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A partial linear space (P,L ) consists of a (finite) set P of points
and a collection L of subsets of P called lines such that:

(i) any two distinct points lie on at most one line, and

(ii) every line contains at least two points.

For example:

Linear space: any two distinct points lie on exactly one line.

Graph: every line contains exactly two points.

n×n grid:

A partial linear space is proper if it is not a linear space or a graph.
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Problem: Classify the proper partial linear spaces for which

1 Any ordered pair of distinct collinear points can be mapped to
any other such pair.

2 Any ordered pair of distinct non-collinear points can be
mapped to any other such pair.

Such proper partial linear spaces are precisely those whose
automorphism groups have rank 3 on points.

These have been classified by Devillers (2005,2008) in the
(primitive) almost simple and grid cases.
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Problem: Classify the proper partial linear spaces admitting a
primitive affine group of rank 3 on points.

+=

For a rank 3 group on P, there is a linear space with 2 line
orbits iff there are 2 proper partial linear spaces with disjoint
line sets.

Biliotti-Montinaro-Francot (2015): 2-(v ,k,1) designs with a
primitive rank 3 affine group on points and 2 line orbits.
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Affine groups: G = V : G0 for G0 6 GLd(p) acting on V = Vd(p)
where p is prime and V is irreducible FpG0-module.

Examples of proper partial linear spaces with rank 3 affine group:

1 pn×pn grid with V = Vn(p)⊕Vn(p) and G0 = GLn(p) oC2.

(0,0)
(1,0)

(-1,0)

(-1,1)

(-1,-1)
(1,-1)

(0,-1)

(0,1)
(1,1)
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2 Say G0 6 ΓLm(q), m > 2, and G0 has two orbits on projective
points. Let ∆ be one of them. Fix a hyperplane Π in PGm(q).

AGm(q)

PGm(q) PGm−1(q) = Π∆

P = points of AGm(q)
L = lines of AGm(q) meeting Π in ∆.

e.g. ∆ = singular 1-spaces with respect to quadratic form.

i.e. P = Vm(q) and L = {〈v〉+ w : v ,w ∈ Vm(q),〈v〉 ∈∆}.
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3 V = V2(q)⊗Vn(q) and G0 = GL2(q)⊗GLn(q) : Aut(Fq)
where n > 2. Let L be the set of translates of

{u⊗Vn(q) : u ∈ V2(q)\{0}}.

Here the lines have size qn.

4 V and G0 as above. Let L be the set of translates of

{V2(q)⊗w : w ∈ Vn(q)\{0}}.

Here the lines have size q2.

5 Let V = Fn9 where n > 2, F∗9 = 〈ζ 〉 and Aut(F9) = 〈σ〉.
Let G0 = GLn(3)〈ζ 2,ζ σ〉 and L = `V :G0 where

` = 〈e1 + ζ e2,−ζ e1 + e2〉F3

Here the lines have size 9.
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Theorem (Conjecture really)

Let S be a proper partial linear space and G 6 Aut(S) a rank 3
primitive permutation group with socle V = Vd(p). Then

(i) S lies in one of the 5 infinite families just discussed, or

(ii) S is one of finitely many exceptions, or

(iii) one of the following holds:

(a) G0 6 ΓL1(pd), or
(b) V = Vn(p)⊕Vn(p) and G0 6 ΓL1(pn) oC2 where d = 2n, or
(c) V = V2(t3) and SL2(t)EG0 where pd = t6.



Let G be a primitive group of rank 3 with socle Vd(p), and let L be
a line of a proper PLS with automorphism group G where 0 ∈ L.

Let X be the orbit of G0 containing L\{0}.
1 X ∪{0} is not a subspace of Vd(p).

2 If x ,y ∈ L\{0} and x 6= y , then y −x ∈ X .

Moreover,

3 L\{0} is a block of G0 on X .

4 GL is transitive on L.
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An outline of the proof of the “theorem”:

Let G be a primitive group of rank 3 with socle Vd(p). Let L be a
line of a proper PLS with aut group G where 0 ∈ L. Let x ∈ L\{0}.

Liebeck (1987) =⇒ G0 and its orbits are known.

G0 6 ΓLm(q) where pd = qm.

If L⊆ 〈x〉Fq ⊆ xG0 , then Kantor’s classification of 2-transitive
linear spaces (1985) =⇒ L = 〈x〉Fr for some subfield Fr of
Fq, and Example (2) holds.

Otherwise, there exists y ∈ L\ 〈x〉Fq . Now yG0,x ⊆ L.

Repeat this process, ruling out examples you know about, until
you find u 6= v ∈ L\{0} such that u−v /∈ xG0 a contradiction.
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Theorem (Liebeck (1987))

Let G be a primitive group of rank 3 with socle V = Vd(p). Then
G0 belongs to one of the following classes.

(A) Infinite classes. (There are 11 classes.)

(B) Extraspecial classes. (Only finitely many.)

(C) Exceptional classes. (Only finitely many.)



Suppose that one of the following holds.

(A6) SUn(q)EG0 and pd = q2n where n > 3.

(A7) Ωε
2n(q)EG0 and pd = q2n where n > 2 and (n,ε) 6= (2,+).

(A8) SL5(q)EG0 and pd = q10. (Action of SL5(q) on Λ2(V5(q)).)

(A9) Ω7(q)EG0/Z (G0) and pd = q8. (Spin module.)

(A10) PΩ+
10(q)EG0/Z (G0) and pd = q16. (Spin module.)

(A11) Suz(q)EG0 and pd = q4. (Suz(q) < Sp4(q).)

Theorem (Conjecture really)

Example (2) holds, or (A7) holds with n = 2, q = 3 and ε =−.

The theorem is true, except possibly for (A9) and (A10).
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Theorem (Conjecture really)
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The theorem is true, except possibly for (A9) and (A10).
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G0 
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If (A2) holds, then Examples (1) and (2) arise, as well as finitely
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Fact: if S lies in one of the 5 infinite families, then the lines of S
are affine Fp-subspaces of V .

But this is not true in general!

Let V = Vd(3). Suppose that either

1 d = 5 and G0 = M11 with subdegrees 132 and 110, or

2 d = 4 and G0 = M10 ' A6.2' Ω−4 (3).2.

Then there is a partial linear space S with Aut(S) = V : G0.

Each point lies on 12 lines.

The former has 243 = |V | lines and line size 12.

The latter has 162 = 2|V | lines and line size 6.

Is there a geometric description for these examples? Ideas are
welcome!
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