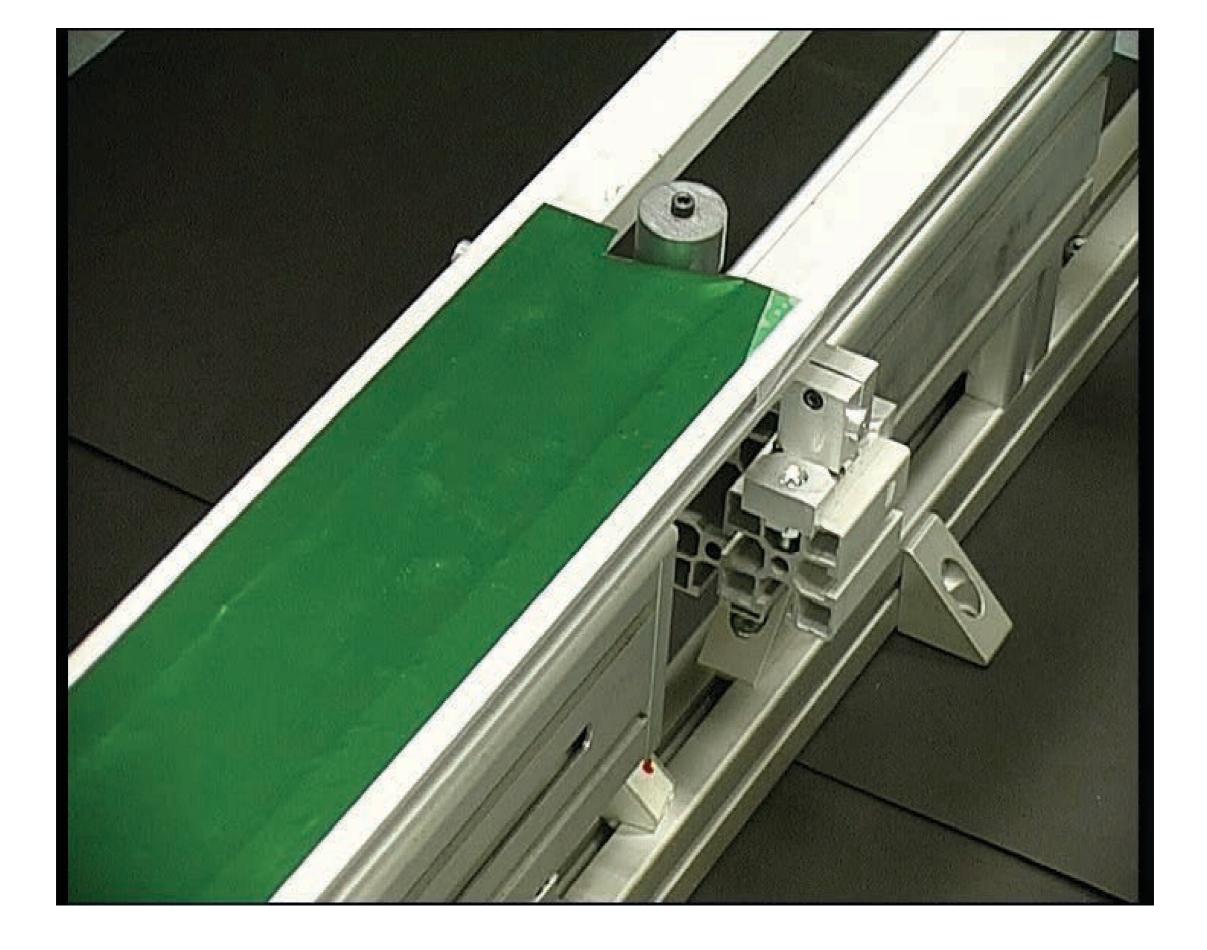
Tearing : fracture path in brittle thin sheets

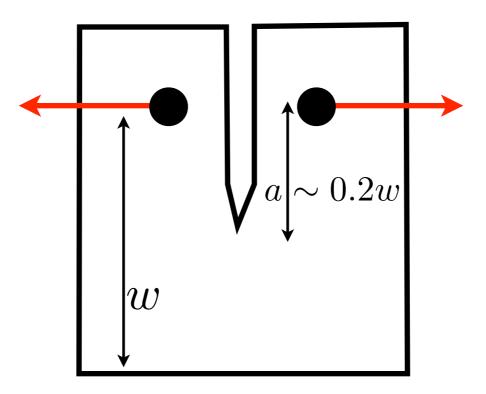
<u>B.Roman</u> J.Bico	PMMH	Paris	
PReis	MIT	Boston	A. Takei
E.Cerda, E.Hamm F.Melo	USACH	Santiago Chile	J.Marthelot V.Romero JF.Fuentealba A.Ibarran
B.Audoly	IJLRd'A	Paris	I.Sivak



Tearing = Fracture + bending thin sheets

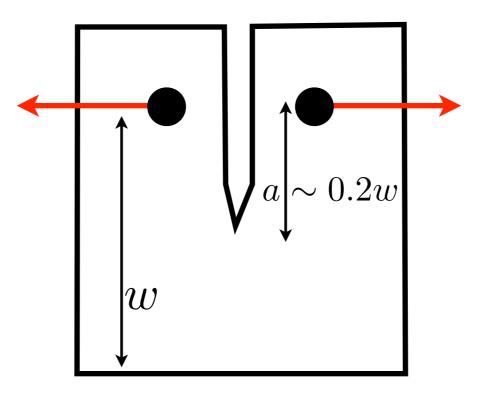
Why is it interesting ?

- a situation in real life (applications)
- very robust (intriguing) behavior
- challenging

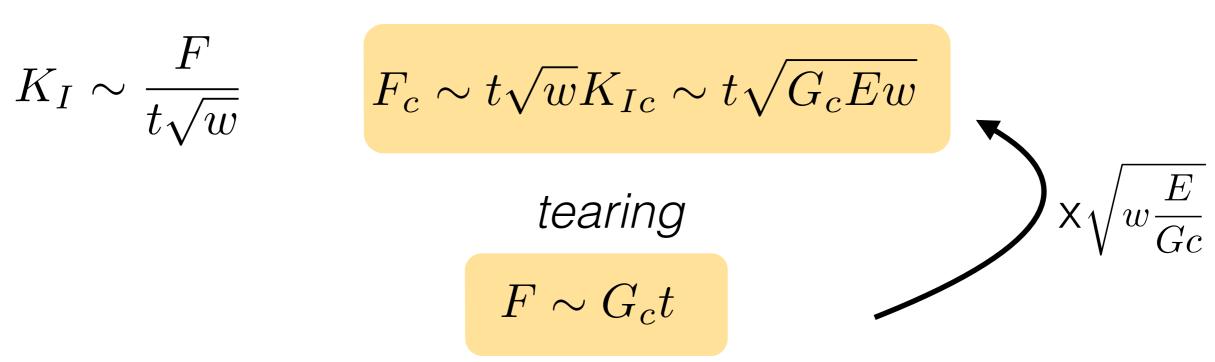


fracture in thin sheets :: always bending

Always out-of-plane displacements

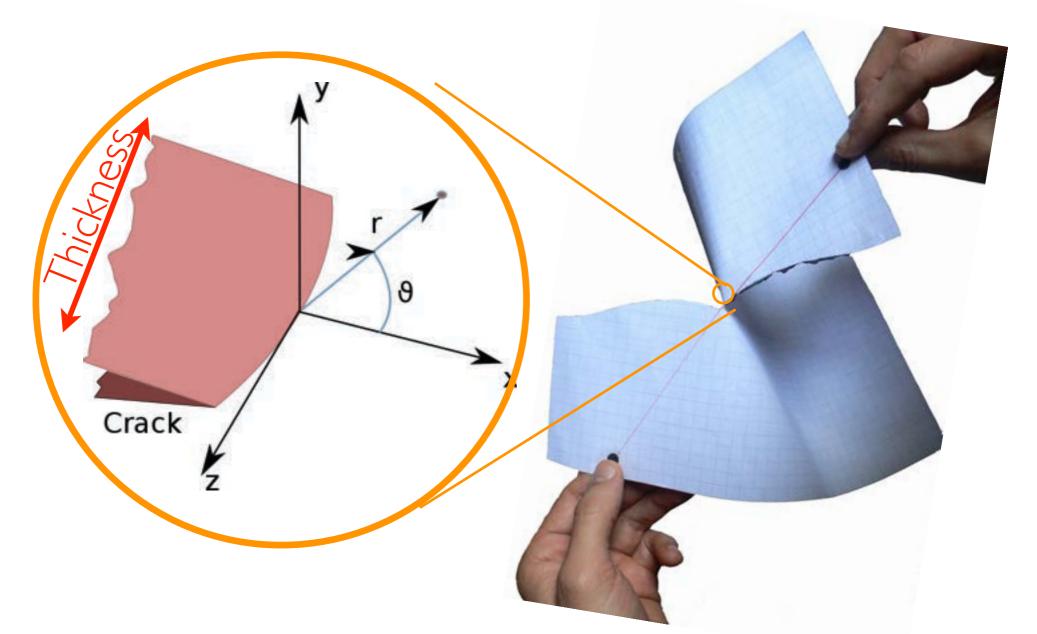


forced in-plane

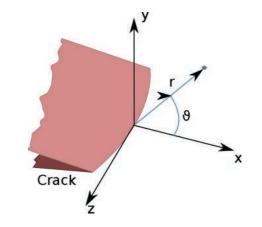


Approach :

- Linear Elastic Fracture Mechanics (3D)

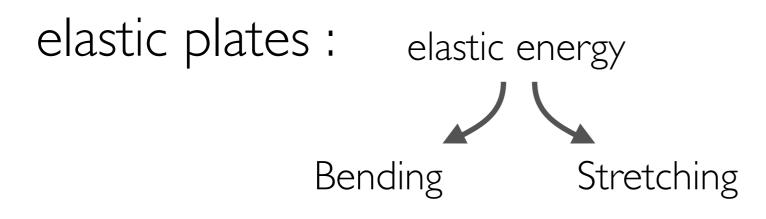


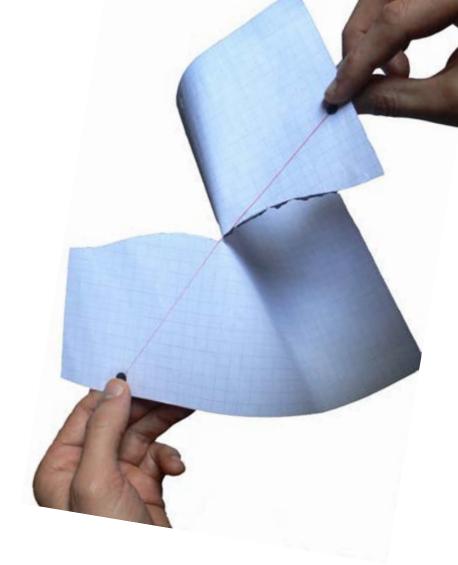
- Linear Elastic Fracture Mechanics (3D)



- Stress intensity factors for plate mechanics which plate model? (Zucchini et al 2000, .Zehnder et al 2005...) crack path?
- Variational approach in non-linear plate mechanics (Li, Arroyo, Arias)

Griffith crack + crude approximations...





Griffith's criterion

$$\frac{dW - dE_{el}}{tdl} = G \blacklozenge G_c$$
Energy Release Rate
Fracture energy

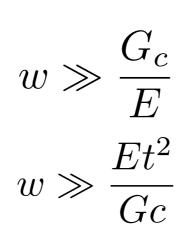
«inextensible fabric» model

(Oth order approximation)

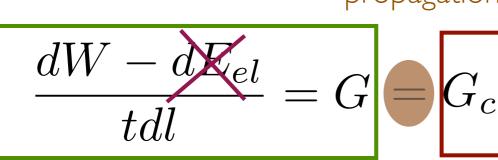
The sheet is

- inextensible
- infinitely bendable

NO ELASTIC ENERGY !



