A group G is nilpotent-2 if it satisfies the law [[x, y], z] = 1.

Let N p
2 denote the variety of nilpotent-2 groups of exponent p.

Theorem
Let p ≥ 3 be prime. Graph isomorphism can be Borel reduced to

isomorphism between profinite N p
2 groups.

Proof: A result of Alan Mekler (1981) implies the theorem for

countable abstract groups. We adapt his construction to the

profinite setting.

A symmetric and irreflexive countable graph is called nice if it has no

triangles, no squares, and for each pair of distinct vertices x, y, there is

a vertex z joined to x and not to y.

Easy fact: Graph isomorphism ≤B nice graph isomorphism.
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Mekler’s construction

Nice graph isomorphism ≤B isomorphism of countable groups in

N p
2 .

I Let F be the free N p
2 group on free generators x0, x1, . . ..

I For r 6= s we write xr,s = [xr, xs].

I Given a graph with domain N and edge relation A, let

G(A) = F/〈xr,s : rAs〉normal closure.

I The centre of G(A) is abelian of exponent p with a basis

consisting of the xr,s such that ¬rAs.

Show that A can be reconstructed from G(A). Therefore:

Let A,B be a nice graphs. Then A ∼= B iff G(A) ∼= G(B).
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Profinite version of Mekler’s construction
I Elements of G(A) = F/〈xr,s : rAs〉 have unique normal form∏

〈r,s〉∈L x
βrs
r,s

∏
i∈D x

αi
i , 0 < αi, βrs < p,

where L is a finite set of non-edges, D a finite set of vertices.

I Let Rn be the normal subgroup of G(A) generated by the xi,

i ≥ n. Let G(A) be the completion of G(A) w.r.t. the Rn, i.e.,

G(A) = lim←−nG(A)/Rn.

I Each G(A)/Rn is finite, so this is a profinite group.

I Elements have normal form
∏

〈r,s〉∈L x
βrs
r,s

∏
i∈D x

αi
i , where L

and D are now allowed to be infinite.

Verify that A can be reconstructed from G(A):

Let A,B be a nice graphs. Then A ∼= B iff G(A) ∼= G(B).

A→ G(A) is Borel. So GI ≤B isomorphism of profinite N p
2 groups.
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A condition implying that isomorphism on C
is Borel below graph isomorphism

Lemma (with Kechris and Tent)

Let C be Borel class of closed subgroups, with C closed under

conjugation in Sym(N).

I For G ∈ C suppose NG is a countably infinite set of open

subgroups of G that forms a nbhd basis of 1.

I Suppose the relation {〈G,U〉 : U ∈ NG} is Borel, and

isomorphism invariant in the sense that

φ : G ∼= H implies U ∈ NG ⇐⇒ φ(U) ∈ NH .

Then isomorphism on C is Borel reducible to graph isomorphism.

We will apply this to

(1) C = locally compact; NG= compact open subgroups of G

(2) C = oligomorphic; NG= all open subgroups of G.
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Proof of Lemma

Lemma (recall). For G ∈ C suppose NG is a countably infinite set of

open subgroups of G that forms a nbhd basis of 1.

Suppose the relation {〈G,U〉 : U ∈ NG} is Borel, and isomorphism

invariant in the sense that φ : G ∼= H implies U ∈ NG ⇐⇒ φ(U) ∈ NH .

Then isomorphism on C is Borel reducible to graph isomorphism.

I To G ∈ C we can Borel assign a list C0, C1, . . . of the cosets of

all the U ∈ NG (using Borelness of the relation “U ∈ NG”).
I G acts on the cosets from the left. For g ∈ G let ĝ ∈ Sym(N)

be the corresponding permutation of indices of cosets.
I g 7→ ĝ is a topological embedding G ∼= Ĝ ≤c Sym(N). The

map G 7→ Ĝ is Borel.
I G ∼= H ⇐⇒ Ĝ conjugate to Ĥ.
I Fact from descriptive set theory: every orbit eqrel of a Borel

Sym(N) action is ≤B graph isom. 13 / 16



Theorem (with Kechris and Tent)
I Isomorphism of t.d.l.c. groups is Borel equivalent to graph

isomorphism. (Asked by P.E. Caprace.)

I Same for conjugacy.

I Isomorphism of oligomorphic groups is Borel below graph

isomorphism.

G ≤c Sym(N) is Roelcke precompact if for each open subgroup U

there is finite F ⊆ G such that UFU = G.

I Same as inverse limit of an ω-chain of oligomorphic (on some

countable set) groups (Tsankov)

I Roelcke precompact ⇒ countably many open subgroups.

So isomorphism of Roelcke precompact is ≡B graph

isomorphism.

Independently Rosendal and Zielinski (on arXiv Oct 2016). 14 / 16



Oligomorphic groups

The conjugacy relation for oligomorphic groups is smooth.

To see this,

I given G let MG be the corresponding orbit equivalence

structure: introduce a 2n-ary relation for each n > 0, which

holds for two n-tuples of distinct elements if they are in the

same orbit.

I MG is ω-categorical.

I G,H are conjugate ⇐⇒ MG
∼= MH .

I Isomorphism of ω-categorical structures is smooth: take as a

real invariant the first-order theory.

NB: The previous result doesn’t show ∼= on oligormorphic is smooth:

Ĝ obtained there is not oligomorphic (even though G ∼= Ĝ).
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Questions
I How complex is isomorphism of arbitrary closed subgroups of

S∞? Is it ≤B-complete for analytic equivalence relations?
I Characterise G ≤c Sym(N) with only countably many open

subgroups. (E.g. PSL2(Qp) is another example by a result of

Tits.)
I How complex is isomorphism of oligomorphic groups?

Evans and Hewitt: every profinite group is a topological quotient

of an oligomorphic group. This may indicate it’s complicated.

I How about if the language of the corresponding ω-categorical

orbit structure can be made finite? (For a finite language,

isomorphism is a Borel equivalence relation with all classes

countable.)

Reference for the results on profinite groups:

N., Complexity of isomorphism between profinite groups, arXiv:

1604.00609.
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