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Dynamic fracture

The mathematical models for dynamic fracture are based on
elastodynamics out of the crack, with suitable boundary conditions on the
crack,
a rule that couples elastodynamics with crack growth.

In this talk we consider only linearly elastic fracture mechanics with no
forces on the crack, so we use the standard linear system of elastody-
namics with homogeneous Neumann boundary conditions on the crack.
The coupling between elastodynamics and crack growth is obtained
through an energy criterion, which goes back to Griffith (1920) in the
quasistatic case, and was extended to the dynamic case by Mott (1948).
The process of crack production dissipates energy. Even if we neglect
thermal effects, we have to take into account the energy spent to break
the interatomic bonds. In the isotropic case, this leads to an energy
dissipation proportional to the area of the crack. The proportionality
constant is a material property, called toughness.
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Dynamic energy-dissipation balance

For every time t we define

total energy := kinetic energy + elastic energy

+ energy dissipated by the crack between 0 and t

The last term is proportional to the increase of area of the crack from 0

to t .
The energy criterion which connects elastodynamics with crack growth
is given by the dynamic energy-dissipation balance:

total energy at time t := total energy at time 0

+ work of the external forces between 0 and t

This leads to the well known equality between dynamic energy release
rate and toughness, and the formulas to compute the energy release rates
provide a relationship between dynamic stress intensity factors and
toughness.
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Need for an additional principle

The dynamic energy-dissipation balance is not sufficient to determine the
evolution of a crack, since elastodynamics with a stationary crack will
always satisfy energy balance.
In the phase-field approach to dynamic fracture the crack is replaced by a
phase-field approximation: a function v which takes the value 0 near the
crack and the value 1 far from it.
In these models, an energy minimization condition on v provides a
principle that can require the crack to grow (so that stationary cracks are
not always solutions).
This idea has no natural extension to sharp crack models. We propose
different criterion, a maximal dissipation criterion, as an additional
principle for crack growth.
Although this criterion could be formulated in a general setting, we
prefer to give a precise formulation only within a specific two
dimensional model with a prescribed crack path.
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Importance of existence results

Indeed, we want to test this idea on a model of dynamic crack growth
with a prescribed crack path, where a solution of the dynamic crack
problem is defined as a crack-displacement pair such that the
displacement satisfies the system of elastodynamics out of the crack set
and the pair satisfies the dynamic energy-dissipation balance and the
maximal dissipation condition.
We want to prove that, under suitable assumptions on the initial and
boundary conditions, this problem has a solution.
This is not a mathematical luxury – a formulation that prescribes too
many properties runs a strong risk of not having solutions.
The proof of the existence of a solution in the framework of a model,
under suitable assumptions on the data, guarantees that this model has no
internal contradictions. Only in this case one can use it to compute
approximate solutions and then compare the predictions of the model
with the outcome of experiments.
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Main features of the model

The model we consider here is linearly elastic with antiplane
displacement. Therefore, the reference configuration ⌦ is contained in
the plane, the displacement u is scalar, and the system of elastodynamics
reduces to the scalar wave equation.

The crack follows a sufficiently regular prescribed path � .

We consider only the problem of crack growth, assuming that an initial
crack �0 is already present.

We neglect all thermal effects, as well as other sources of dissipation,
except for the energy spent to produce new crack.

Our point is that the main mathematical difficulties to obtain an existence
result are already present in this simplified model, and we expect that
more realistic models could be studied later by adapting similar ideas
and techniques.

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 5 / 24



Main features of the model

The model we consider here is linearly elastic with antiplane
displacement. Therefore, the reference configuration ⌦ is contained in
the plane, the displacement u is scalar, and the system of elastodynamics
reduces to the scalar wave equation.

The crack follows a sufficiently regular prescribed path � .

We consider only the problem of crack growth, assuming that an initial
crack �0 is already present.

We neglect all thermal effects, as well as other sources of dissipation,
except for the energy spent to produce new crack.

Our point is that the main mathematical difficulties to obtain an existence
result are already present in this simplified model, and we expect that
more realistic models could be studied later by adapting similar ideas
and techniques.

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 5 / 24



Main features of the model

The model we consider here is linearly elastic with antiplane
displacement. Therefore, the reference configuration ⌦ is contained in
the plane, the displacement u is scalar, and the system of elastodynamics
reduces to the scalar wave equation.