2D analog of a string

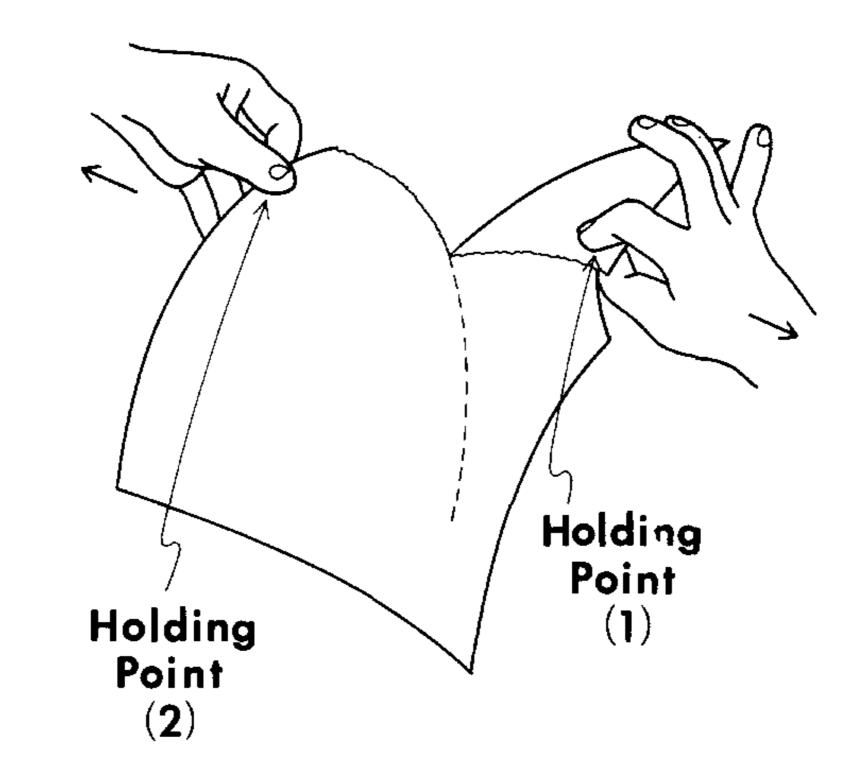


Energy Release Rate

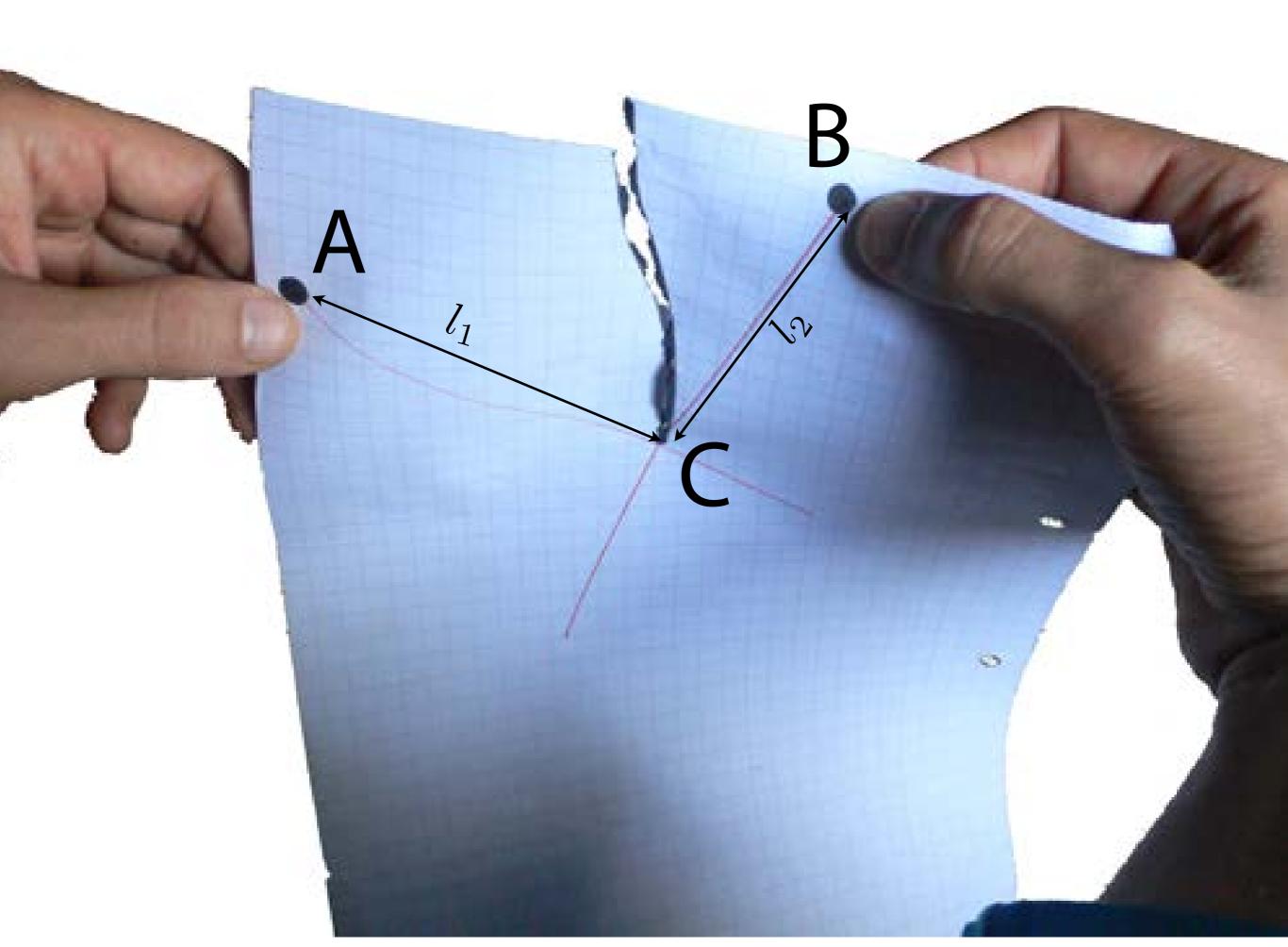
propagation

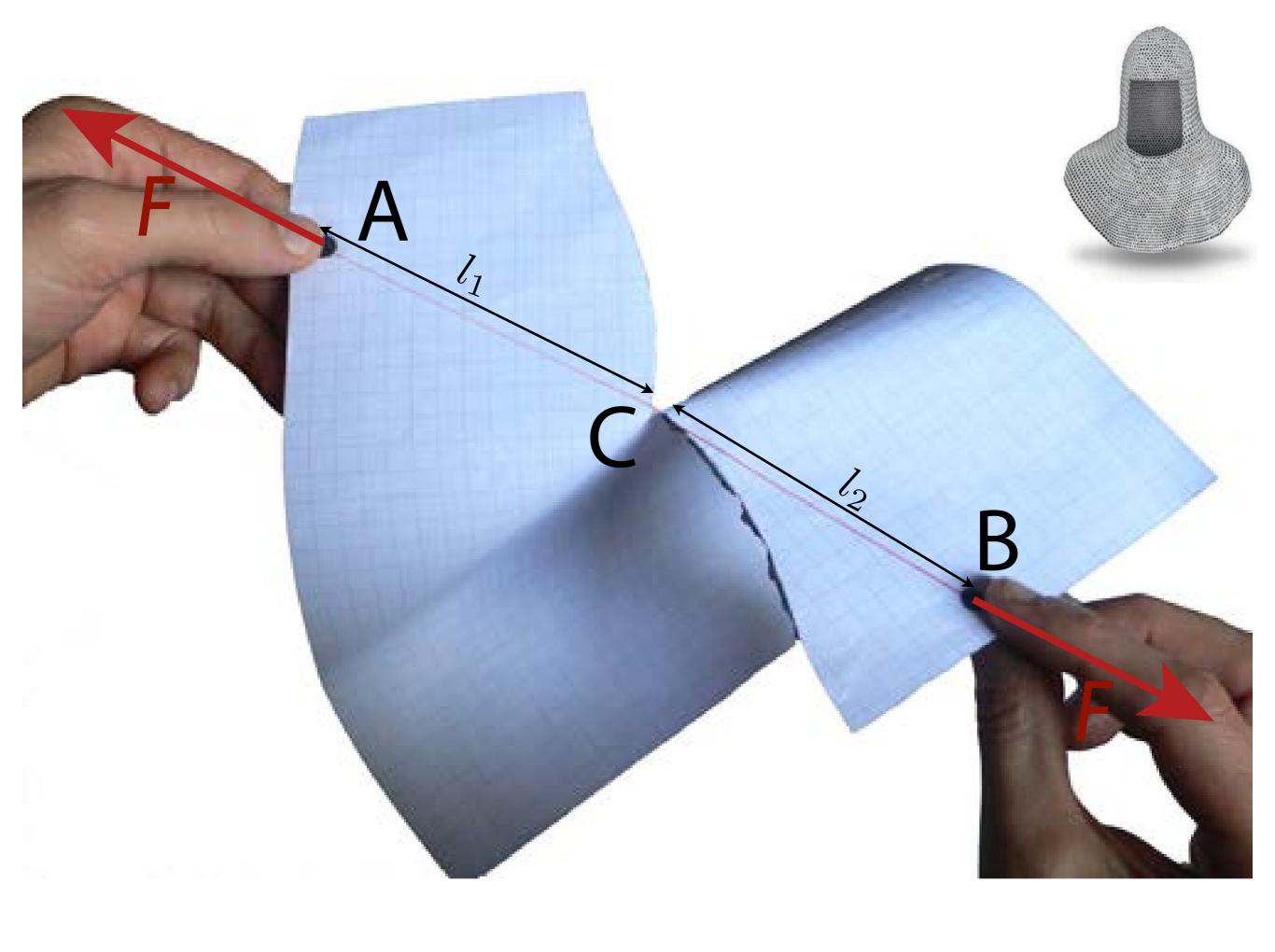
Fracture energy

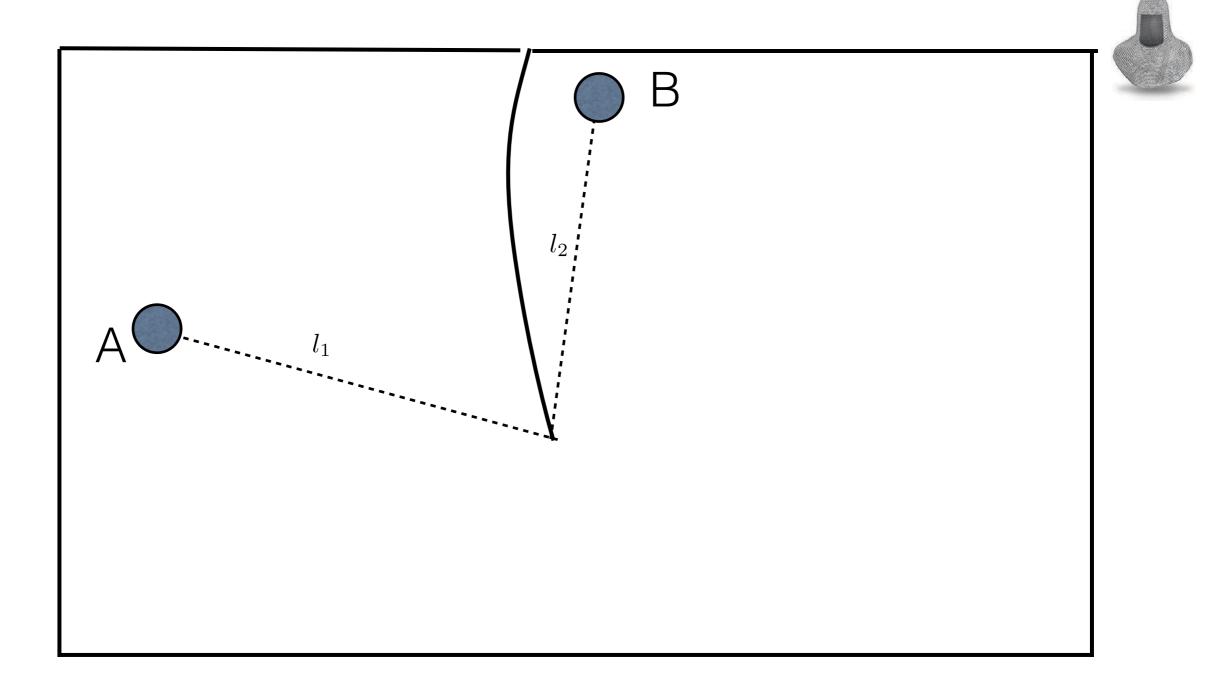
Tearing problem

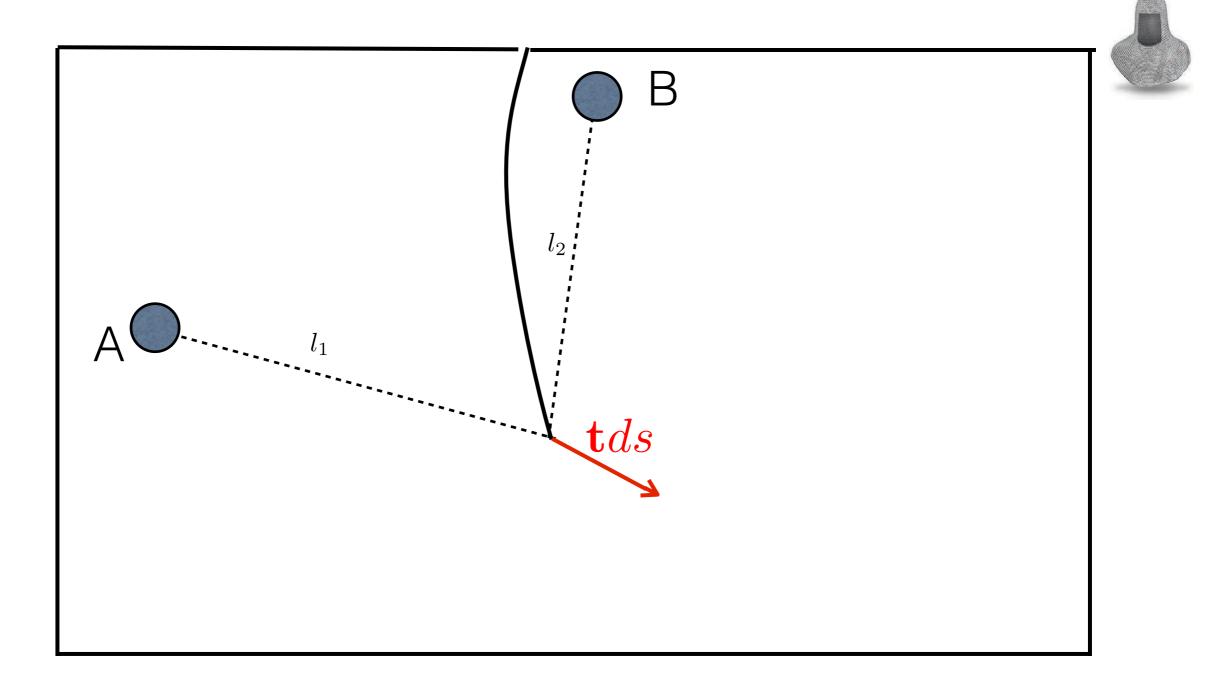


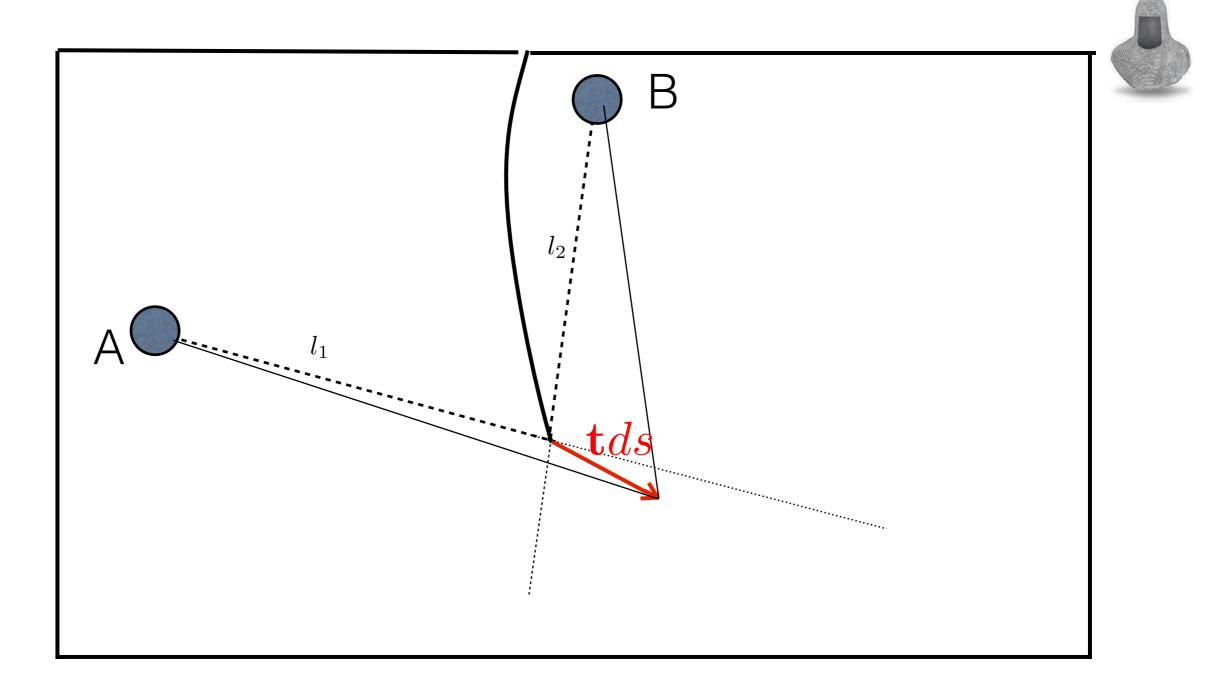
O'Keefe Am. J. Phys. 62 (4), April 1994



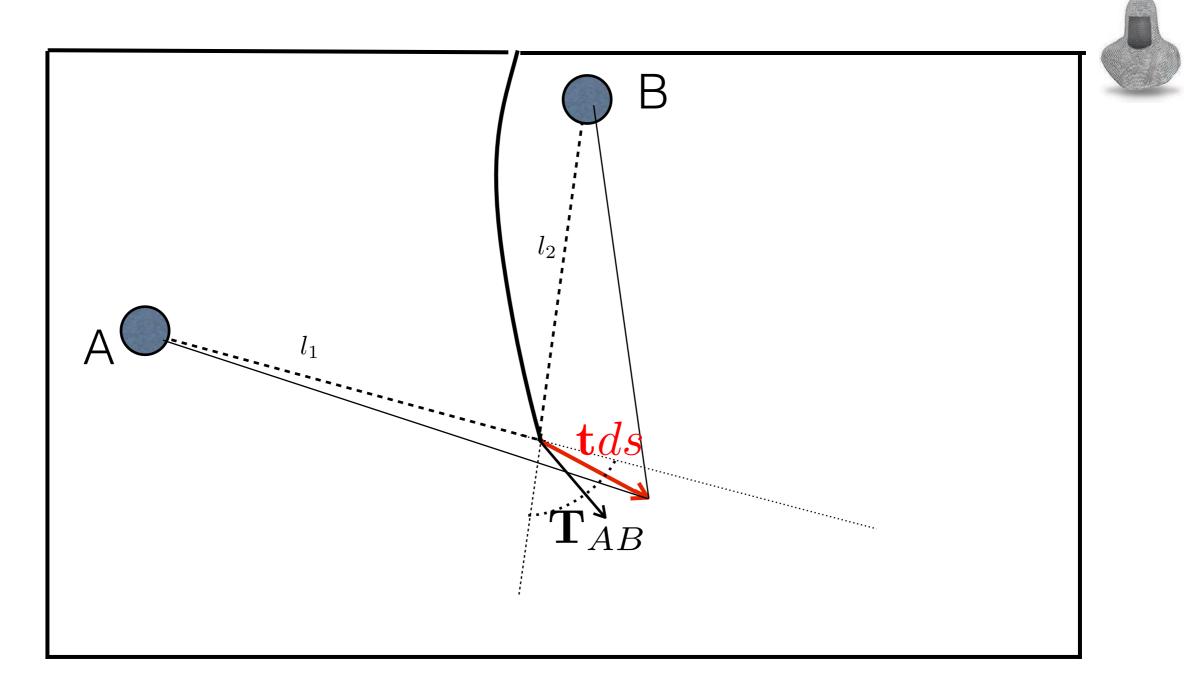






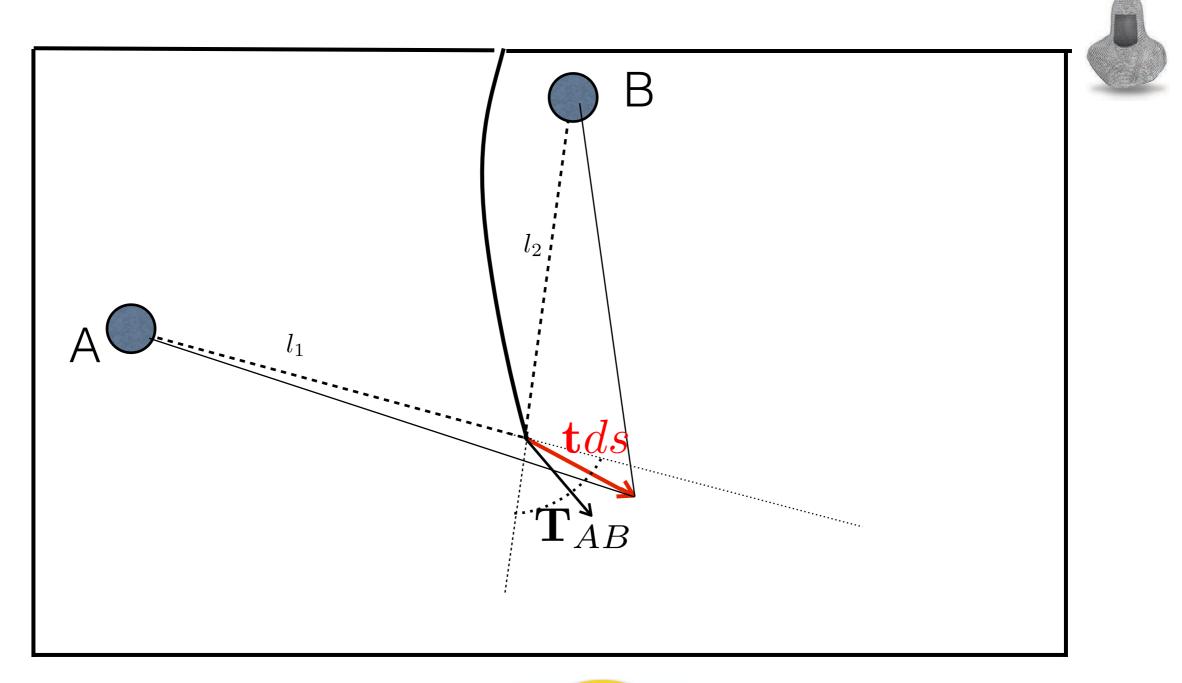


$$dW = F(dl_1 + dl_2)$$



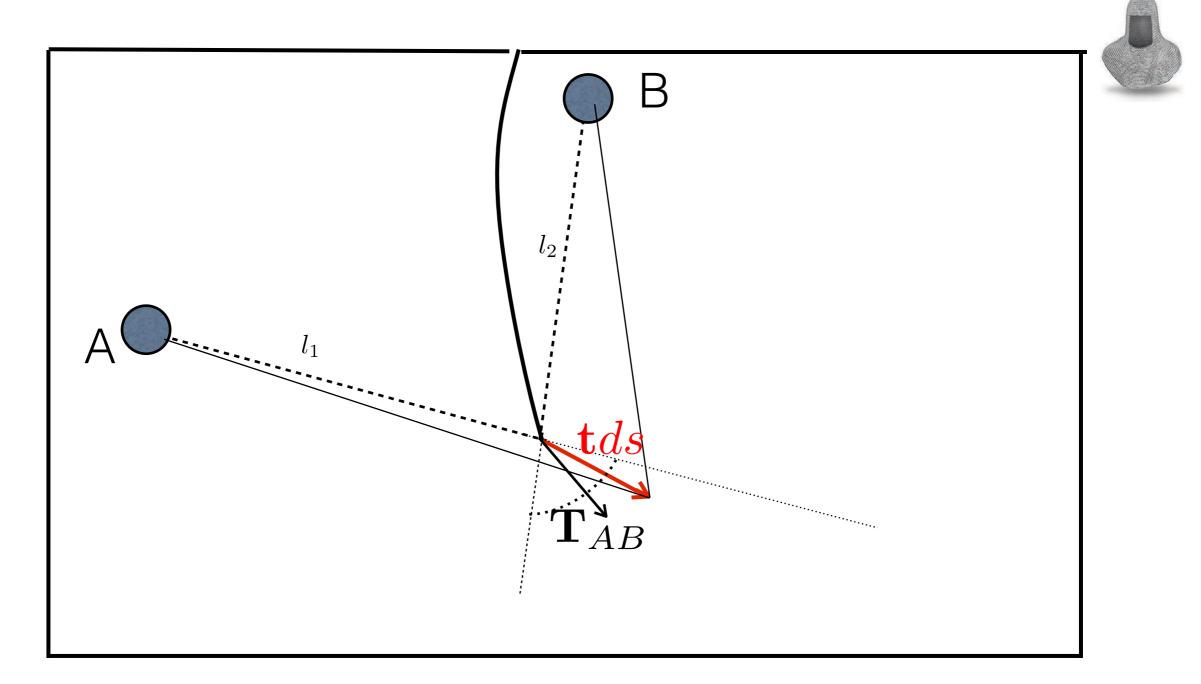
$$dW = F(dl_1 + dl_2) = F\mathbf{T}_{AB}.\mathbf{t}ds$$

$$\int_{bisector}$$

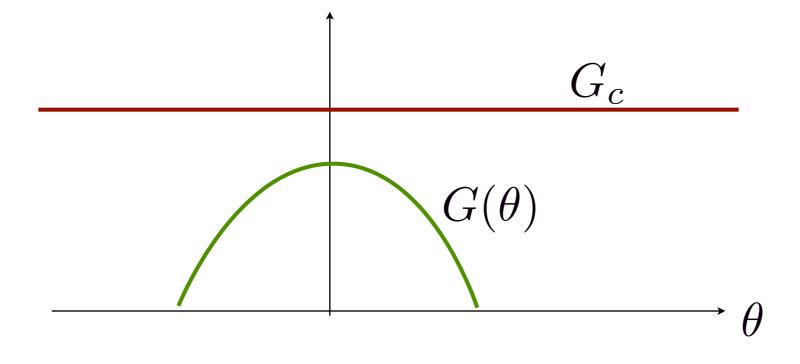


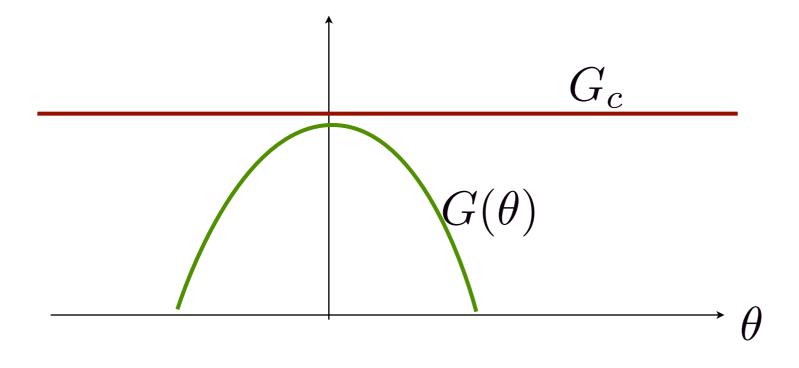
$$G = \frac{F}{t} \mathbf{T}_{AB} \mathbf{.t}$$

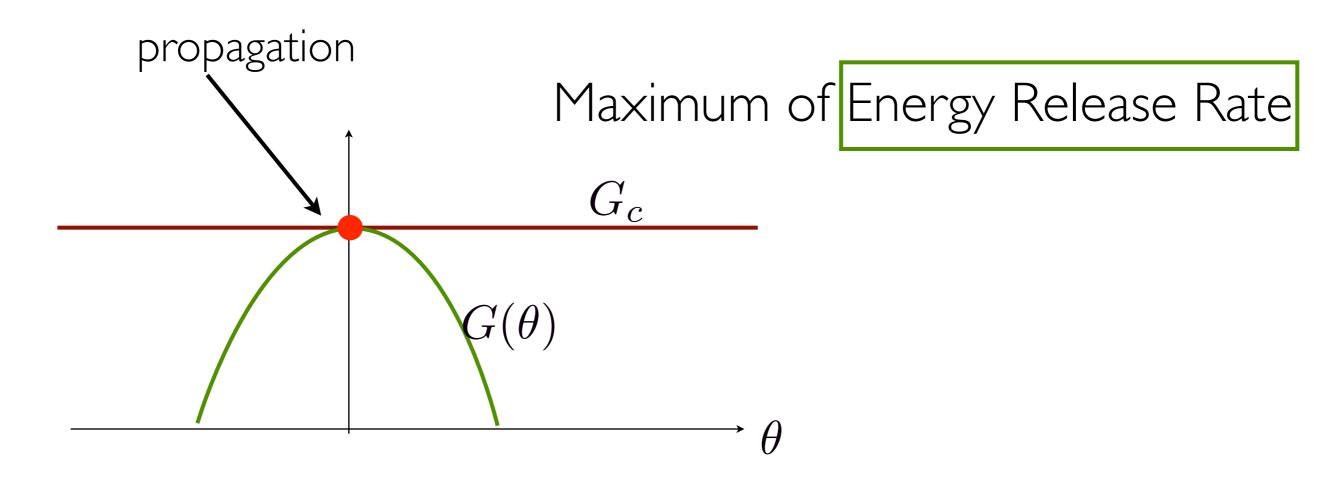
a configurational force? (fracture tip has no memory of its path)

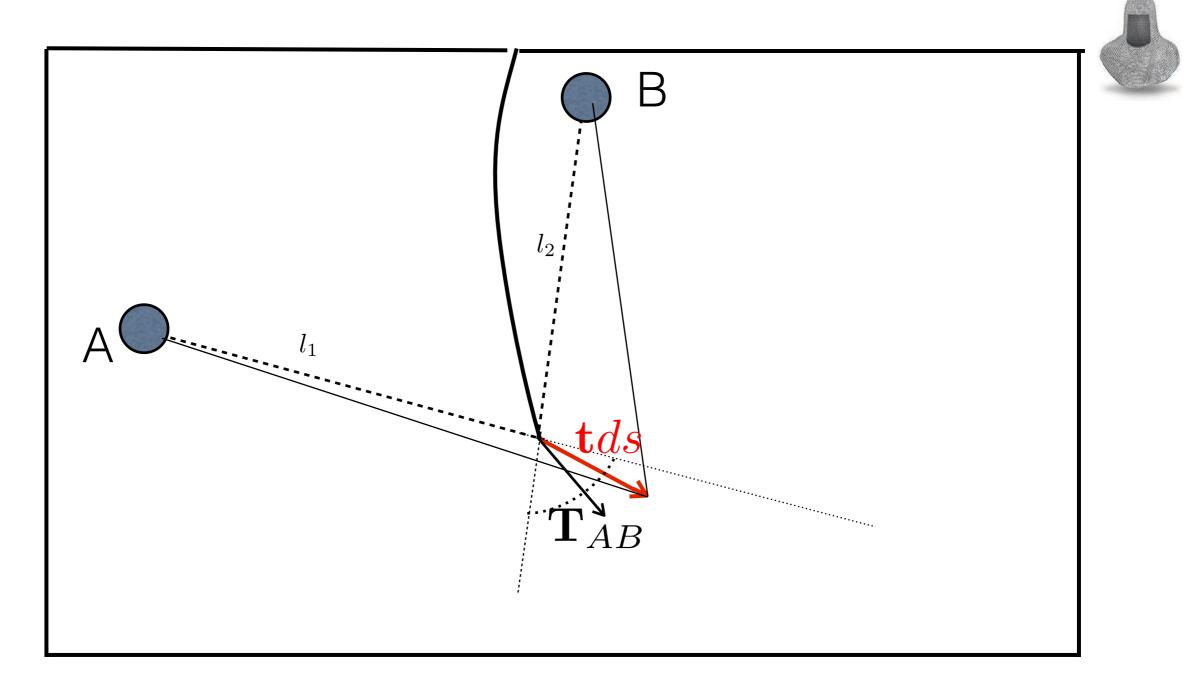


$$G = \frac{F}{t} \mathbf{T}_{AB} \mathbf{.t}$$



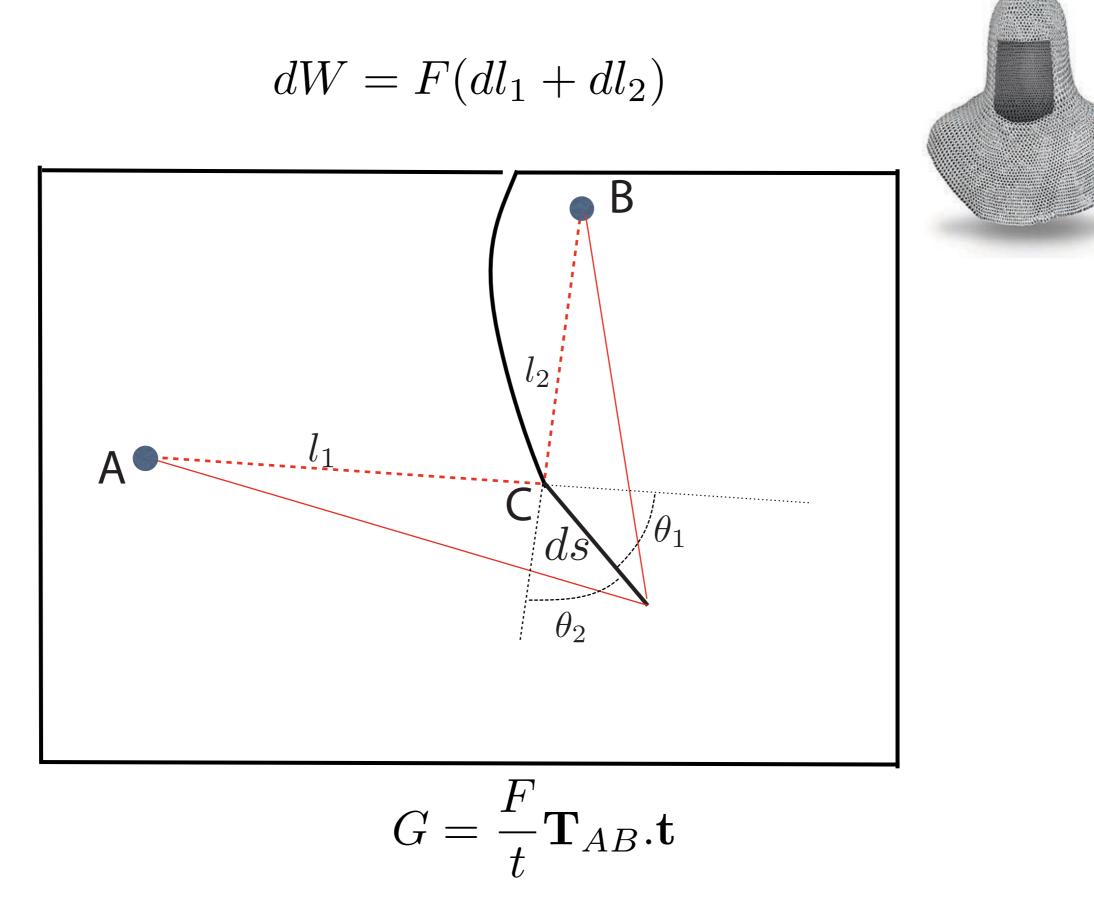




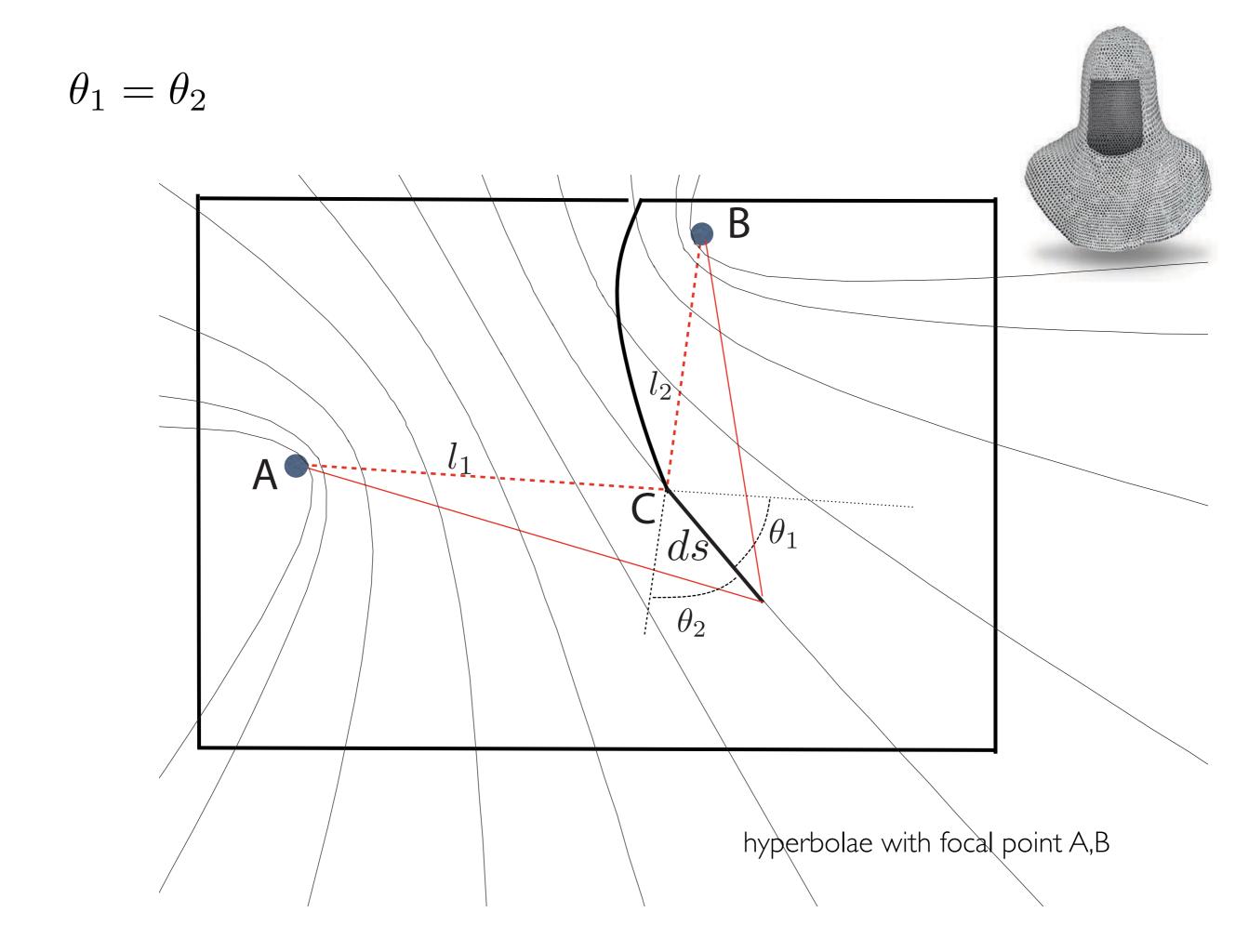


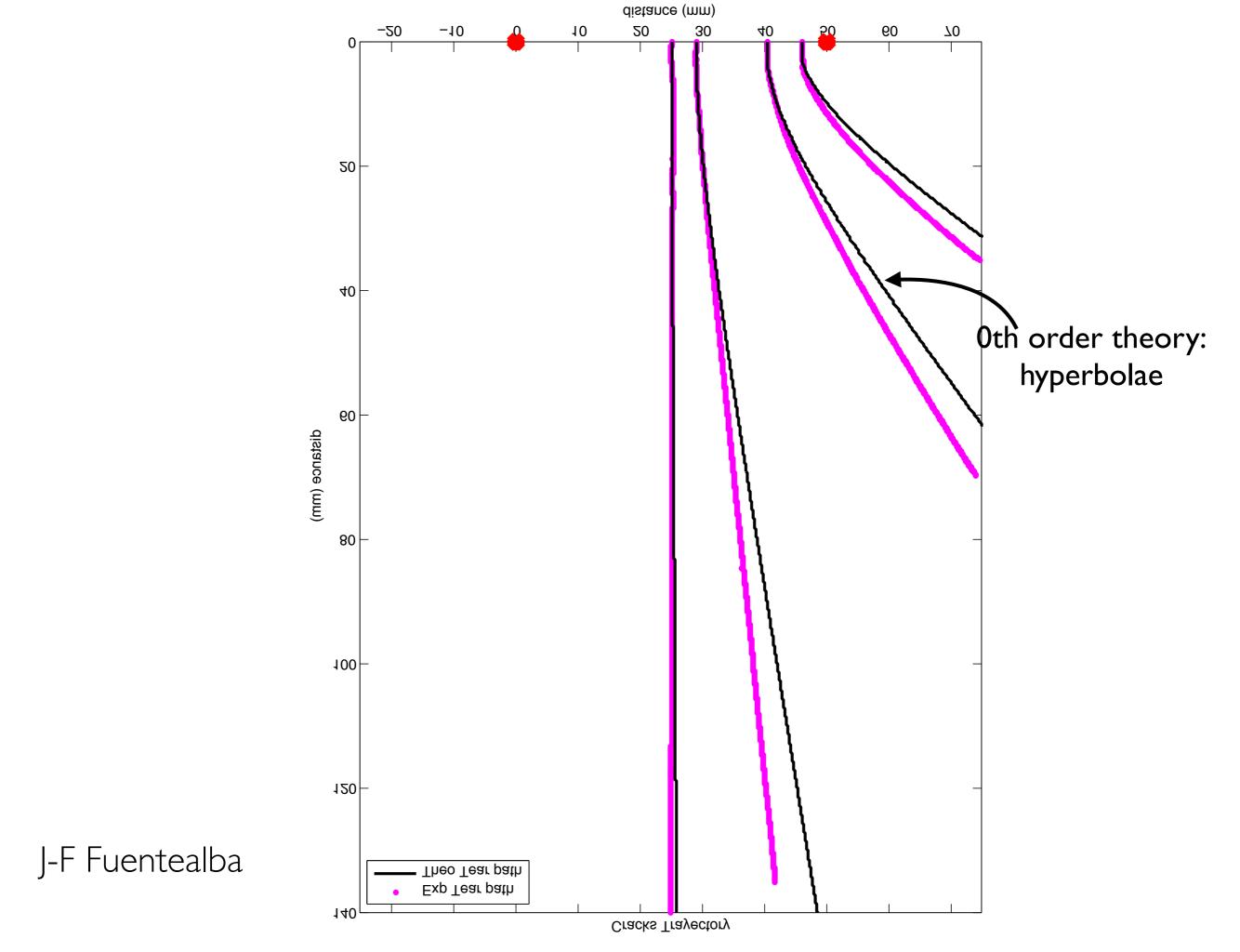
$$G = \frac{F}{t} \mathbf{T}_{AB} \mathbf{.t}$$

Maximum Energy Release rate : bisector

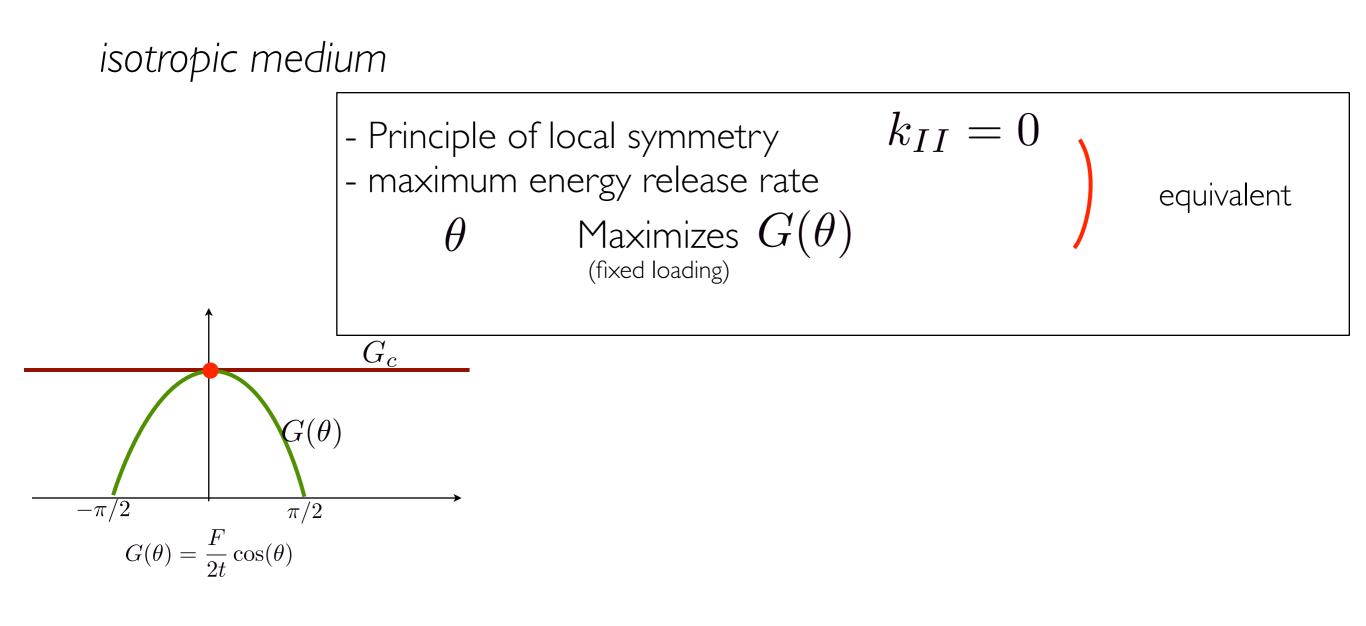


Maximum Energy Release rate : bisector $\theta_1 = \theta_2$





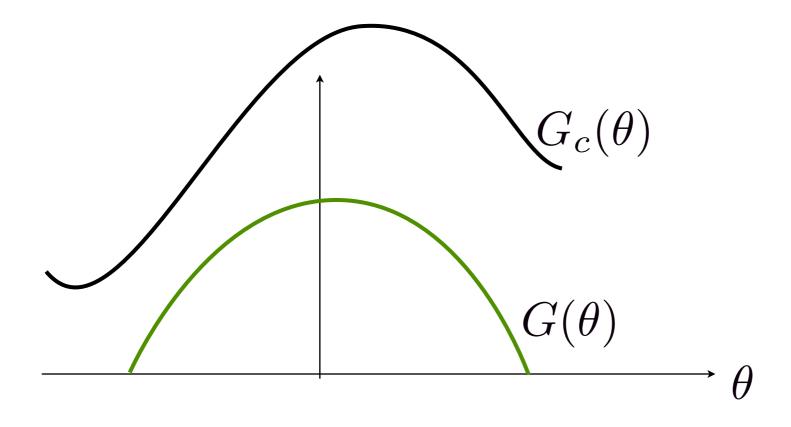
possible deviation due to material anisotropy

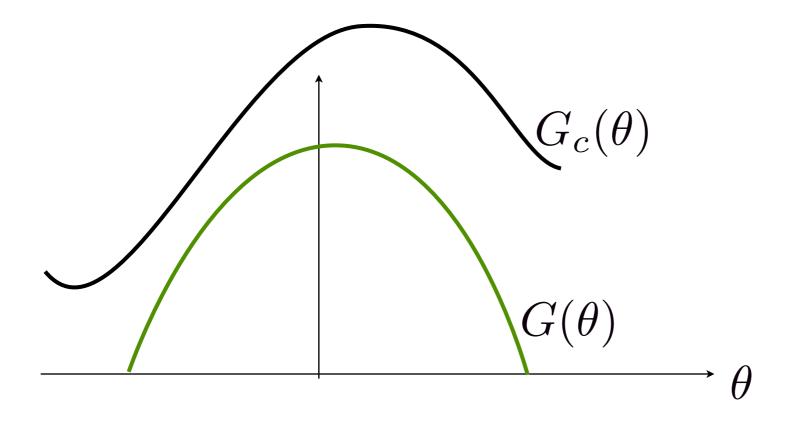


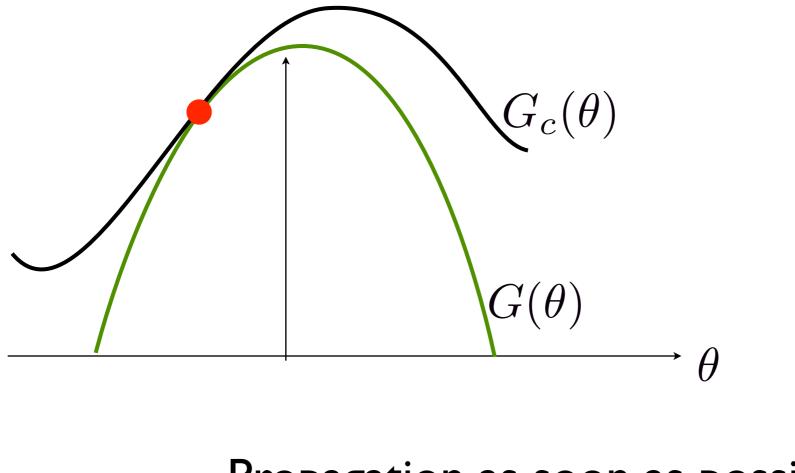
anisotropic medium

direction of fracture?

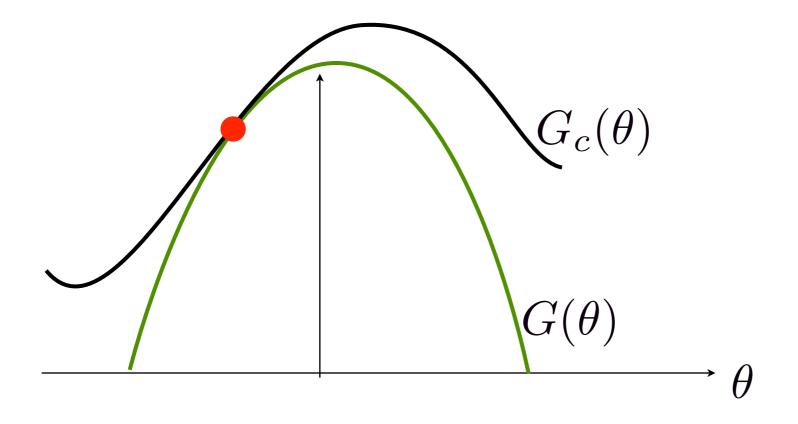
open question !







Propagation as soon as possible:

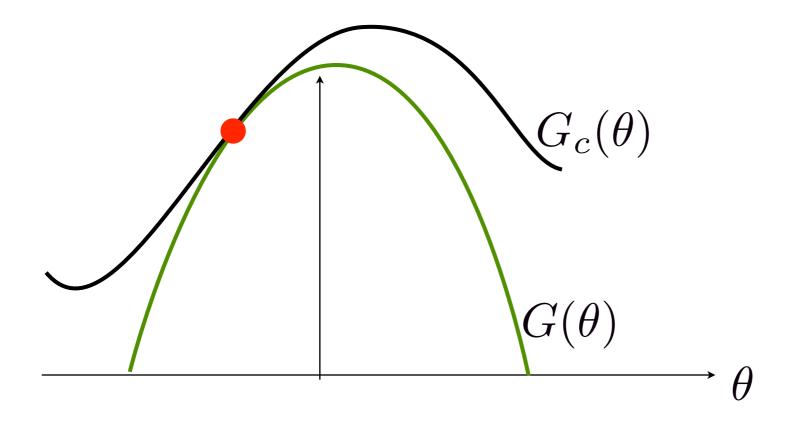


Propagation as soon as possible:

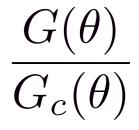
«Maximum energy release rate»

 $\underset{\tiny \textit{(fixed loading)}}{\text{Maximizes}} \quad \frac{G(\theta)}{G_c(\theta)}$

i.e. Minimize loading consistent with propagation



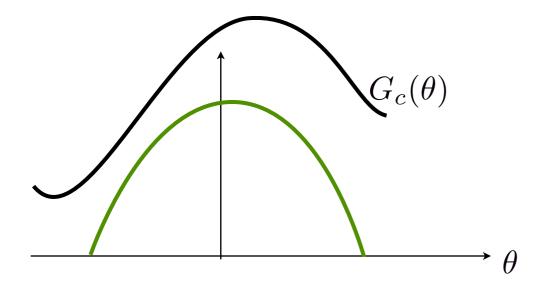
Maximizes (fixed loading)

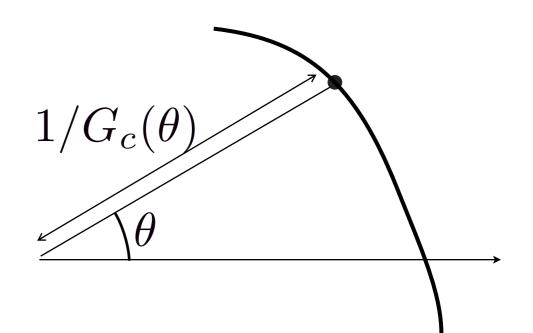


Palaniswamy et al1978Gurtin et al1998Hakim et al2005,2009Chambolle et al2009

difficult to check experimentally EASIER in thin sheets!