The crack follows a sufficiently regular prescribed path � .

We consider only the problem of crack growth, assuming that an initial
crack �0 is already present.

We neglect all thermal effects, as well as other sources of dissipation,
except for the energy spent to produce new crack.

Our point is that the main mathematical difficulties to obtain an existence
result are already present in this simplified model, and we expect that
more realistic models could be studied later by adapting similar ideas
and techniques.

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 5 / 24



Main features of the model

The model we consider here is linearly elastic with antiplane
displacement. Therefore, the reference configuration ⌦ is contained in
the plane, the displacement u is scalar, and the system of elastodynamics
reduces to the scalar wave equation.

The crack follows a sufficiently regular prescribed path � .

We consider only the problem of crack growth, assuming that an initial
crack �0 is already present.

We neglect all thermal effects, as well as other sources of dissipation,
except for the energy spent to produce new crack.

Our point is that the main mathematical difficulties to obtain an existence
result are already present in this simplified model, and we expect that
more realistic models could be studied later by adapting similar ideas
and techniques.

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 5 / 24



Main features of the model

The model we consider here is linearly elastic with antiplane
displacement. Therefore, the reference configuration ⌦ is contained in
the plane, the displacement u is scalar, and the system of elastodynamics
reduces to the scalar wave equation.

The crack follows a sufficiently regular prescribed path � .

We consider only the problem of crack growth, assuming that an initial
crack �0 is already present.

We neglect all thermal effects, as well as other sources of dissipation,
except for the energy spent to produce new crack.

Our point is that the main mathematical difficulties to obtain an existence
result are already present in this simplified model, and we expect that
more realistic models could be studied later by adapting similar ideas
and techniques.

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 5 / 24



Precise hypotheses on ⌦ and �

The reference configuration ⌦ ⇢ R2 is a bounded open set with
Lipschitz boundary @⌦
The prescribed crack path � is a simple curve of class C2,1 contained in
⌦ except for its end-points, which belong to @⌦ . We also assume that
� divides ⌦ into two subsets ⌦+ and ⌦- , both having a Lipschitz
boundary (transversality condition).
@⌦ is the union of two disjoint Borel sets @D⌦ and @N⌦ ; on @D⌦ we
prescrive a time dependent Dirichlet boundary condition, on @N⌦ we
prescribe the homogeneous Neumann boundary condition.
Let � : [a, b] ! ⌦ be an arc-length parametrization of the crack path � ,
with a < 0 < b and �(a),�(b) 2 @⌦ . The initial crack tip corresponds
to s = 0 .
For every s 2 [a, b] we set �s = �([a, s]) and ⌦s := ⌦ \ �s .
In this model the only admissible cracks are the arcs �s = �([a, s]) for
s 2 [0, b] . The problem is to determine s as a function of time.
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Precise hypotheses on the data

For every s 2 [a, b] we set H1
D(⌦s) := {u 2 H1(⌦s) : u = 0 on @D⌦} ,

endowed with he norm of H1(⌦s) ; its dual is denoted by H-1
D (⌦s) .

Given a function u 2 H1(⌦s) , let bru = ru on ⌦s and bru = 0 on
�s . Note that bru 2 L2(⌦;R2) .

The crack problem is studied in a bounded time interval [0, T ] .

The body force f satisfies f 2 L2((0, T);L2(⌦)) .

The Dirichlet boundary condition is prescribed using a function
w 2 L2((0, T);H2(⌦0)) \H1((0, T);H1(⌦0)) \H2((0, T);L2(⌦0)) ,
where ⌦0 := ⌦ \ �0 is the cracked domain corresponding to s = 0 .

The initial conditions u0 and u1 for the displacement and for its
velocity satisfy u0 -w(0) 2 H1

D(⌦0) and u1 2 L2(⌦) .
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The Dirichlet boundary condition is prescribed using a function
w 2 L2((0, T);H2(⌦0)) \H1((0, T);H1(⌦0)) \H2((0, T);L2(⌦0)) ,
where ⌦0 := ⌦ \ �0 is the cracked domain corresponding to s = 0 .