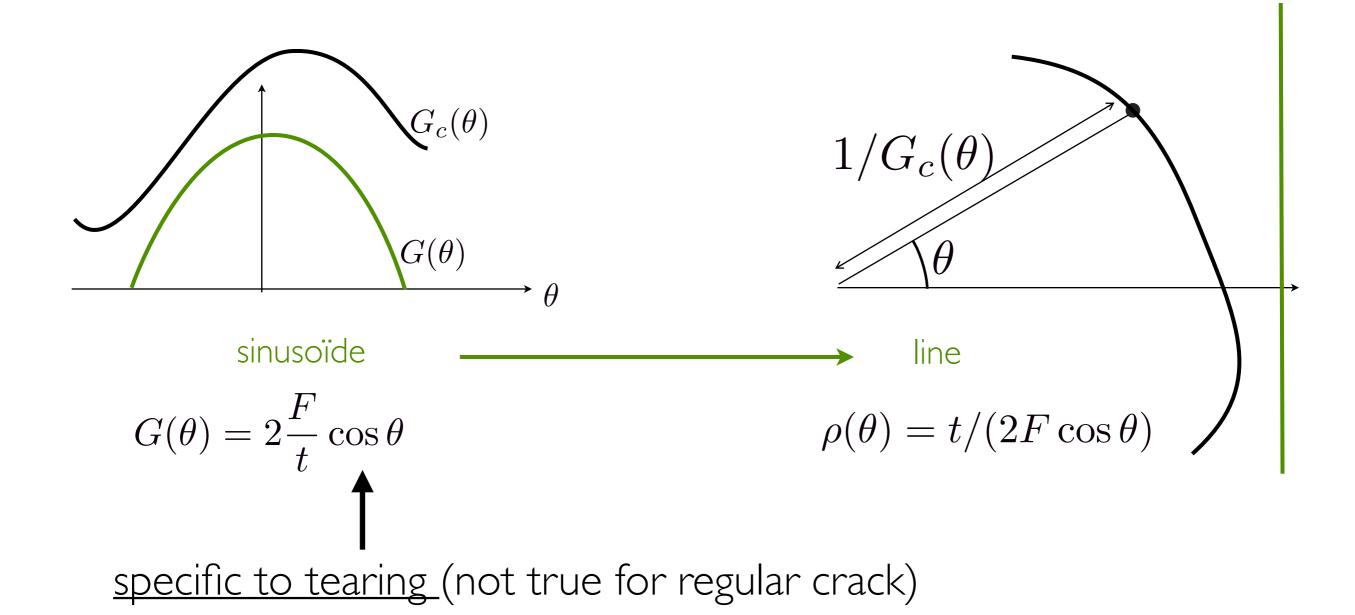
inverse polar plot



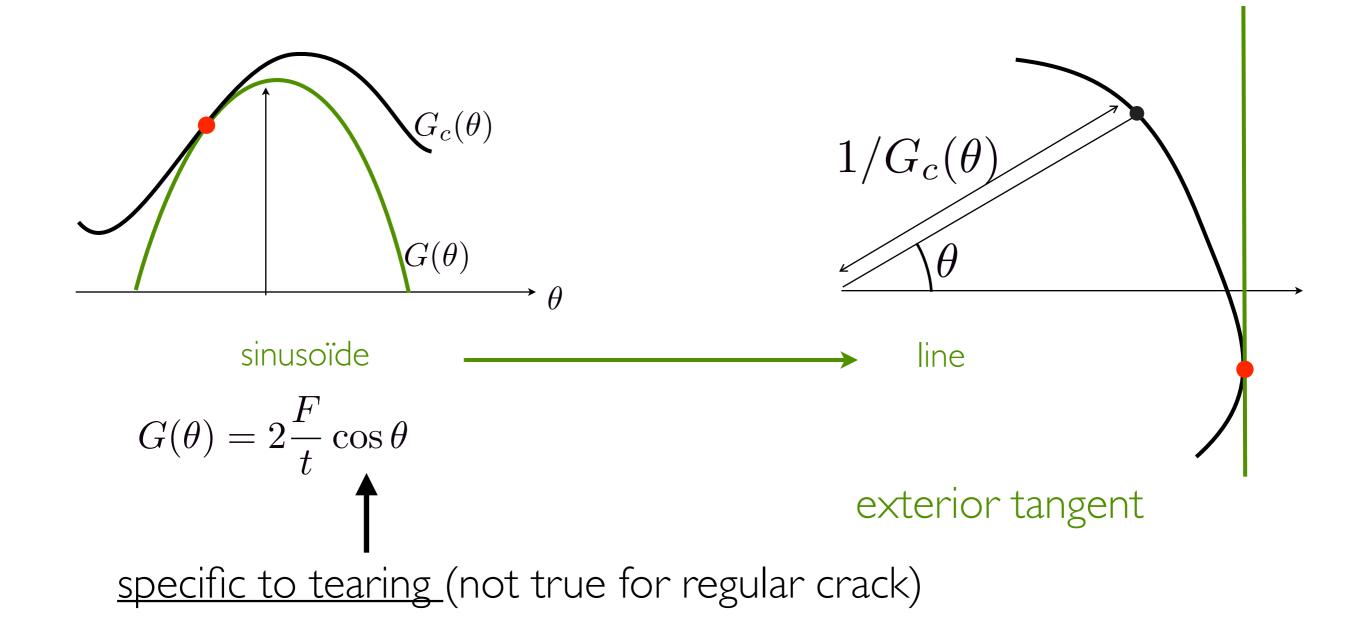


used crystal growth (inverse Wulff plot) also Gurtin et al. 1998

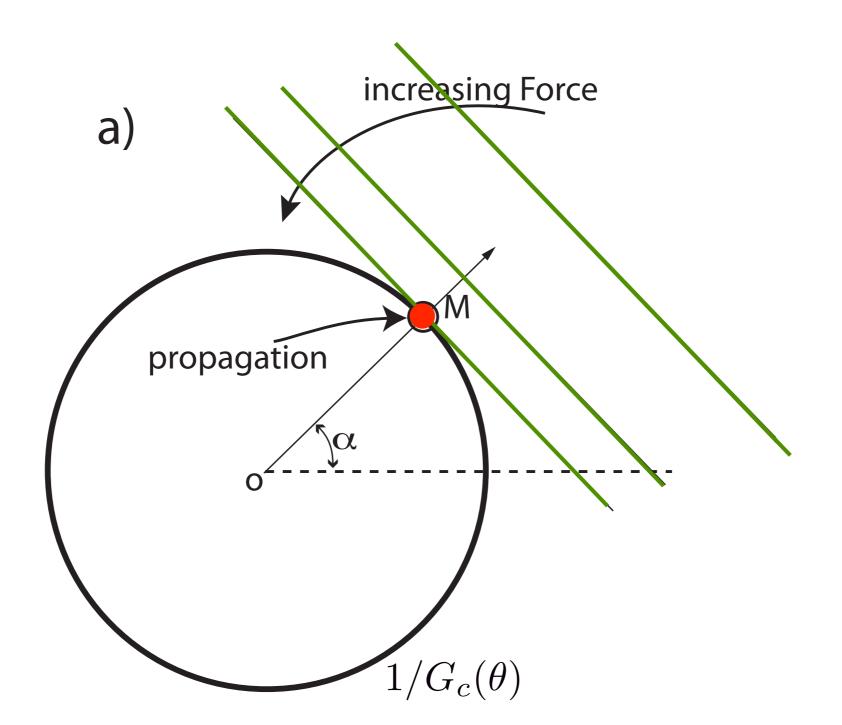
inverse polar plot



inverse polar plot

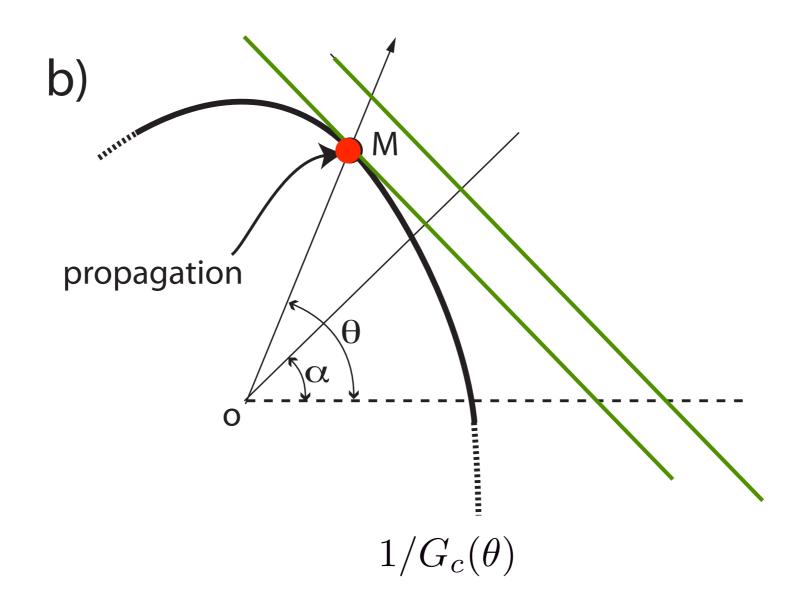


isotropic case



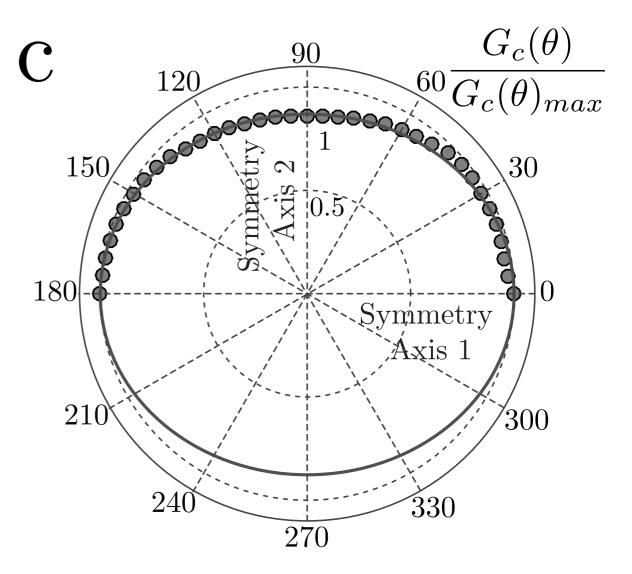
direction of energy release rate vector: α

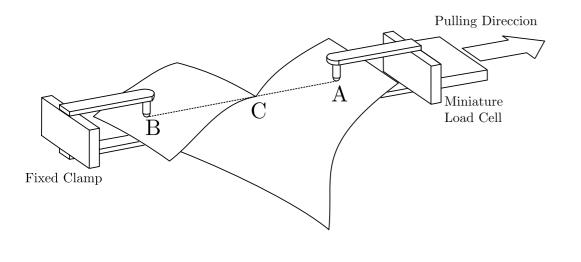
anisotropy



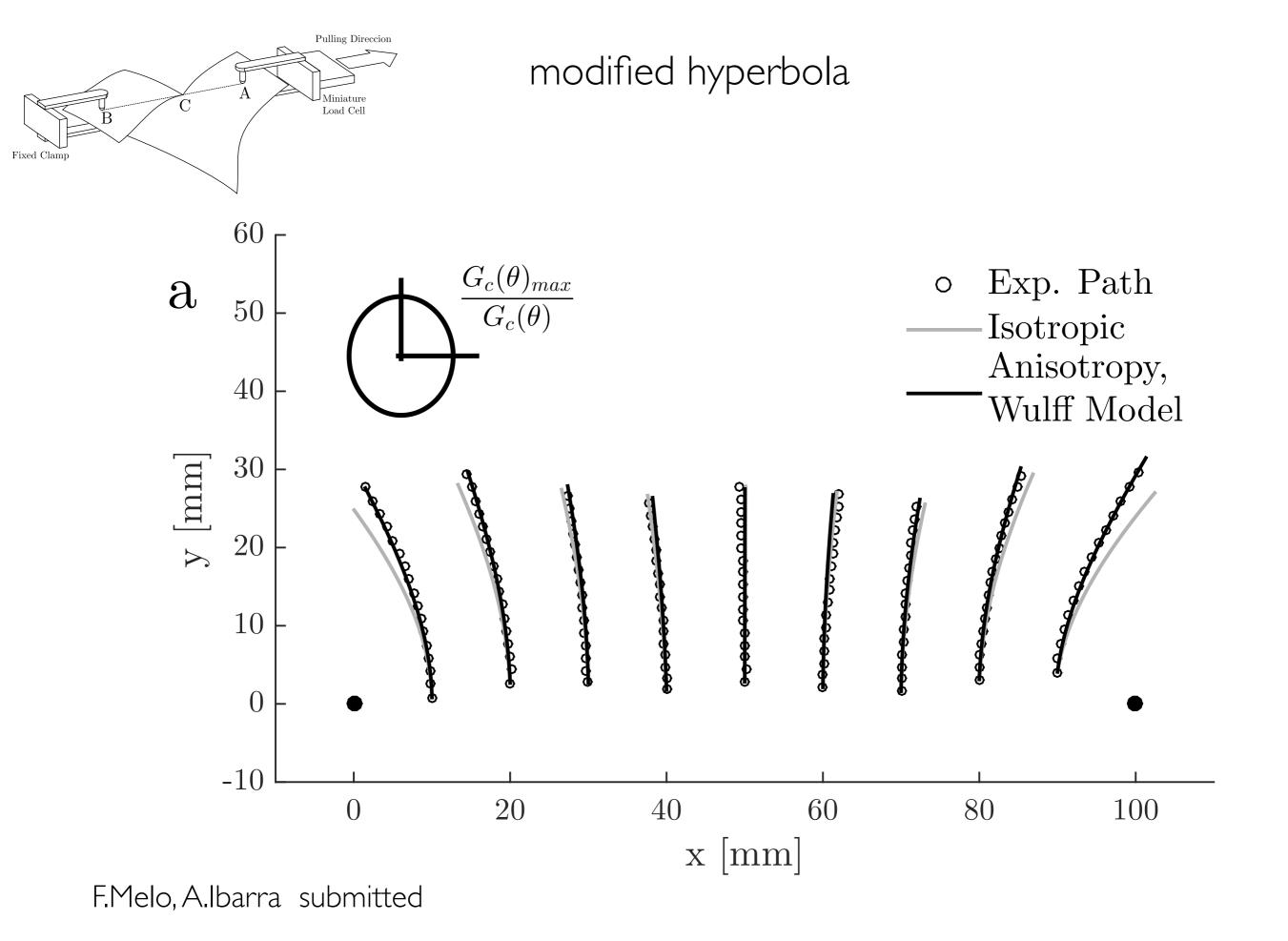
direction of energy release rate vector: α

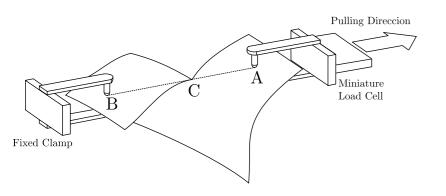
Weakly anisotropic material



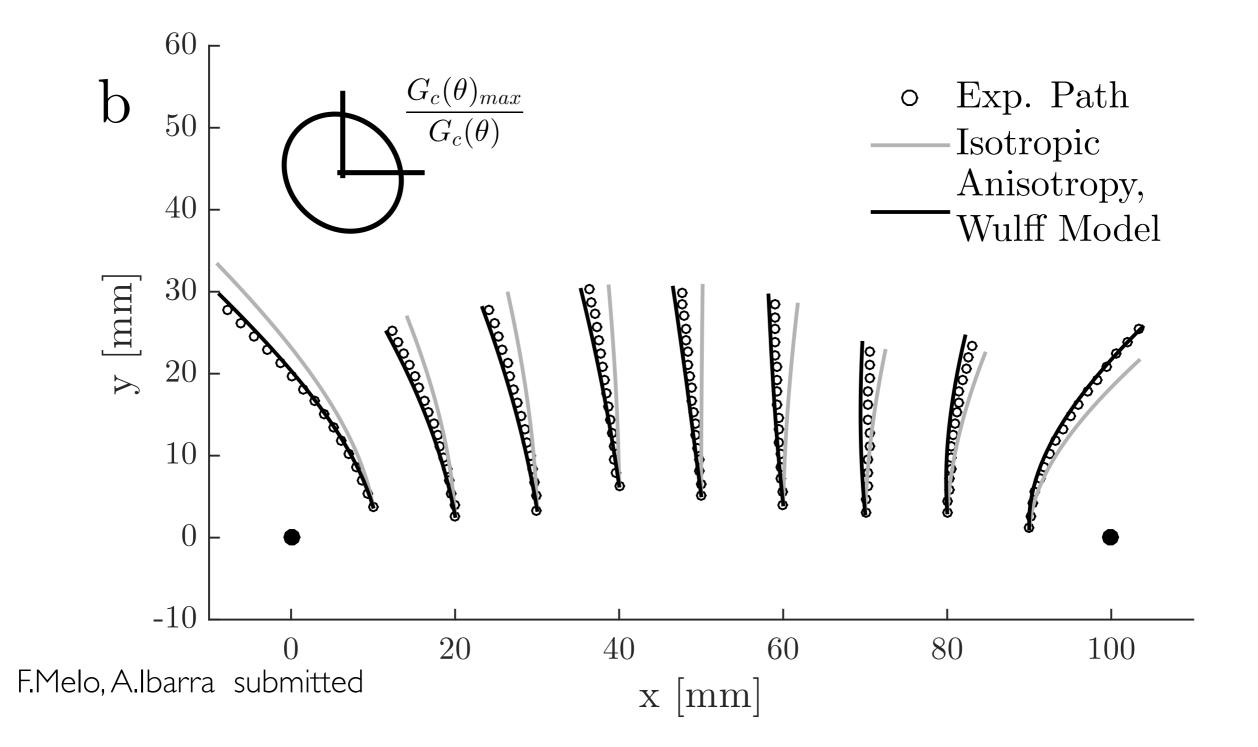


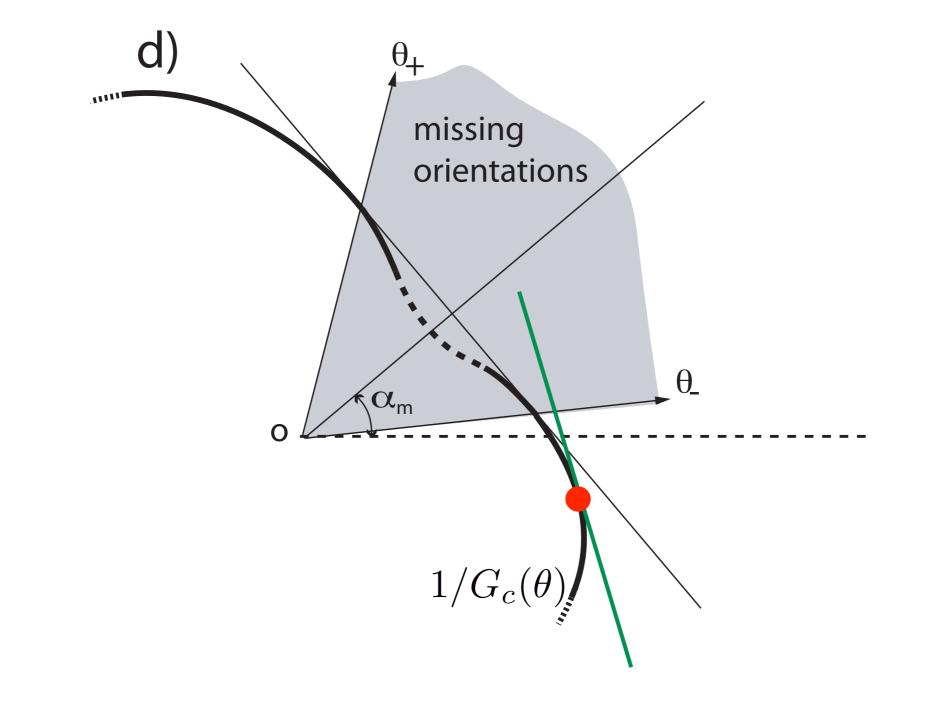
F.Melo, BR, A.Ibarra submitted

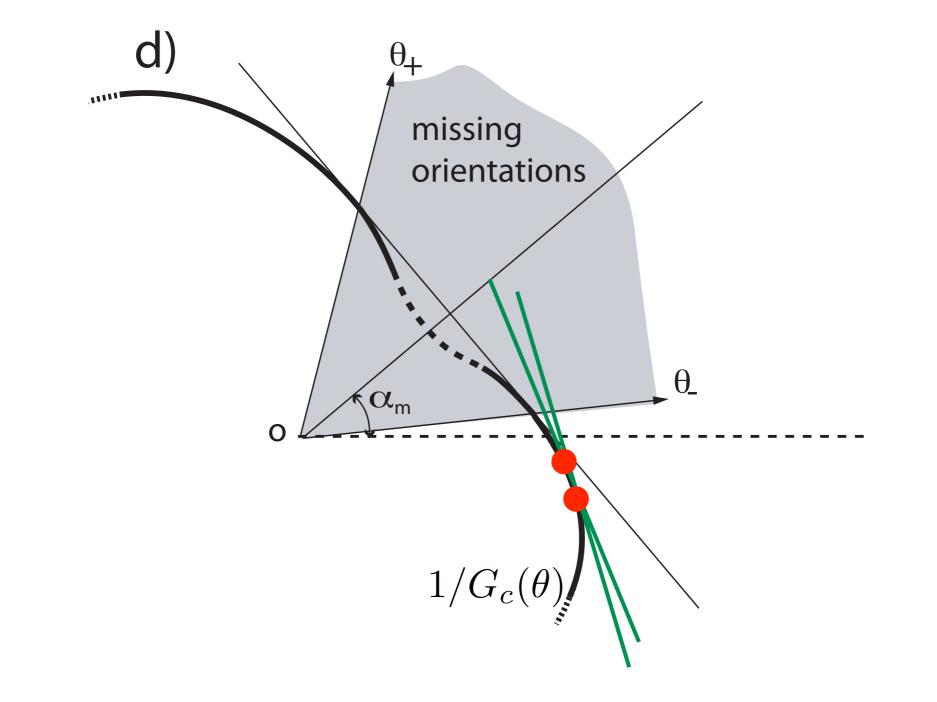


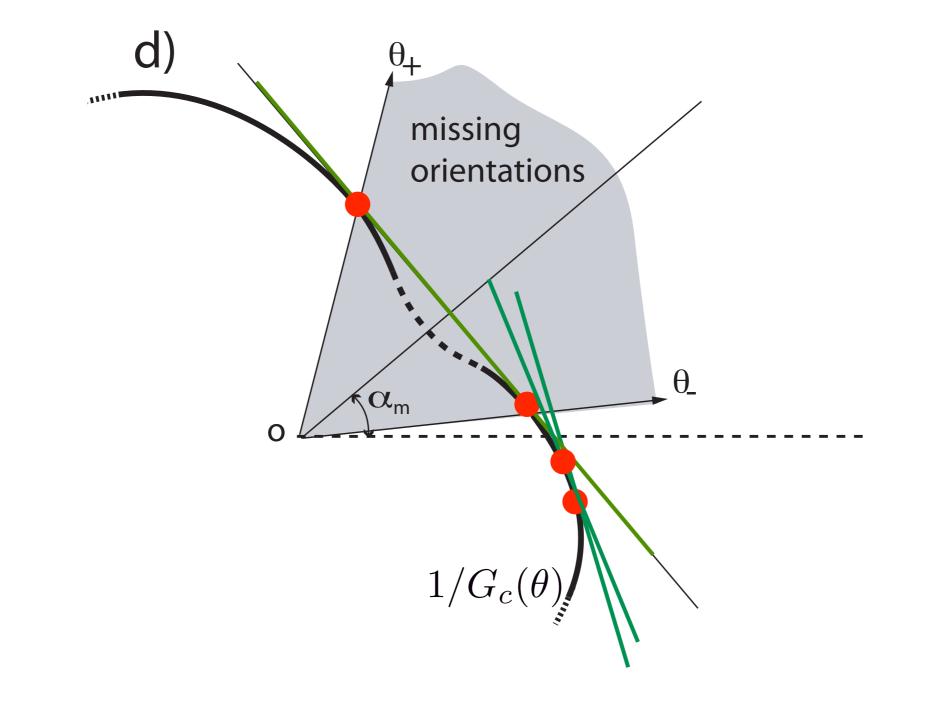


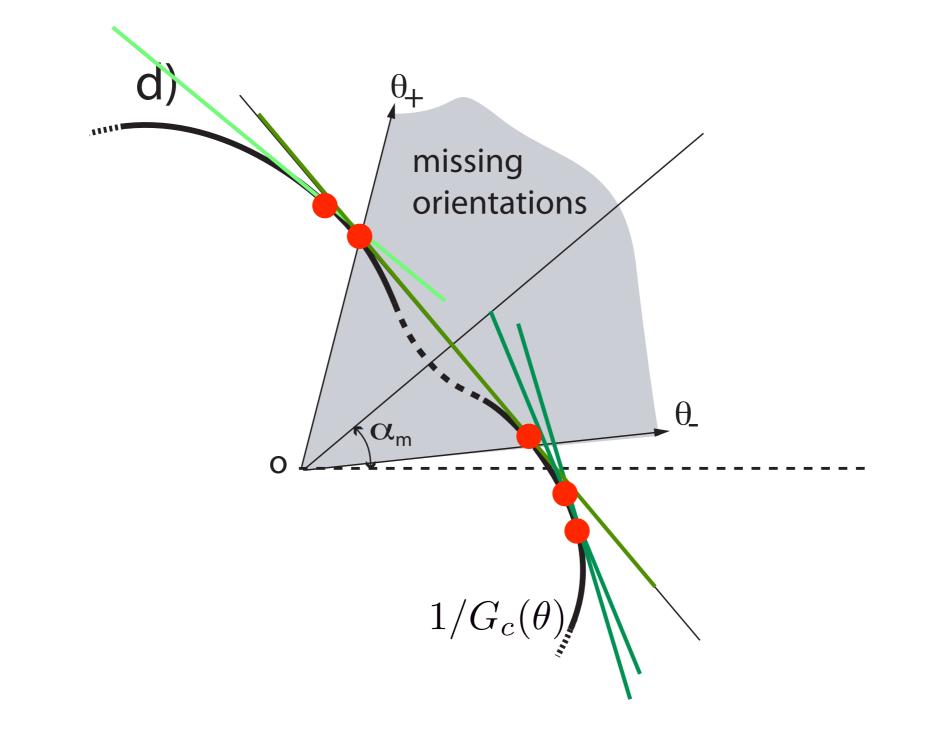
modified hyperbola

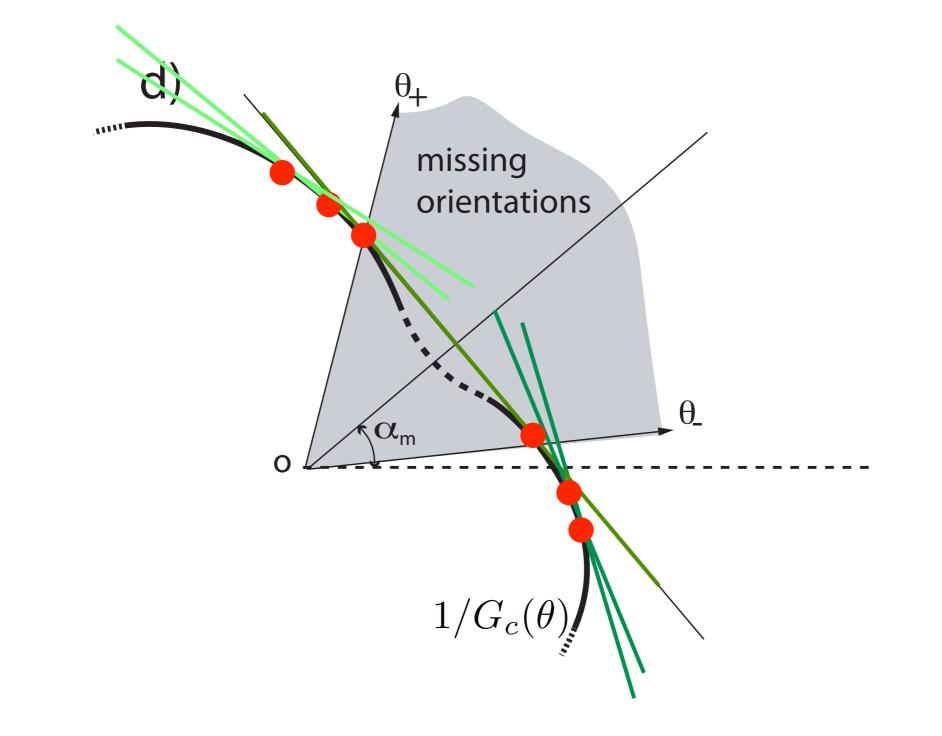


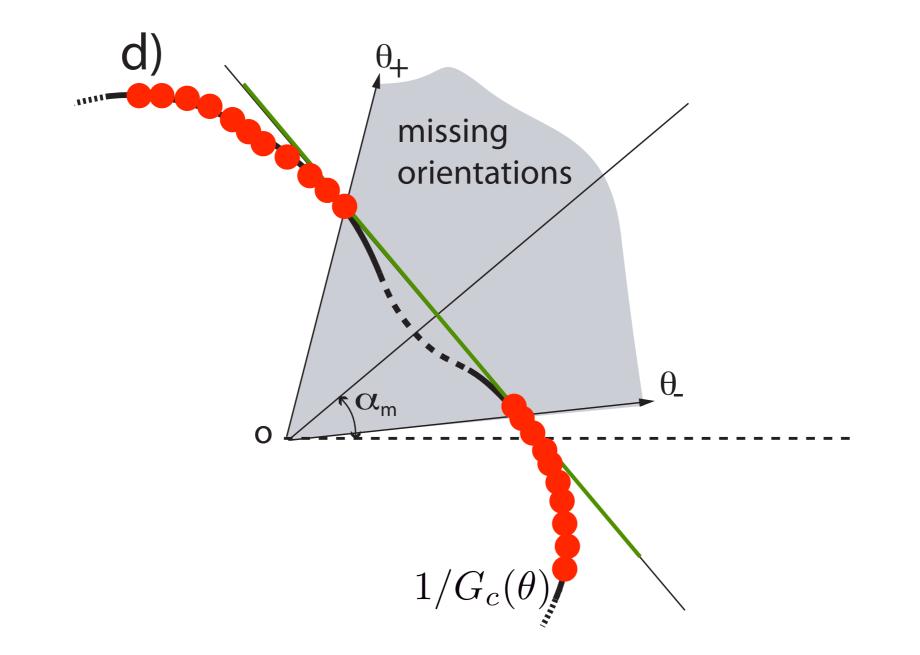






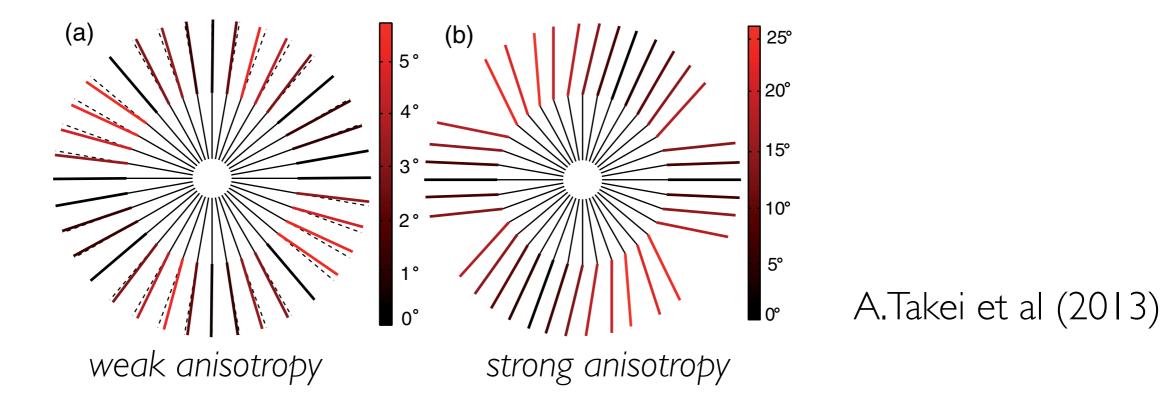


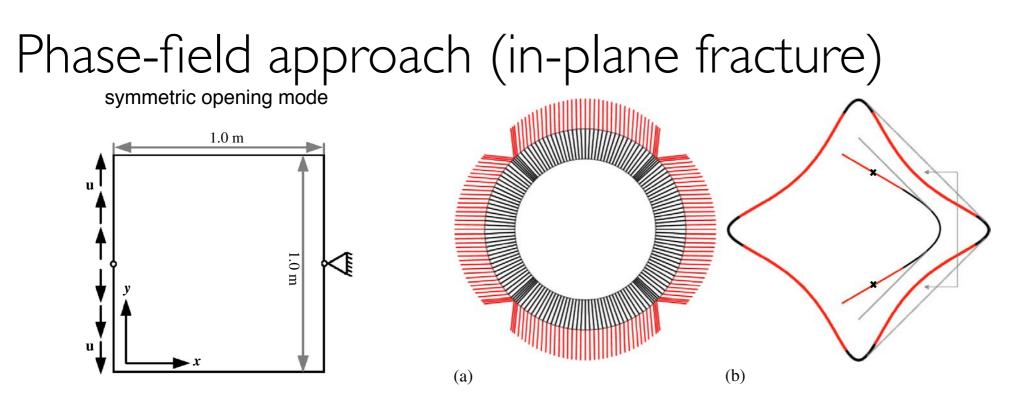




no propagation in sector $\theta_{-} < \theta < \theta_{+}$ non-convex curve = forbidden angles

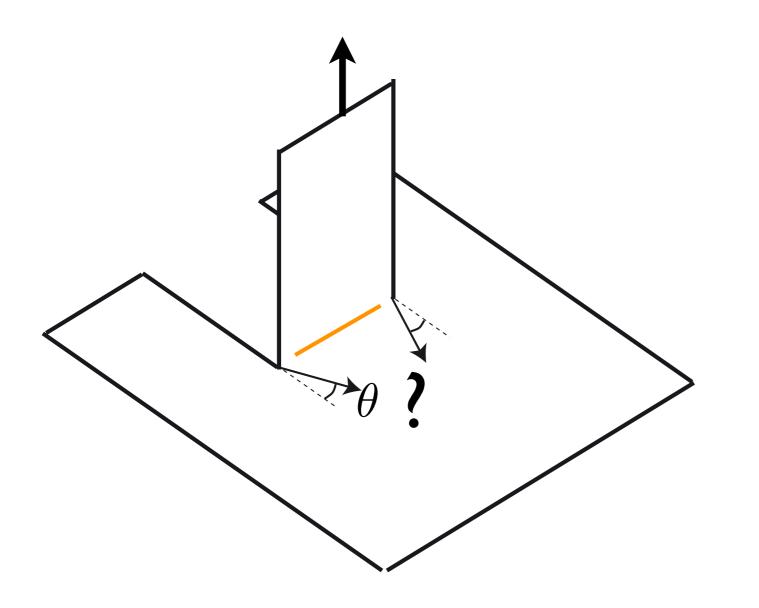
Forbidden direction observed in tearing





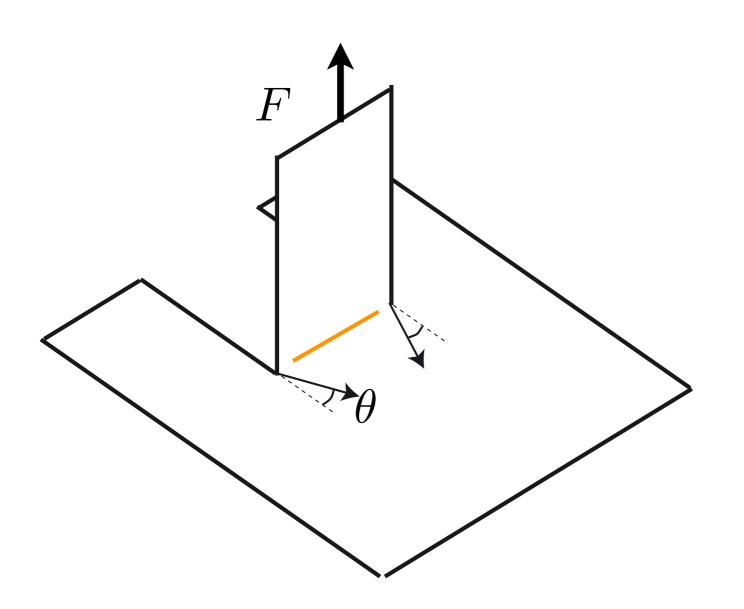
Does the construction apply in this case ?

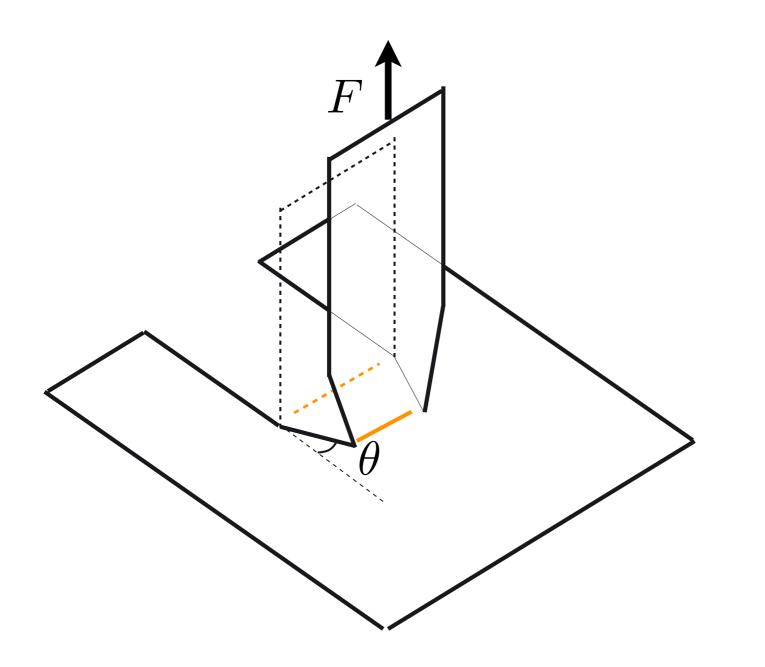
B.Li, et al(2015)

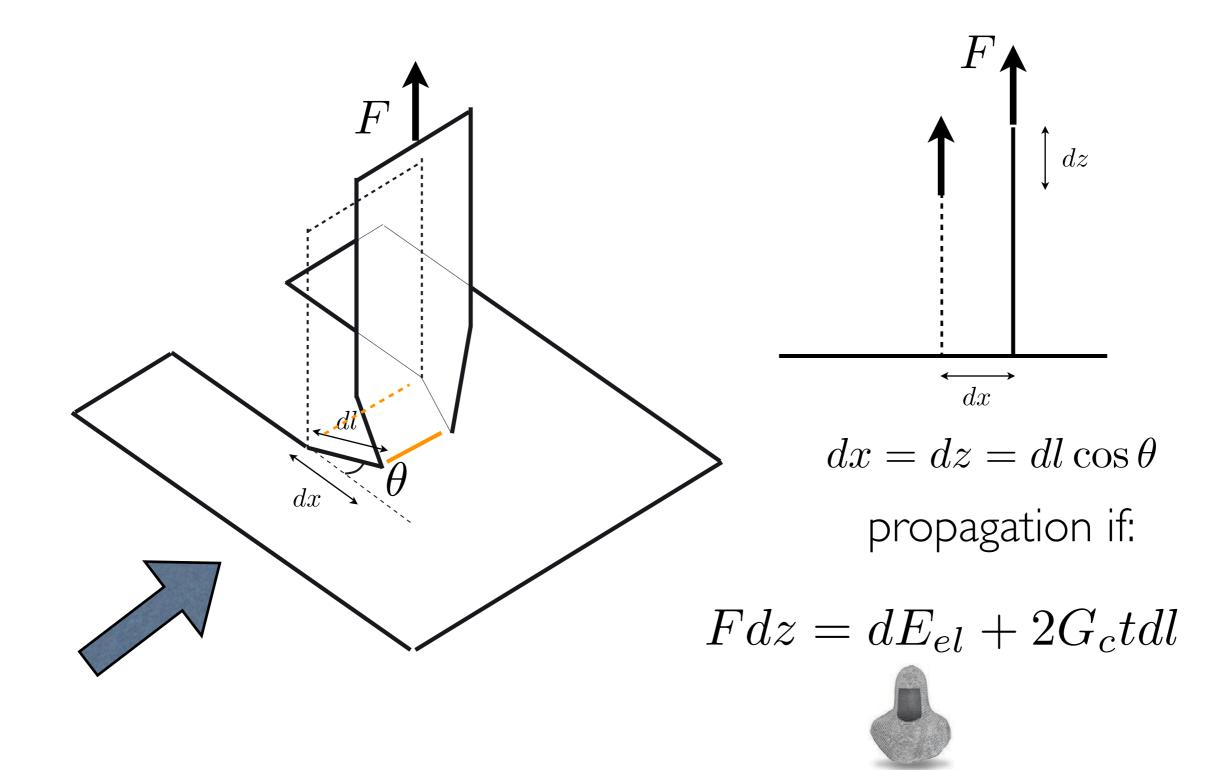


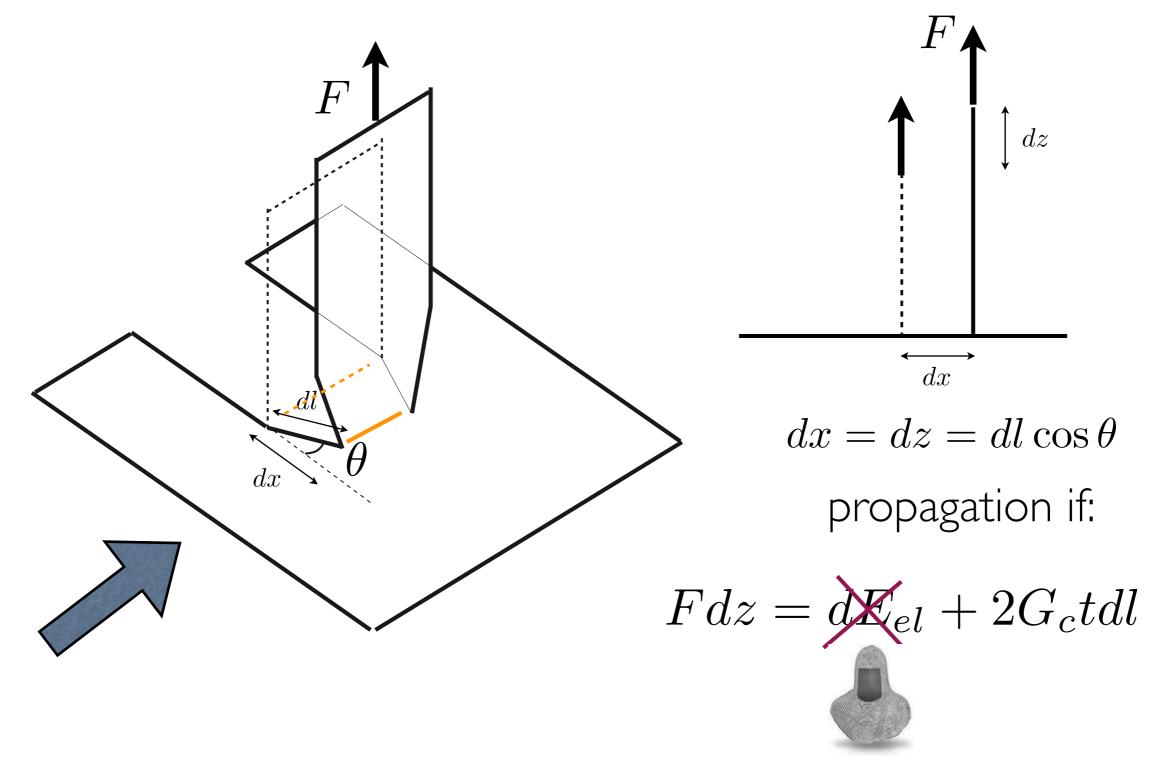
direction of propagation?

suppose propagation in direction $\boldsymbol{\theta}$

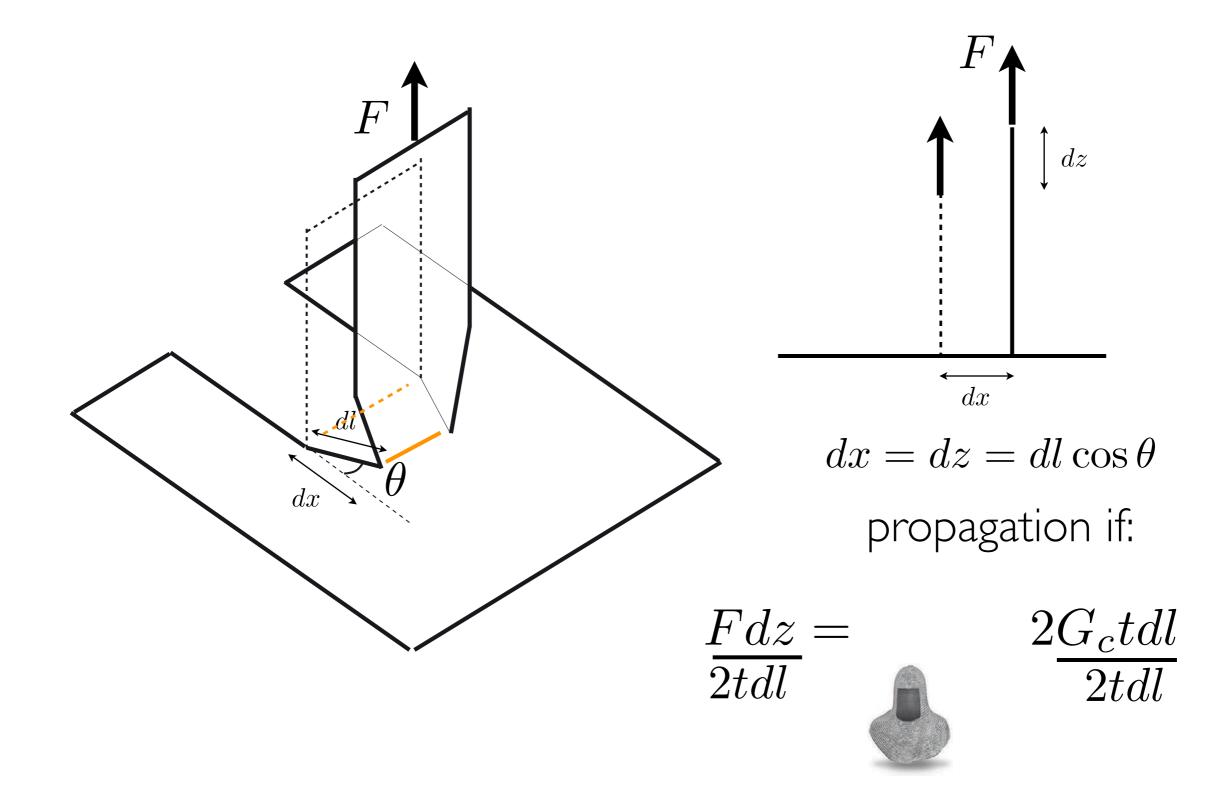


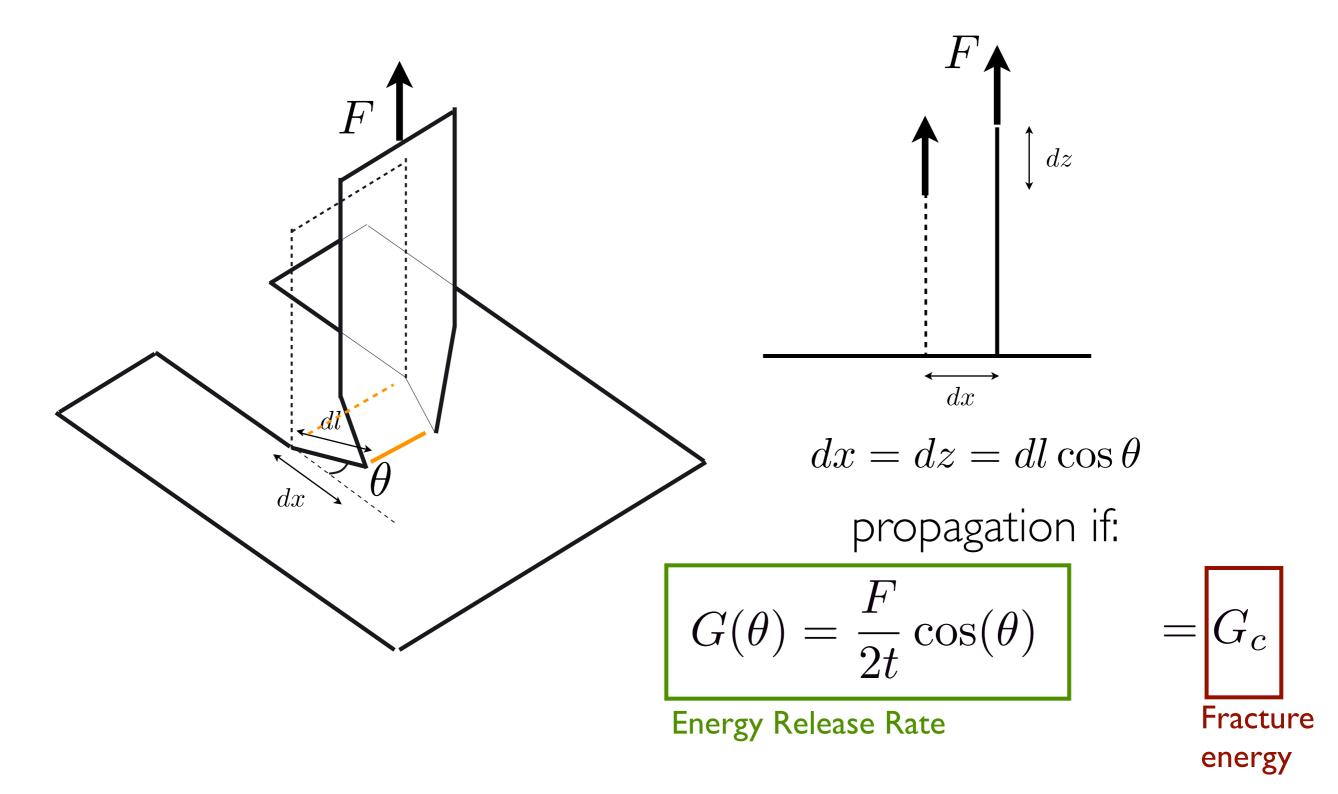






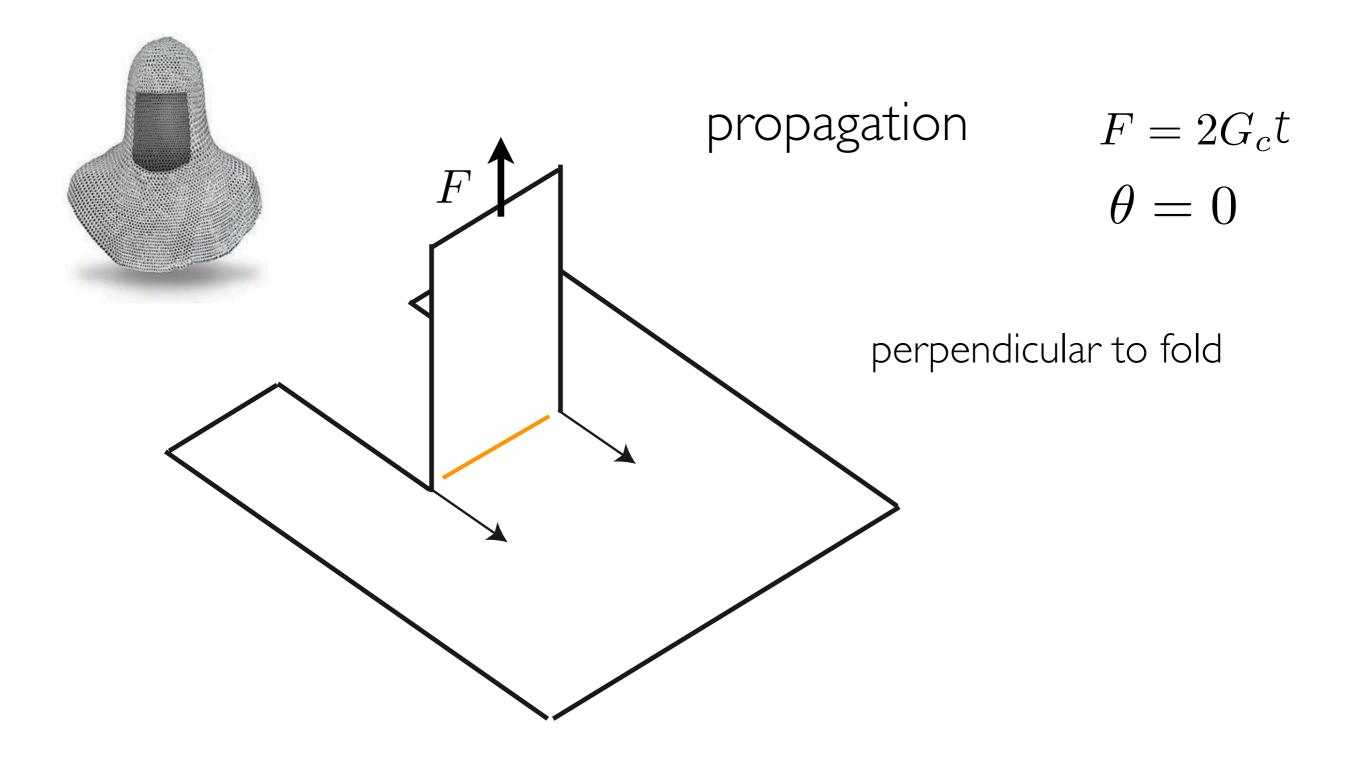
inextensible fabric : infinitely easy to bend, inextensible





independent of previous path independent of material property

Robust path!