The initial conditions u0 and u1 for the displacement and for its
velocity satisfy u0 -w(0) 2 H1

D(⌦0) and u1 2 L2(⌦) .
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Wave equation in cracking domains

We now suppose that the crack growth is prescribed through a
nondecreasing function s : [0, T ] ! [0, b] .
To find the corresponding displacement u , we have to solve the wave
equation in a time dependent domain

ü(t, x)- �u(t, x) = f(t, x) for t 2 (0, T) and x 2 ⌦s(t) .
This equation is complemented by Dirichlet boundary conditions

u(t, x) = w(t, x) for t 2 (0, T) and x 2 @D⌦ ,
Neumann boundary conditions

@⌫u(t, x) = 0 for t 2 (0, T) and x 2 @N⌦ [ �s(t) ,
and initial conditions

u(0, x) = u0(x) and u̇(0, x) = u1(x) for x 2 ⌦s(0) .
The classical results on the wave equation in time-dependent domains
cannot be applied directly, since they require suitable regularity
assumptions on the boundary, which are clearly not satisfied here.
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Regularity conditions on s

The existence of a solution to this problem in domains with a prescribed
growing crack was proved in DM-Larsen 2011 under very general
assumptions.

The uniqueness, however, is an open problem in this general setting.

Since uniqueness is crucial in our treatment of the problem, in our model
with a prescribed crack path we assume more regularity on s in order to
apply the uniqueness result proved in DM-Lucardesi 2015
More precisely, we fix two parameters 0 < � < 1 and M > 0 , and
consider the class C�,M([0, T ]) composed of all functions satisfying the
following conditions:

s 2 C2,1([0, T ]; [0, b]) ,
0  ṡ(t)  1-� for every t 2 [0, T ] ,
|s̈(t)|  M for every t 2 [0, T ] and |

...
s (t)|  M for a.e. t 2 (0, T) .
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Weak solution in cracked domains

Under the previous assumptions on w , u0 , u1 , and s , we say that u is a
weak solution of the wave equation (with boundary and initial conditions) on
the time-dependent cracking domains t 7! ⌦s(t) if
u 2 C1([0, T ];L2(⌦)) ,
u(t)-w(t) 2 H1

D(⌦s(t)) for every t 2 [0, T ] ,
bru 2 C0([0, T ];L2(⌦;R2)) ,
u̇ 2 AC([t, T ];H-1

D (⌦s(t))) for every t 2 [0, T) ,
1
h(u̇(t+ h)- u̇(t)) ⇢

h!0
ü(t) weakly in H-1

D (⌦s(t)) , for a.e. t 2 (0, T) ,

t 7! kü(t)kH-1
D (⌦s(t))

is integrable on (0, T) ,

u(t1) = u0 and u̇(t1) = u1 in L2(⌦) ,
and for a.e. t 2 (0, T)
hü(t),'i+ hbru(t), br'i = hf(t),'i for every ' 2 H1

D(⌦s(t)) .
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Existence and uniqueness

Theorem (DM-Lucardesi, 2015)
Under the previuous assumptions there exists a unique weak solution on the

time-dependent cracking domains t 7! ⌦s(t) .

We also have the continuous dependence of the solutions on the data, in
particular on the function t 7! s(t) .

Theorem (DM-Lucardesi, 2015)
Assume that sk 2 C�,M([0, T ]) converges uniformly to some s 2 C�,M([0, T ]) .

Let uk and u be the weak solutions on the cracking domains t 7! ⌦sk(t) and

t 7! ⌦s(t) . Then for every t 2 [0, T ]
uk(t, ·) ! u(t, ·) strongly in L2(⌦) ,

bruk(t, ·) ! bru(t, ·) strongly in L2(⌦;R2) ,

u̇k(t, ·) ! u̇(t, ·) strongly in L2(⌦) .
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Piecewise regular functions

Besides the class C�,M([0, T ]) , we can consider the class Cpiec
�,M([0, T ])

defined in the following way: s 2 Cpiec
�,M([0, T ]) if and only if

s 2 C0([0, T ]) and there exist 0 = T0 < T1 < · · · < Tk = T such that
s|[Tj-1,Tj] 2 C�,M([Tj-1, Tj]) for every j = 1, . . . , k .

If s 2 Cpiec
�,M([0, T ]) , then we can still define a weak solution of the wave

equation (with boundary and initial conditions) in the time-dependent
cracking domains t 7! ⌦s(t) .