optimal direction to extract operator's work

Ith order approximation:

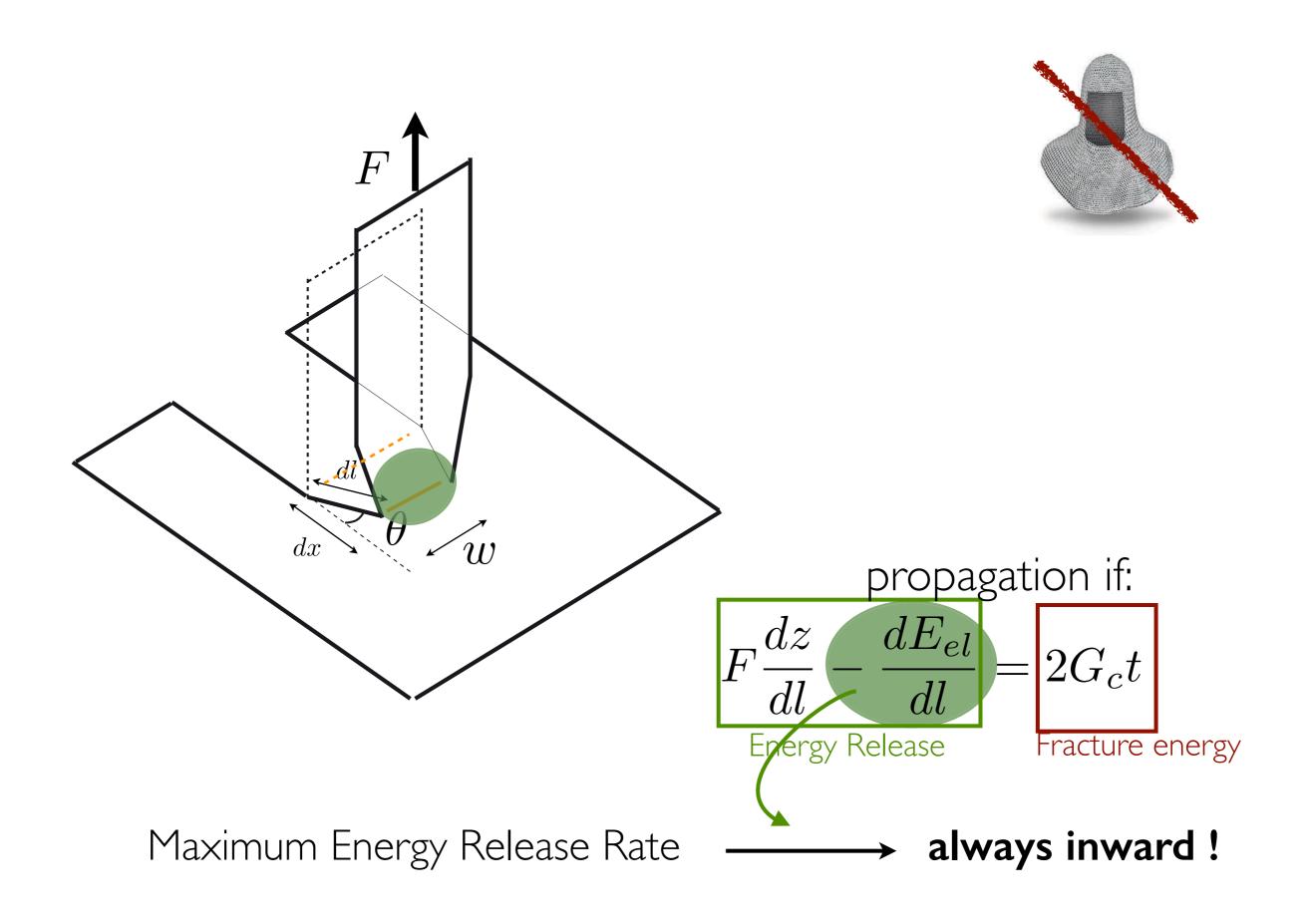
The sheet is

- Inextensible infinitely bendable

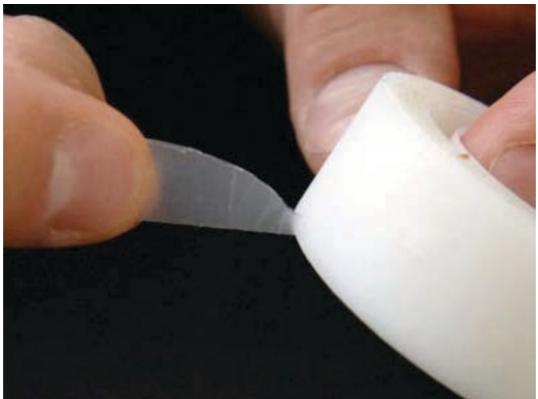
include bending energy

 $Fdz = dE_{el} + 2G_c tdl$

a new source for energy release rate

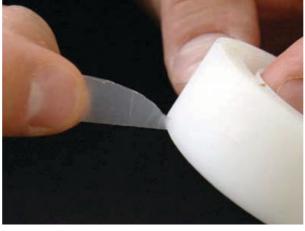


quantitative prediction : strong adhesion case

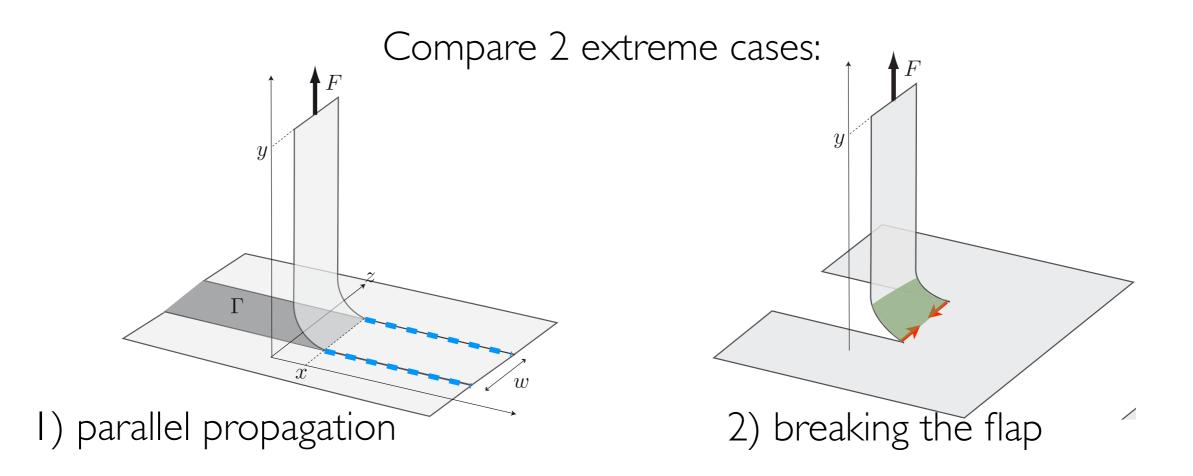


D.Coveney

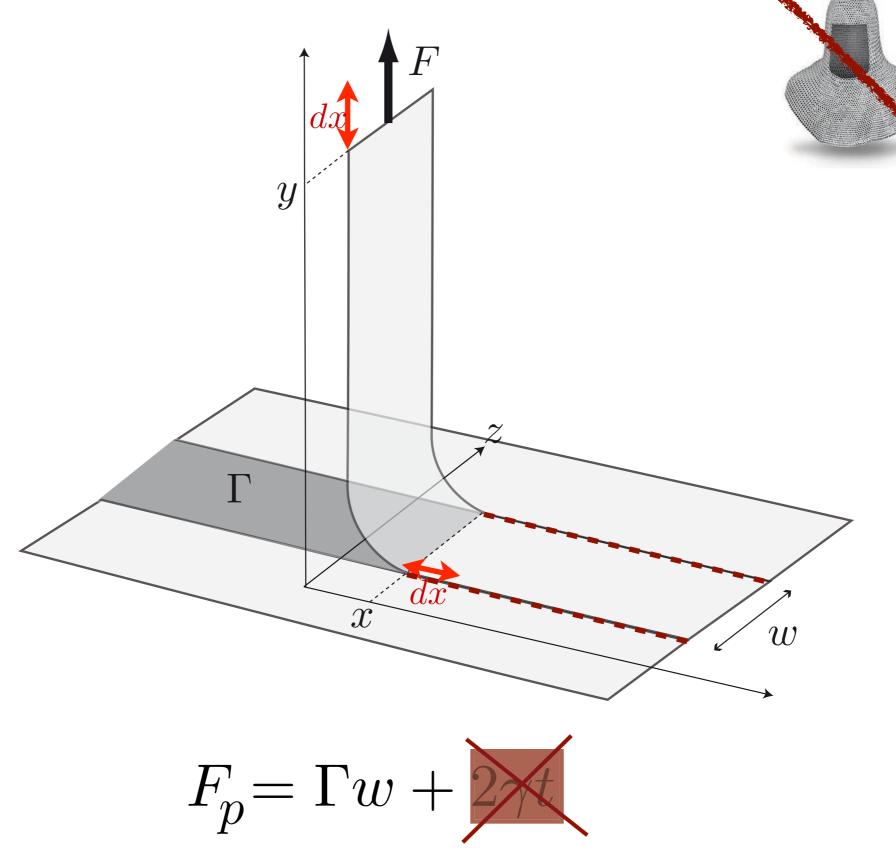
quantitative prediction : strong adhesion case



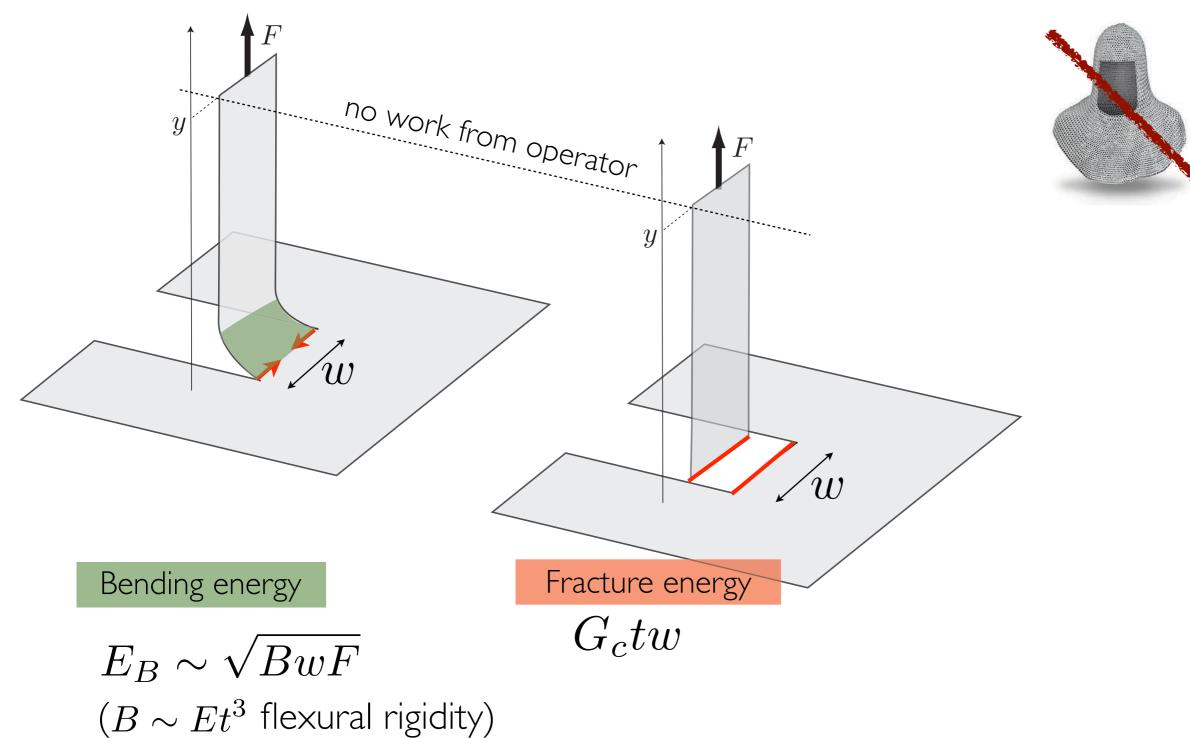
D.Coveney



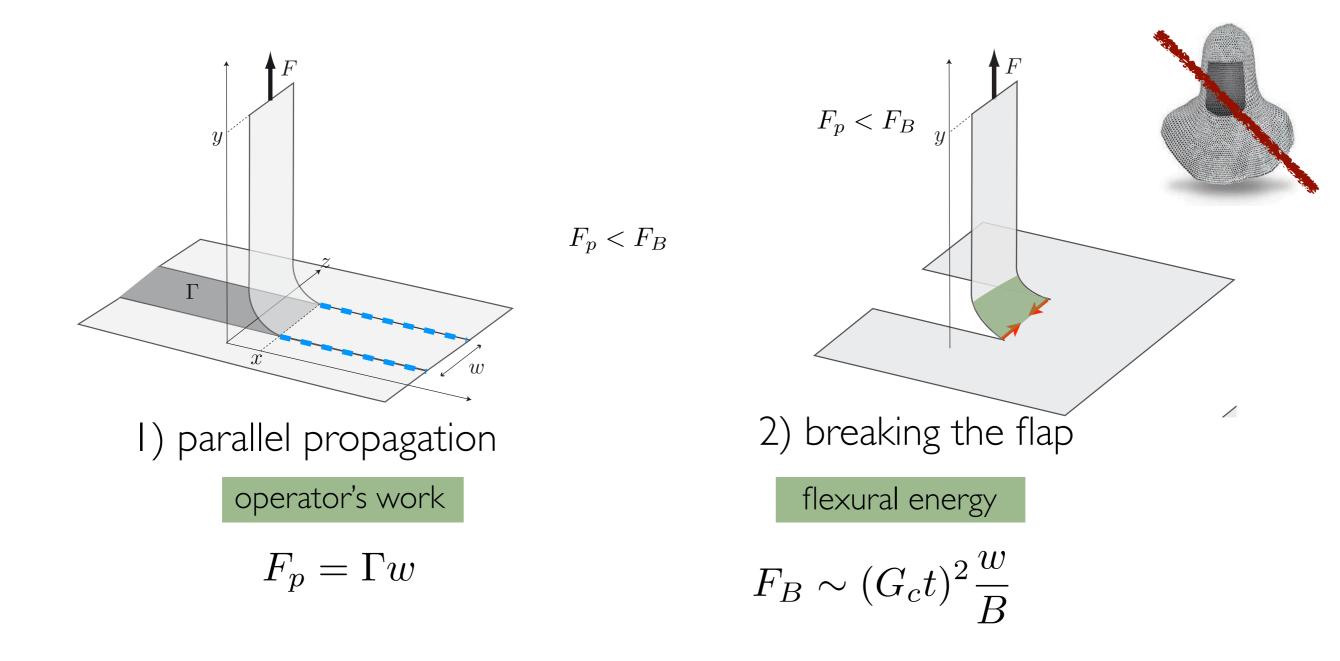
I) parallel propagation



2) breaking the flap (no work of operator)

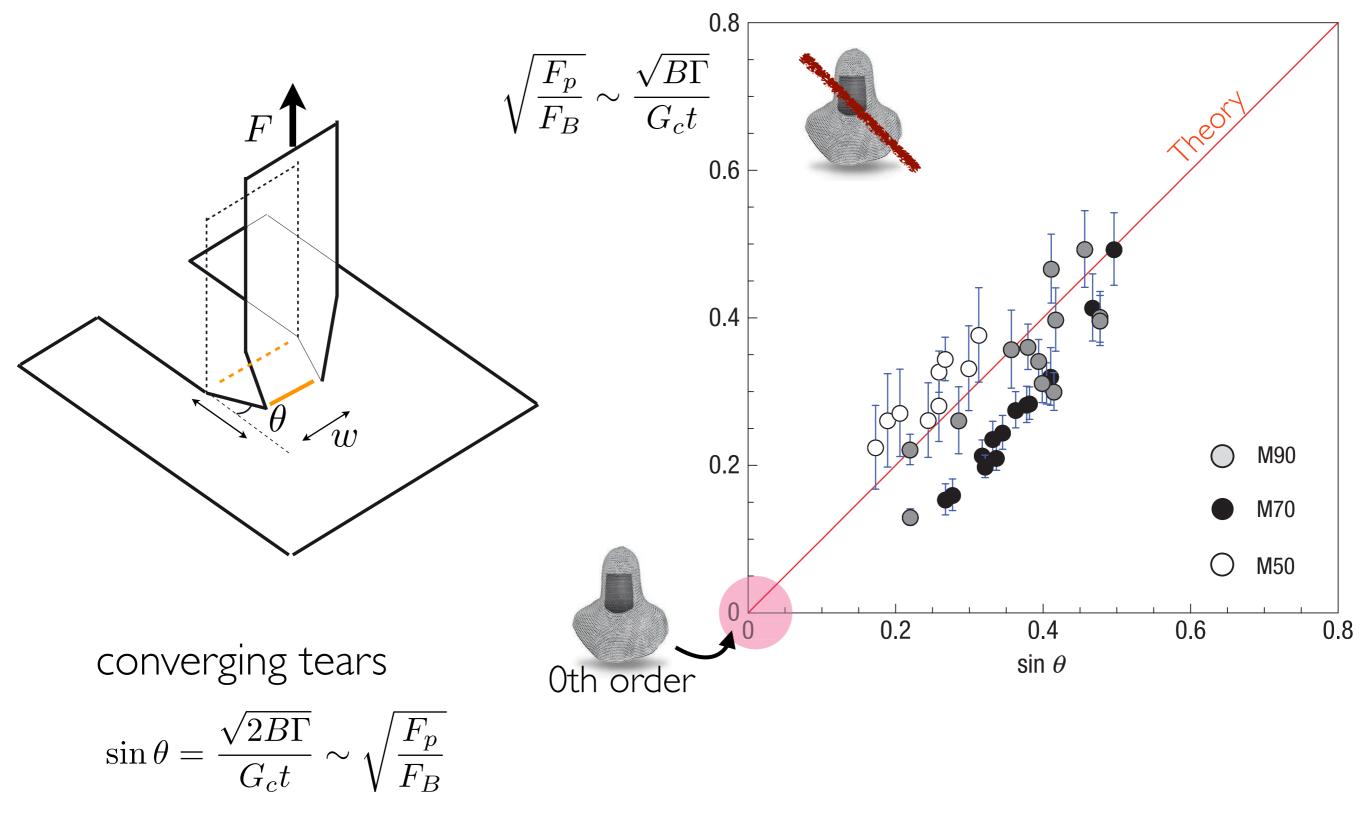


propagation if
$$F_B \sim (G_c t)^2 \frac{w}{B}$$



 $F_p < F_B \longrightarrow$ parallel propagation

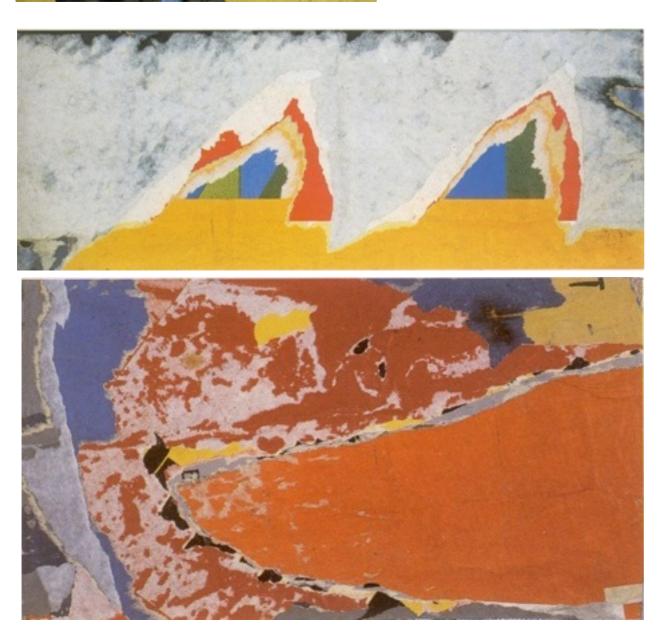
 $rac{F_p}{F_B} \sim rac{B\Gamma}{(G_c t)^2}$ relative magnitude of converging to parallel effects