The existence and uniqueness of such a solution is a direct consequence
of the theorem for C�,M([0, T ]) , applied to each interval [Tj-1, Tj] of the
subdivision.
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Energy and work

The sum of the kinetic and elastic energies of a solution u at time t is
given by E(u̇(t), bru(t)) , where
E(v, ) := 1

2kvk
2 + 1

2k k
2 for every v 2 L2(⌦) and  2 L2(⌦;R2) .

The work of the external forces on the solution u over a time interval
[t1, t2] ⇢ [0, T ] is given by

Wload(u; t1, t2) :=

Z t2

t1

hf(t), u̇(t)idt .

The work on the solution u due to the varying boundary conditions w

over a time interval [t1, t2] ⇢ [0, T ] is given by

Wbdry(u; t1, t2) =

Z t2

t1

h@⌫u(t), ẇ(t)i@D⌦dt ,

when u(t) is regular enough. Integrating by parts, it can be written by
means of a longer expression that makes sense for every weak solution.
The total work on the solution u over a time interval [t1, t2] ⇢ [0, T ] is
defined by W(u; t1, t2) := Wload(u; t1, t2) +Wbdry(u; t1, t2) .

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 13 / 24



Energy and work

The sum of the kinetic and elastic energies of a solution u at time t is
given by E(u̇(t), bru(t)) , where
E(v, ) := 1

2kvk
2 + 1

2k k
2 for every v 2 L2(⌦) and  2 L2(⌦;R2) .

The work of the external forces on the solution u over a time interval
[t1, t2] ⇢ [0, T ] is given by

Wload(u; t1, t2) :=

Z t2

t1

hf(t), u̇(t)idt .

The work on the solution u due to the varying boundary conditions w

over a time interval [t1, t2] ⇢ [0, T ] is given by

Wbdry(u; t1, t2) =

Z t2

t1
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Energy-dissipation balance

Under the previous assumption on w , u0 , u1 , and s , given s0 2 [0, b]
we consider the class Ss0([0, T ]) (resp. Spiec

s0 ([0, T ])) of all functions
s 2 C�,M([0, T ]) (resp. s 2 Cpiec

�,M ([0, T ])), with s(0) = s0 , such that the
unique weak solution u of the wave equation (with initial conditions u0

and u1 , and boundary condition w) on the time-dependent cracking
domains t 7! ⌦s(t) satisfies the dynamic energy-dissipation balance
E(u̇(t2), bru(t2))- E(u̇(t1), bru(t1))) + s(t2)- s(t1) = W(u; t1, t2)
for every interval [t1, t2] ⇢ [0, T ] .

These classes describe all sufficiently regular crack evolutions satisfying
the dynamic energy-dissipation balance and with initial crack
corresponding to s0 .

Note that the classes Ss0([0, T ]) and Spiec
s0 ([0, T ]) are not empty: they

contain at least the constant function s(t) = s0 for all t 2 [0, T ] .

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 14 / 24



Energy-dissipation balance

Under the previous assumption on w , u0 , u1 , and s , given s0 2 [0, b]
we consider the class Ss0([0, T ]) (resp. Spiec

s0 ([0, T ])) of all functions
s 2 C�,M([0, T ]) (resp. s 2 Cpiec

�,M ([0, T ])), with s(0) = s0 , such that the
unique weak solution u of the wave equation (with initial conditions u0

and u1 , and boundary condition w) on the time-dependent cracking
domains t 7! ⌦s(t) satisfies the dynamic energy-dissipation balance
E(u̇(t2), bru(t2))- E(u̇(t1), bru(t1))) + s(t2)- s(t1) = W(u; t1, t2)
for every interval [t1, t2] ⇢ [0, T ] .

These classes describe all sufficiently regular crack evolutions satisfying
the dynamic energy-dissipation balance and with initial crack
corresponding to s0 .

Note that the classes Ss0([0, T ]) and Spiec
s0 ([0, T ]) are not empty: they

contain at least the constant function s(t) = s0 for all t 2 [0, T ] .