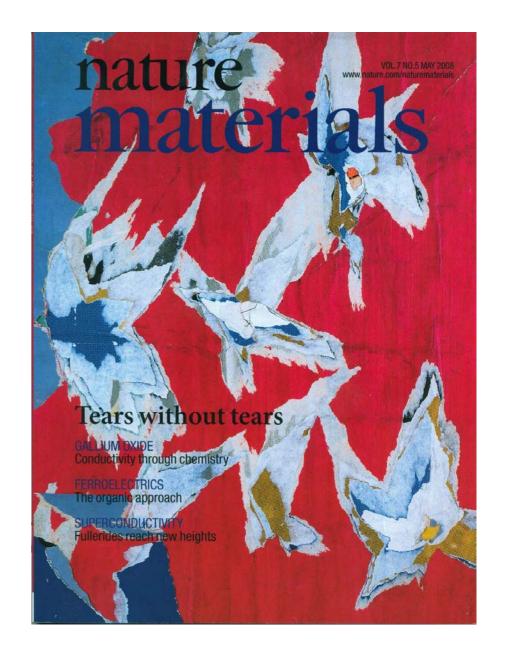


Hamm et al., Nature Material 2008

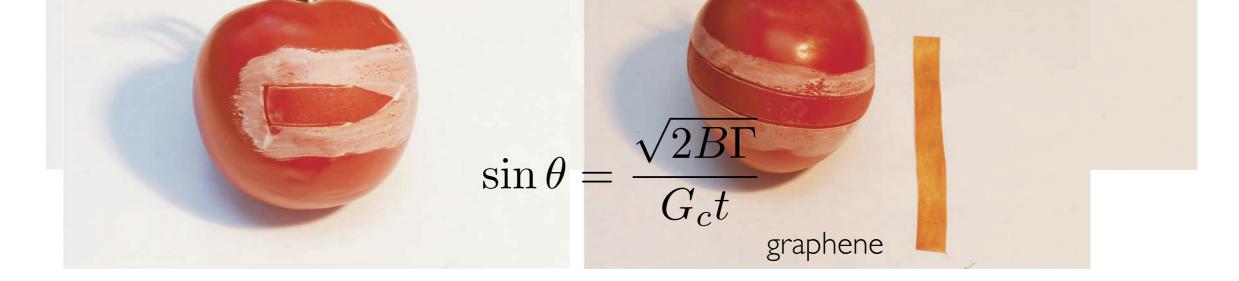
Jacques Villeglé

P.Kovarik





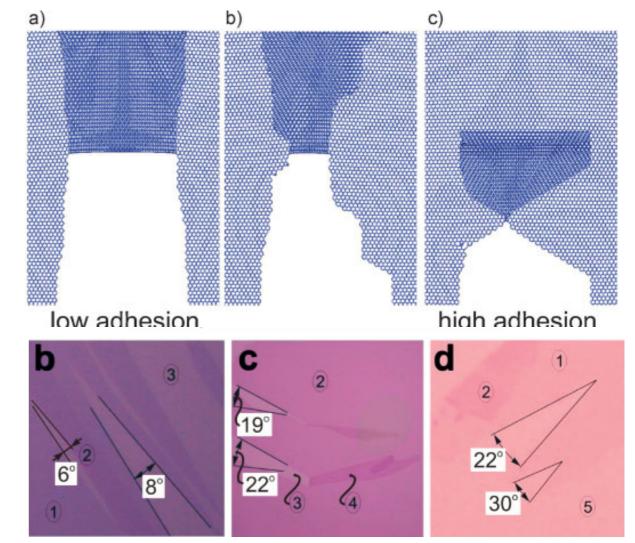
Aloha airlines 1988



Adhesion 80 N/mtoughness $\gamma t = 8.10^{-2}N$ Angle $\theta = 20^{\circ}$

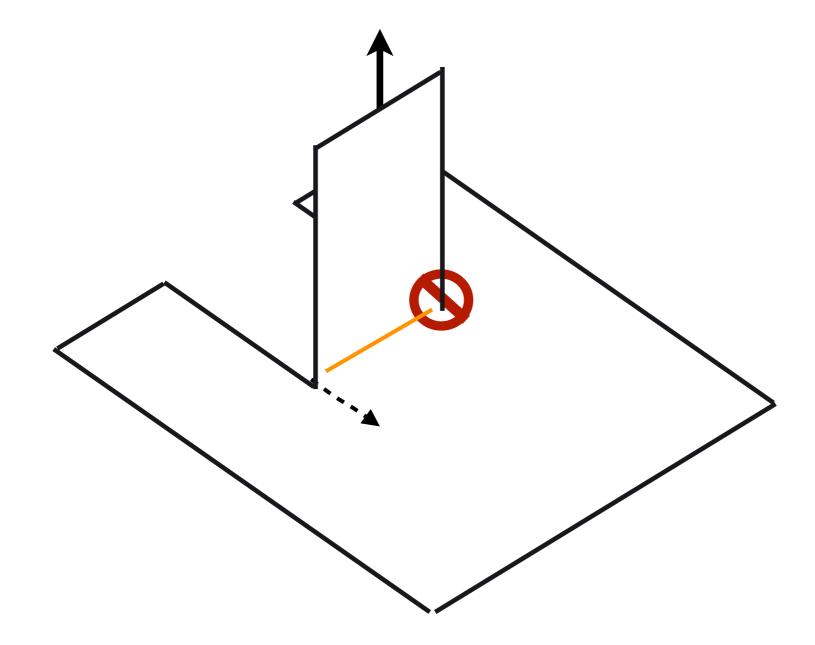
$$B = (\eta \gamma t \sin \theta)^2 / 2\tau \approx 4 \times 10^{-6} \text{ J}$$

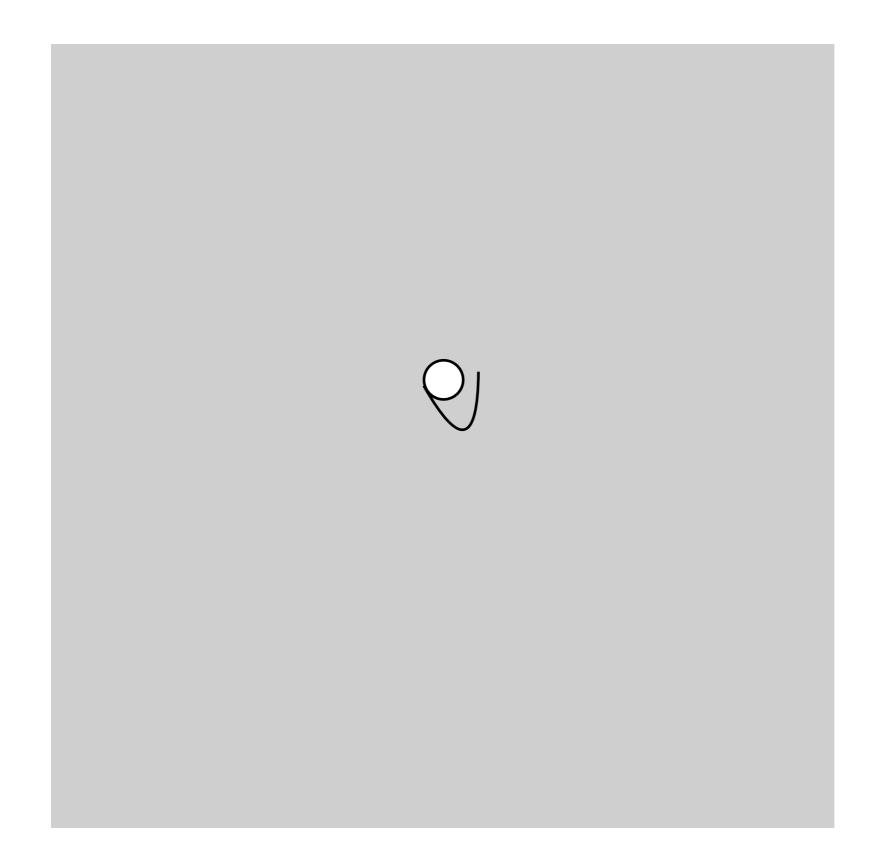
Young modulus: $E \approx 70$ MPa. consistent with other estimations 5 MPa to 50 MPa

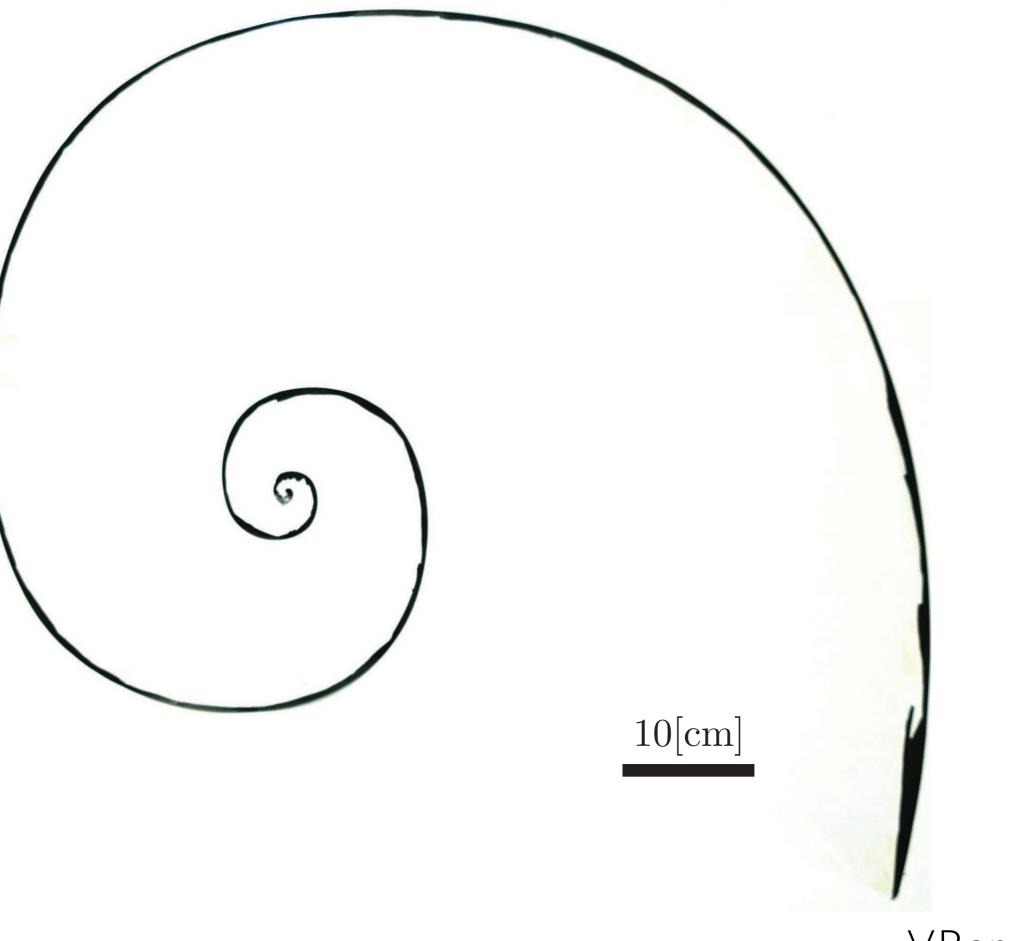


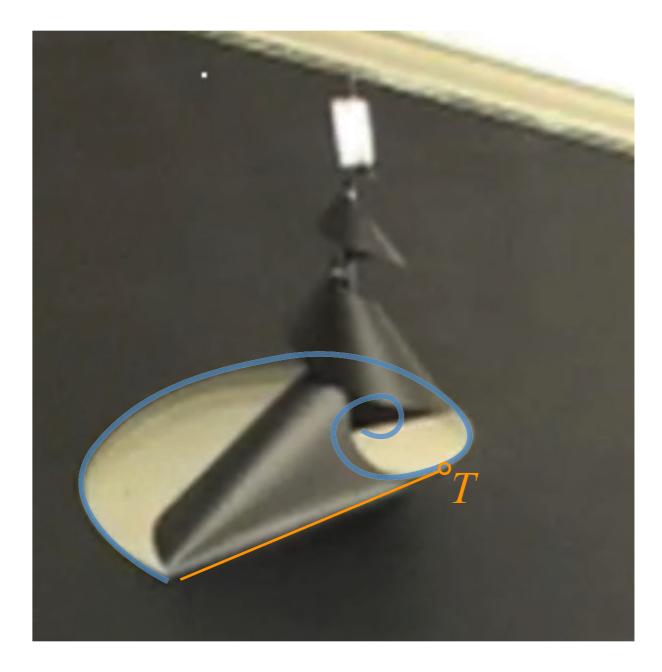
Sen et al. ,Small 2010

one crack fixed ?











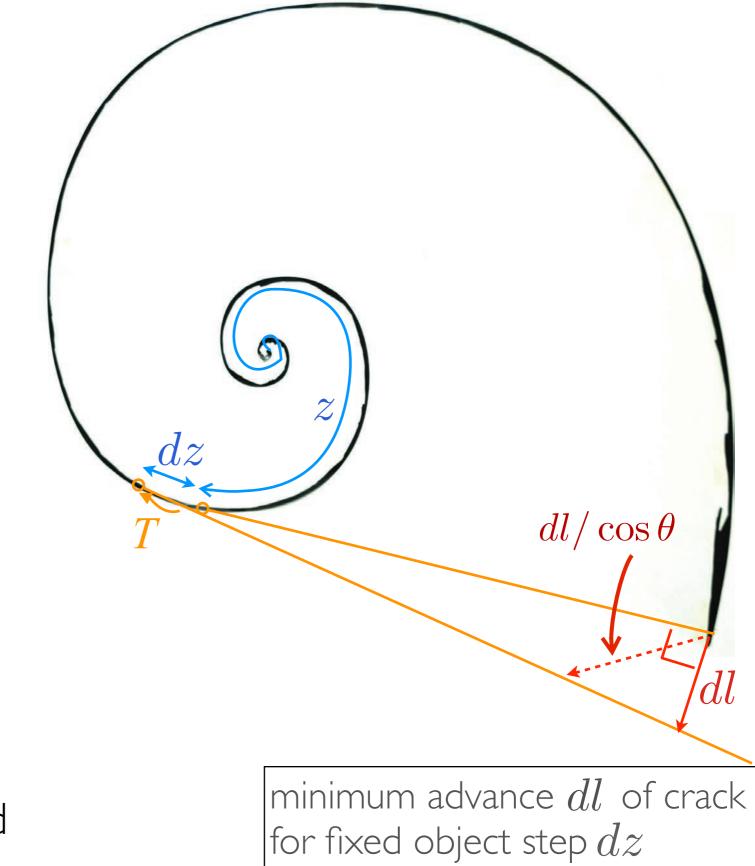
 $\delta W = Fdz = G_c tdl$

maximum E.R.Rate

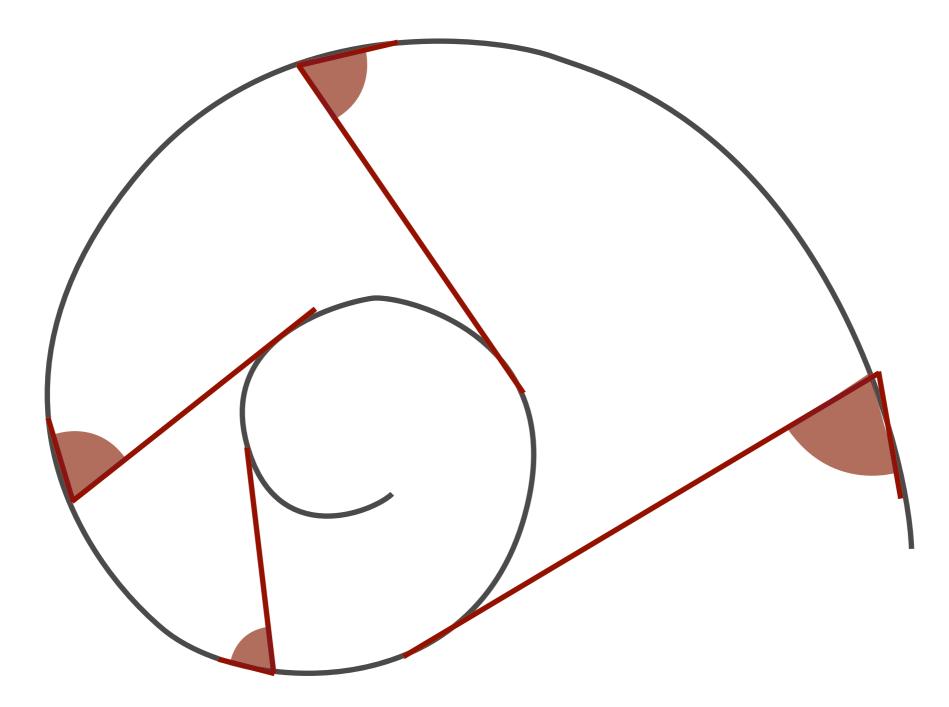
 $G = \frac{F}{t} \frac{dz}{dl}$

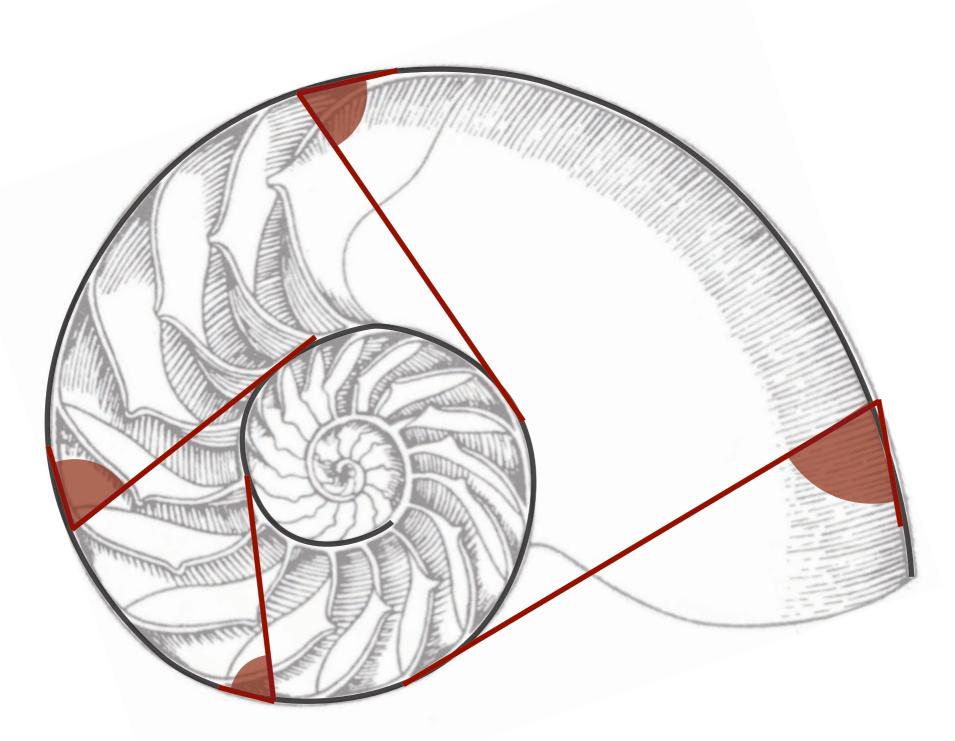
maximum advance dz of pushing object for a fixed crack step dl

minimum advance dl of crack for fixed object step dz

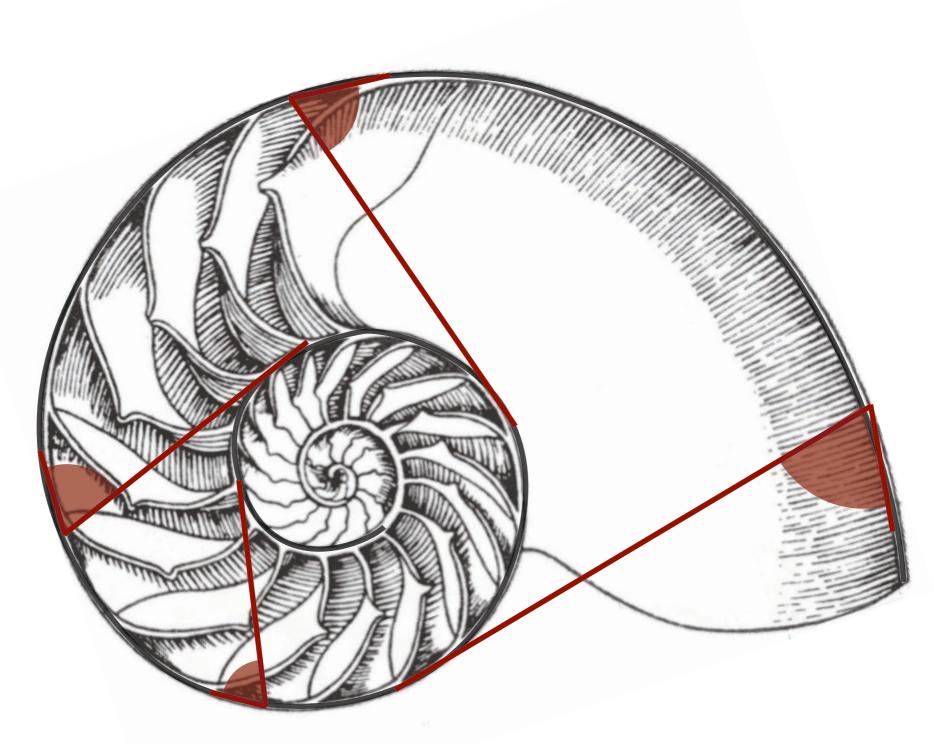


propagation perp. to fold

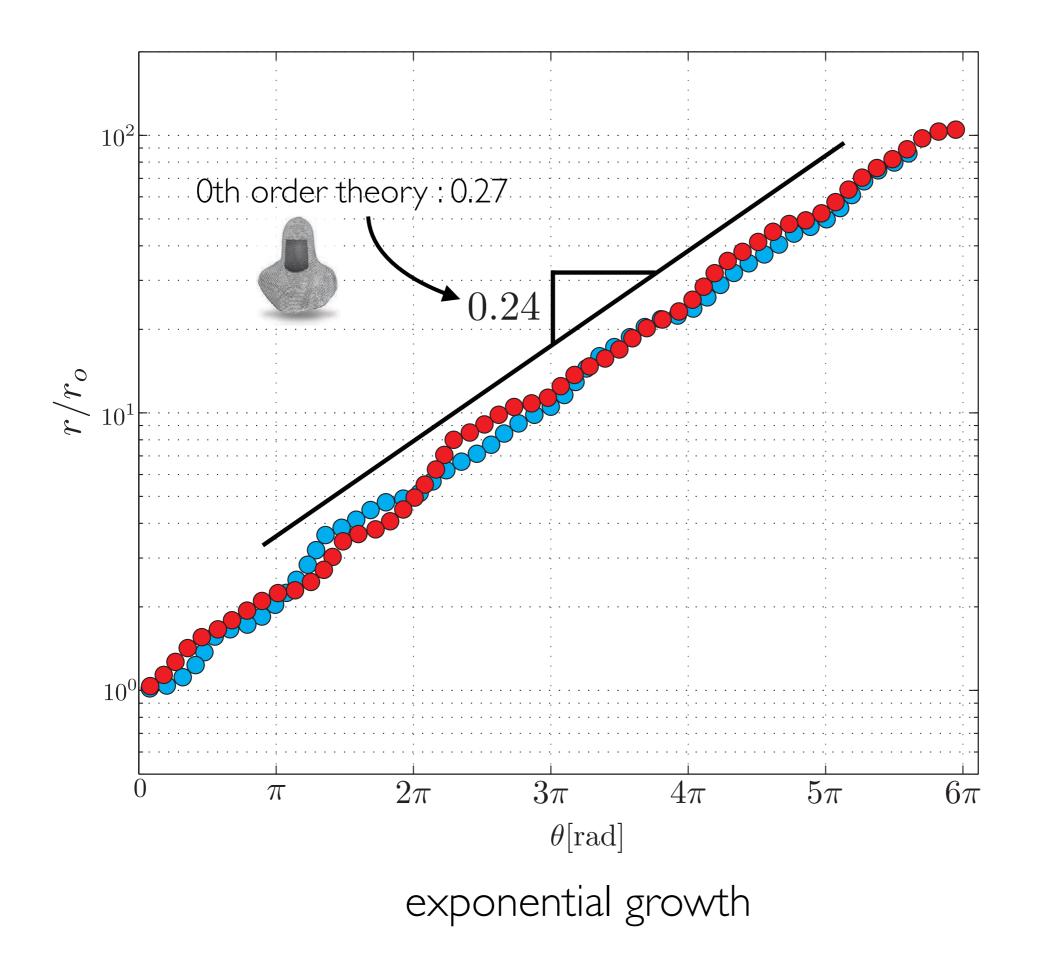




logarithmic spiral



same process at different scale

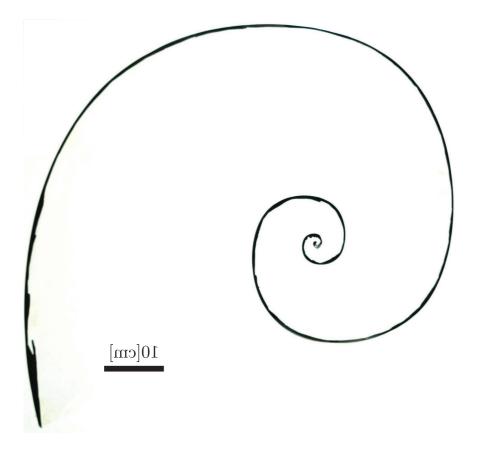


application for packaging?