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 14 / 24



Energy-dissipation balance

Under the previous assumption on w , u0 , u1 , and s , given s0 2 [0, b]
we consider the class Ss0([0, T ]) (resp. Spiec

s0 ([0, T ])) of all functions
s 2 C�,M([0, T ]) (resp. s 2 Cpiec

�,M ([0, T ])), with s(0) = s0 , such that the
unique weak solution u of the wave equation (with initial conditions u0

and u1 , and boundary condition w) on the time-dependent cracking
domains t 7! ⌦s(t) satisfies the dynamic energy-dissipation balance
E(u̇(t2), bru(t2))- E(u̇(t1), bru(t1))) + s(t2)- s(t1) = W(u; t1, t2)
for every interval [t1, t2] ⇢ [0, T ] .

These classes describe all sufficiently regular crack evolutions satisfying
the dynamic energy-dissipation balance and with initial crack
corresponding to s0 .

Note that the classes Ss0([0, T ]) and Spiec
s0 ([0, T ]) are not empty: they

contain at least the constant function s(t) = s0 for all t 2 [0, T ] .

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 14 / 24



Maximal dissipation

The spirit of the maximal dissipation condition is simply that the crack
must run as fast as possible, consistent with energy balance.
To give a formal definition, for every s 2 Spiec

0 ([0, T ]) and ⌧ 2 [0, T ] we
introduce the class A(s, ⌧) of admissible comparison functions, defined
as the class of functions � 2 Spiec

0 ([0, T ]) , with �(t) � s(t) for all
t 2 [0, ⌧] , such that �̇ , �̈ are continuous where ṡ , s̈ are continuous.
We say that s is a maximal dissipation solution of the dynamic crack
evolution problem if s 2 Spiec

0 ([0, T ]) and for every ⌧ 2 [0, T ] there is
no � 2 A(s, ⌧) such that �(⌧) > s(⌧) .
For technical reasons, we are able to prove the existence of an admissible
evolution satisfying the previous condition only in a quantitative way,
depending on a prescribed threshold ⌘ > 0 .
Given ⌘ > 0 , we say that s is an ⌘-maximal dissipation solution of the
dynamic crack evolution problem if s 2 Spiec

0 ([0, T ]) and for every
⌧ 2 [0, T ] there is no � 2 A(s, ⌧) such that �(⌧) > s(⌧) + ⌘ .
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The existence result

Theorem (DM-Larsen-Toader 2015)
Assume that f , w , u0

, u1
satisfy the previous hypotheses and let ⌘ > 0 .

Then there exists an ⌘-maximal dissipation solution of the dynamic crack

evolution problem corresponding to these data.

The main difficulty in the definition of an ⌘-maximal dissipation
solution is the variability of the interval [0, ⌧] where the comparison
function � 2 Spiec

0 ([0, T ]) satisfies the inequality �(t) � s(t) .
To overcome this problem we discretize time and in each time interval
we prove the existence of a maximal function s among all functions
satisfying our regularity requirements and the energy equality.
Then we prove that the function obtained by glueing together these
maximal functions is an ⌘-maximal dissipation solution, provided that
the length of each time interval is less that ⌘ (recall that the speed of
sound is normalized to one).
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The crucial lemma

Lemma (DM-Larsen-Toader 2015)
For every s0 2 [0, b] exists s 2 Ss0([0, T ]) such thatZ T

0

s(t)dt = max
�2Ss0

([0,T ])

Z T

0

�(t)dt .

To prove the lemma we fix a maximizing sequence, i.e., a sequence

sn 2 Ss0([0, T ]) such that
Z T

0

sn(t)dt ! sup
�2Ss0

([0,T ])

Z T

0

�(t)dt .

Since C�,M([0, T ]) is compact, there exist a subsequence, not relabeled,
and a function s 2 C�,M([0, T ]) such that sn ! s in C2([0, T ]) .
Since sn 2 Ss0([0, T ]) , the weak solutions un to the wave equation
corresponding to sn and to f , w , u0 , and u1 satisfy the energy equality

E(u̇n(t2),brun(t2))-E(u̇n(t1),brun(t1))+sn(t2)-sn(t1)=W(un;t1,t2)
for every interval [t1, t2] ⇢ [0, T ] .

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 17 / 24



The crucial lemma

Lemma (DM-Larsen-Toader 2015)
For every s0 2 [0, b] exists s 2 Ss0([0, T ]) such thatZ T

0

s(t)dt = max
�2Ss0

([0,T ])

Z T

0

�(t)dt .