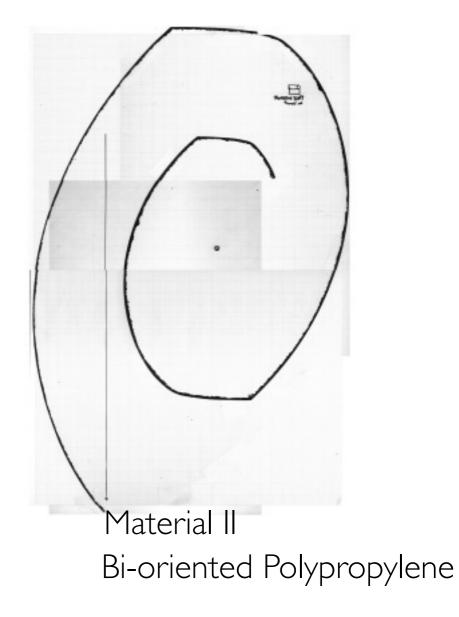
independent of

- pulling angles and speed,
- type of boundaries
- thickness, elastic properties

«Easy opening patent» with E.Cerda, E.Hamm, V.Romero



material I Balanced Bi-oriented Polypropylene

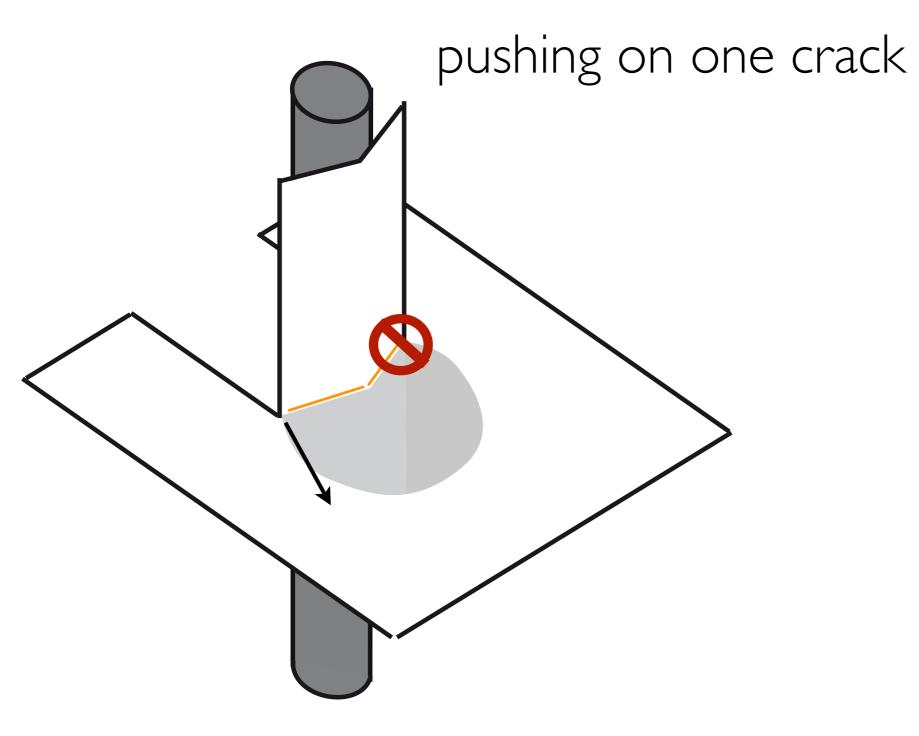


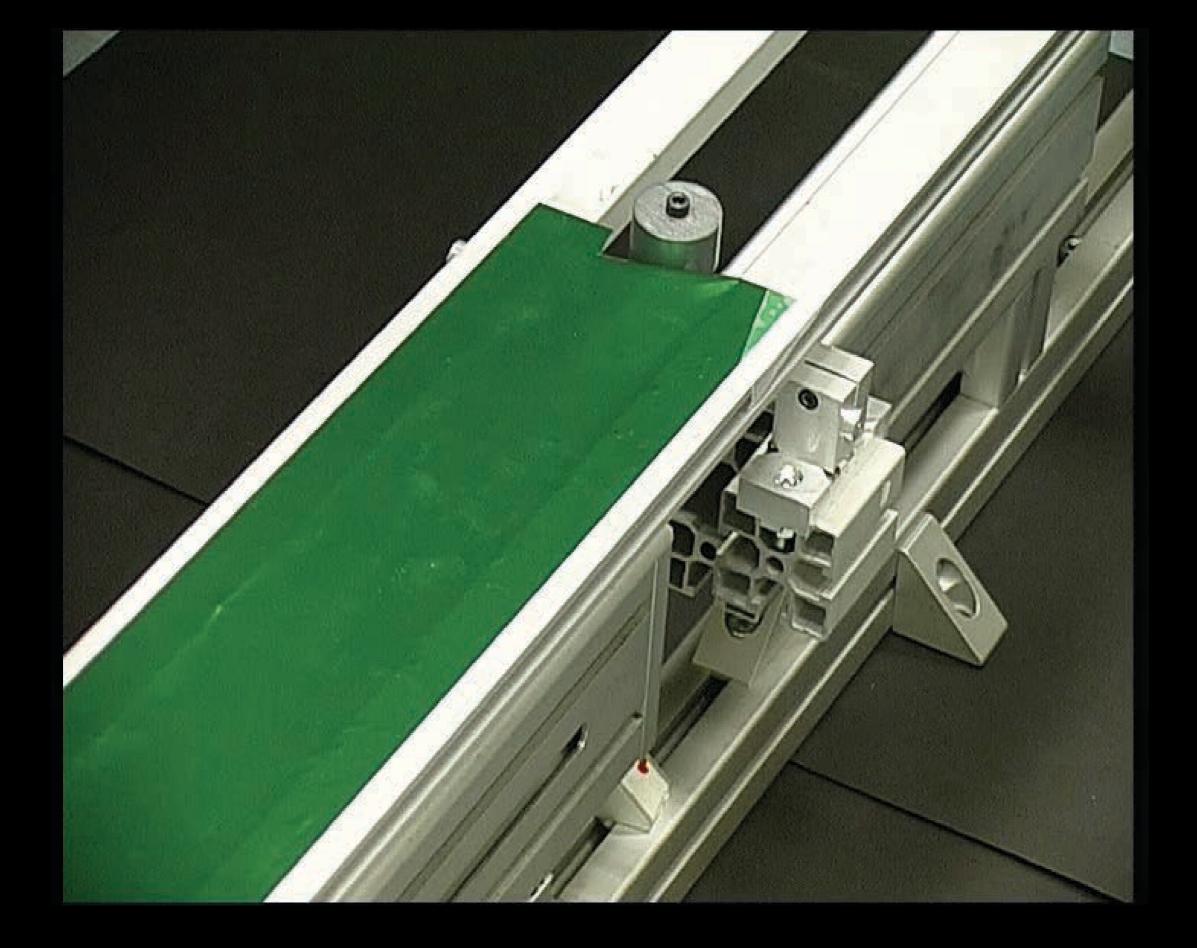
fundamental question applications?

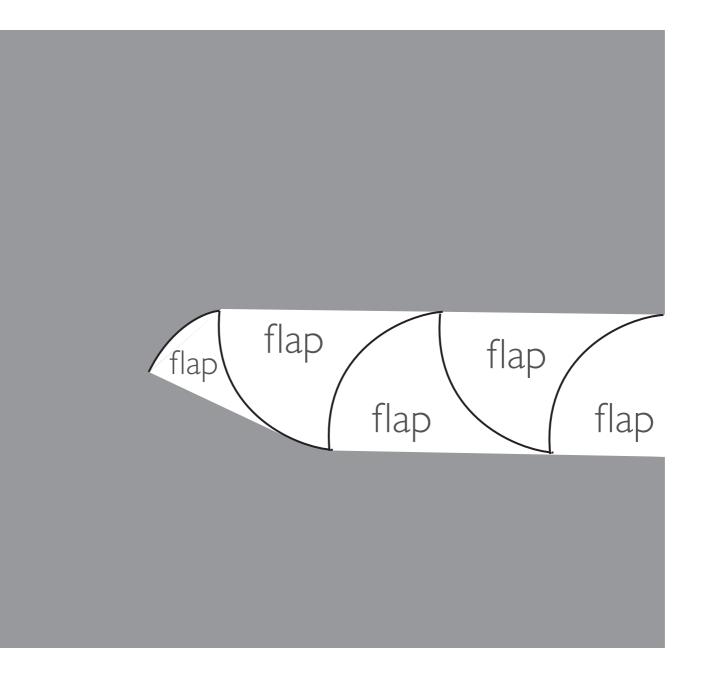
Anisotropy

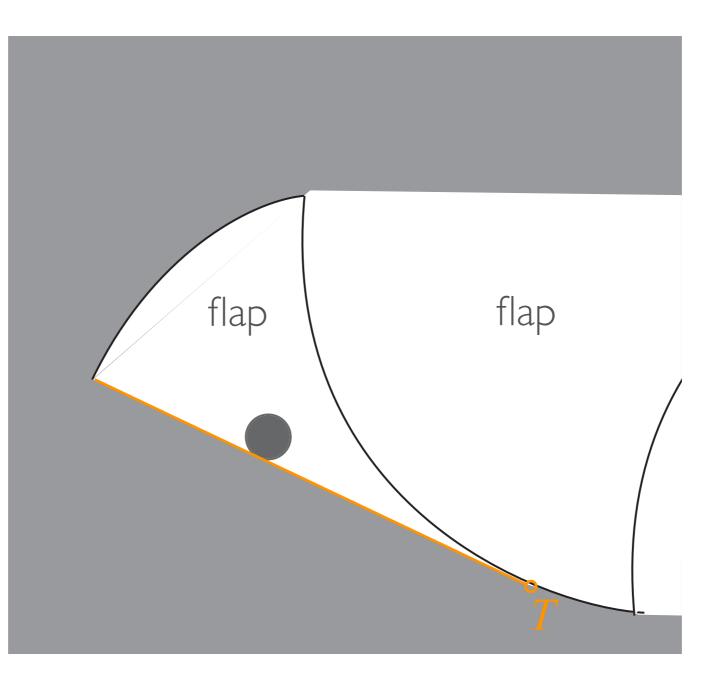
forbidden directions?

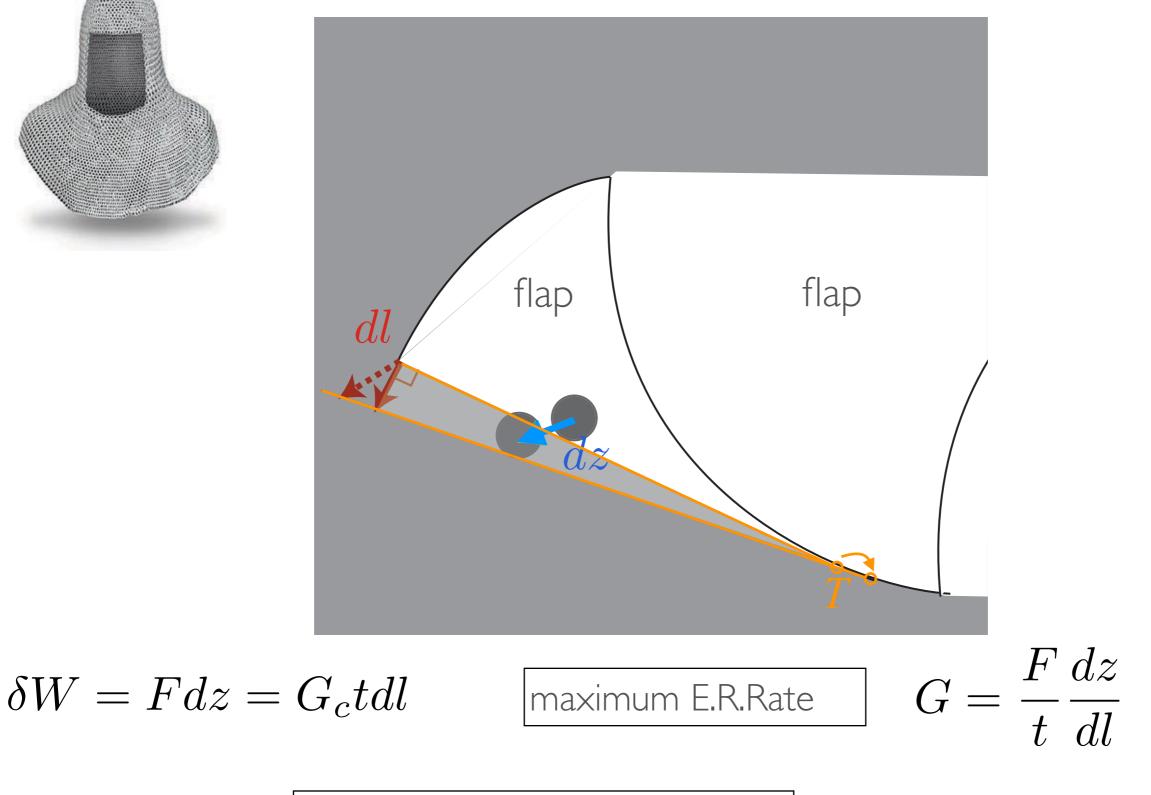
 \overline{F}_{i}^{i}





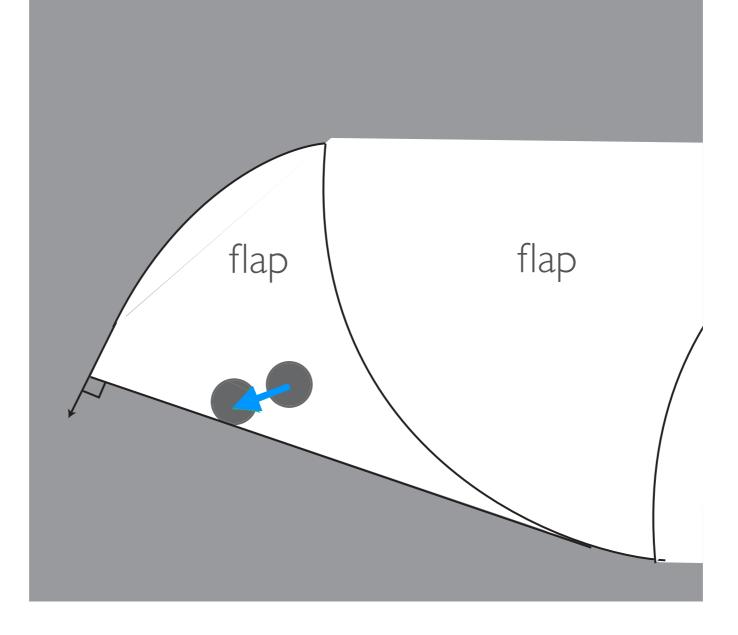




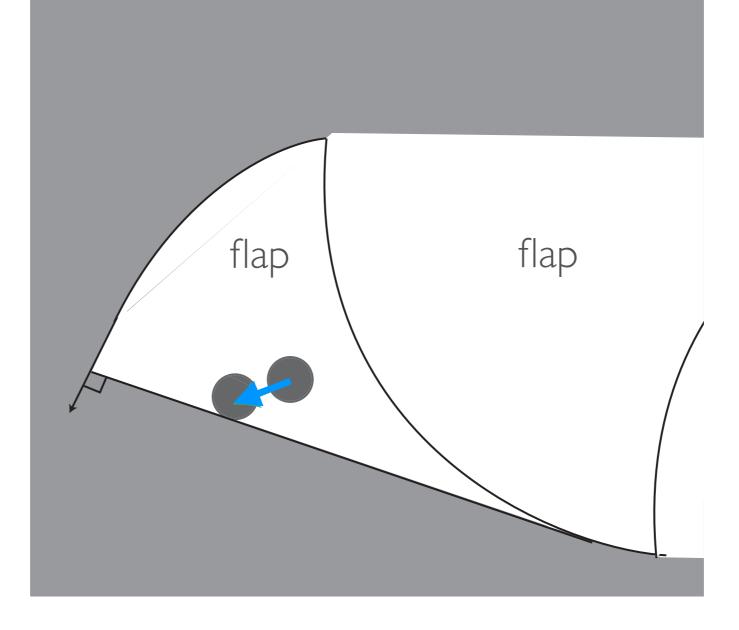


minimum advance dl of crack for fixed object step dz

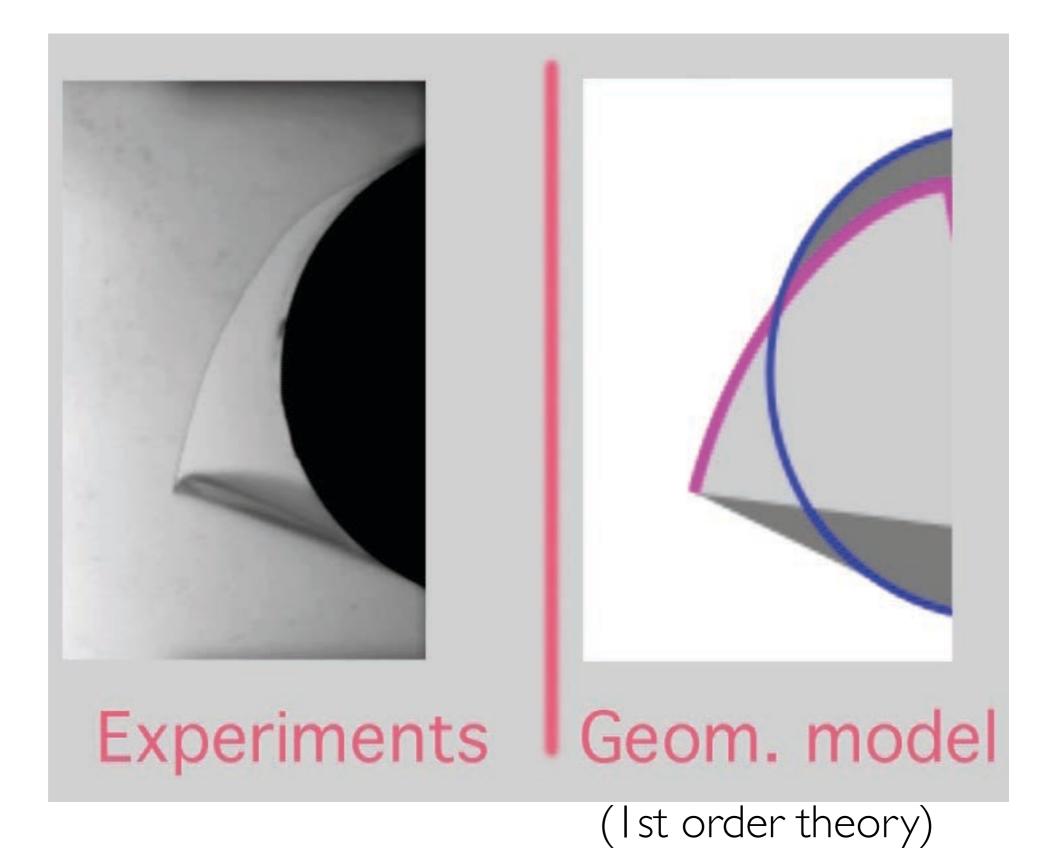
propagation perpendicular to flap limit

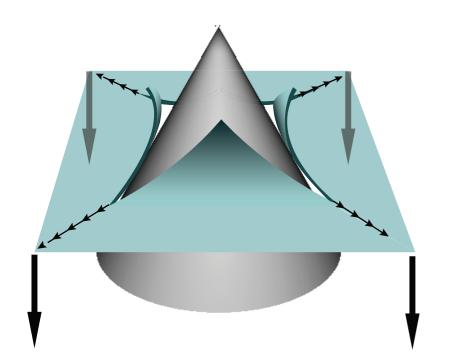


propagation perpendicular to flap limit



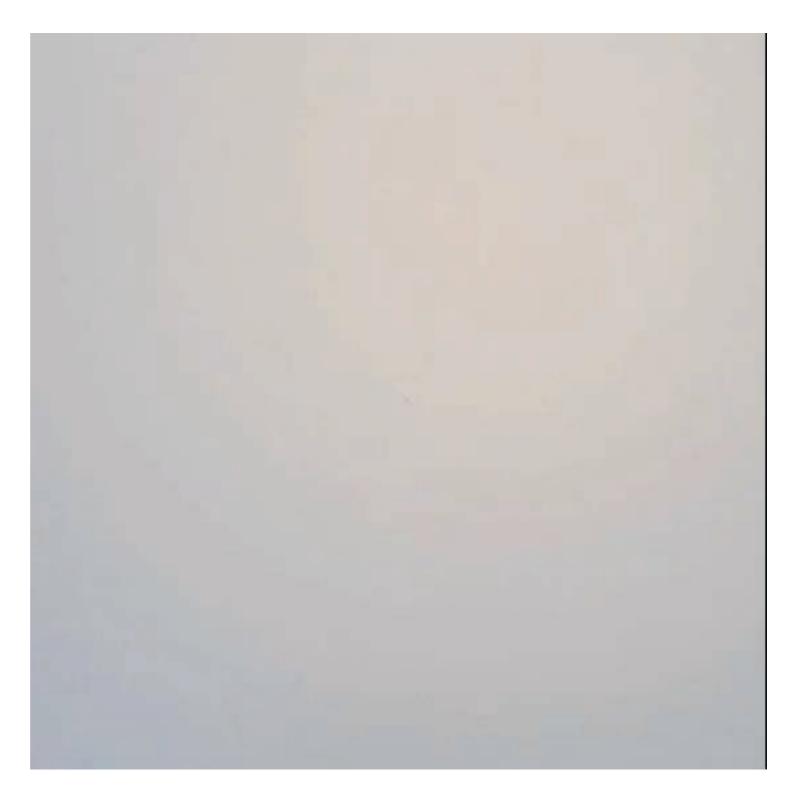
Comparing theory / experiments



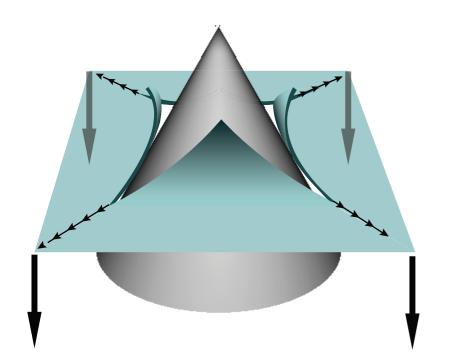


Fuentealba 2016

quasi-static perforation by a cone

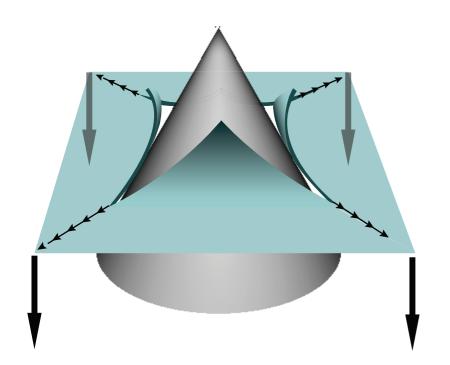


4 notches



Fuentealba 2016

quasi-static perforation by a cone



Fuentealba 2016

quasi-static perforation by a cone

Tearing paths

Conclusion:

- applications
- rich, reproducible fracture paths
- a Oth-order (non-linear) framework

— good test for theory — lab for fracture mechanics (anisotropy. dynamics?) and for teaching?

Questions for you:

- proper justification of model *(and its limits)*. 3D? memory?
- often not sufficient. a better set of approximations? (VA)

B.Roman Int. J.Frac. 2013

a lot to be done...