To prove the lemma we fix a maximizing sequence, i.e., a sequence

sn 2 Ss0([0, T ]) such that
Z T

0

sn(t)dt ! sup
�2Ss0

([0,T ])

Z T

0

�(t)dt .

Since C�,M([0, T ]) is compact, there exist a subsequence, not relabeled,
and a function s 2 C�,M([0, T ]) such that sn ! s in C2([0, T ]) .
Since sn 2 Ss0([0, T ]) , the weak solutions un to the wave equation
corresponding to sn and to f , w , u0 , and u1 satisfy the energy equality

E(u̇n(t2),brun(t2))-E(u̇n(t1),brun(t1))+sn(t2)-sn(t1)=W(un;t1,t2)
for every interval [t1, t2] ⇢ [0, T ] .

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 17 / 24



The crucial lemma

Lemma (DM-Larsen-Toader 2015)
For every s0 2 [0, b] exists s 2 Ss0([0, T ]) such thatZ T

0

s(t)dt = max
�2Ss0

([0,T ])

Z T

0

�(t)dt .

To prove the lemma we fix a maximizing sequence, i.e., a sequence

sn 2 Ss0([0, T ]) such that
Z T

0

sn(t)dt ! sup
�2Ss0

([0,T ])

Z T

0

�(t)dt .

Since C�,M([0, T ]) is compact, there exist a subsequence, not relabeled,
and a function s 2 C�,M([0, T ]) such that sn ! s in C2([0, T ]) .
Since sn 2 Ss0([0, T ]) , the weak solutions un to the wave equation
corresponding to sn and to f , w , u0 , and u1 satisfy the energy equality

E(u̇n(t2),brun(t2))-E(u̇n(t1),brun(t1))+sn(t2)-sn(t1)=W(un;t1,t2)
for every interval [t1, t2] ⇢ [0, T ] .

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 17 / 24



The crucial lemma

Lemma (DM-Larsen-Toader 2015)
For every s0 2 [0, b] exists s 2 Ss0([0, T ]) such thatZ T

0

s(t)dt = max
�2Ss0

([0,T ])

Z T

0

�(t)dt .

To prove the lemma we fix a maximizing sequence, i.e., a sequence

sn 2 Ss0([0, T ]) such that
Z T

0

sn(t)dt ! sup
�2Ss0

([0,T ])

Z T

0

�(t)dt .

Since C�,M([0, T ]) is compact, there exist a subsequence, not relabeled,
and a function s 2 C�,M([0, T ]) such that sn ! s in C2([0, T ]) .
Since sn 2 Ss0([0, T ]) , the weak solutions un to the wave equation
corresponding to sn and to f , w , u0 , and u1 satisfy the energy equality

E(u̇n(t2),brun(t2))-E(u̇n(t1),brun(t1))+sn(t2)-sn(t1)=W(un;t1,t2)
for every interval [t1, t2] ⇢ [0, T ] .

Gianni Dal Maso Maximal dissipation and dynamic fracture Banff 17 / 24



End of the proof of the lemma

By the continuous dependence on the data for every interval
[t1, t2] ⇢ [0, T ] we can pass to the limit in

E(u̇n(t2),brun(t2))-E(u̇n(t1),brun(t1))+sn(t2)-sn(t1)=W(un;t1,t2) .

This gives
E(u̇(t2),bru(t2))-E(u̇(t1),bru(t1))+s(t2)-s(t1)=W(u;t1,t2) ,
where u is the solution of the wave equation corresponding to s .

Hence u and s satisfy the dynamic energy-dissipation balance, i.e.,
s 2 Ss0([0, T ]) .

Recalling that sn is a maximizing sequence, we have

sup
�2Ss0

([0,T ])

Z T

0

�(t)dt = lim
n!1

Z T

0

sn(t)dt =

Z T

0

s(t)dt .

Since s 2 Ss0([0, T ]) , this shows that s is a maximizer, and concludes
the proof of the lemma.
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Proof of the theorem (part 1)

To prove the theorem we fix a finite subdivision
0 = T0 < T1 < · · · < Tk = T such that Tj - Tj-1  ⌘ for j = 1, . . . , k .
The solution will be constructed recursively in the intervals [Tj-1, Tj] .

By applying the lemma on the interval [0, T1] we find s1 2 S0([0, T1])
such thatZ T1

0

s1(t)dt = max
s2S0([0,T1])

Z T1

0

s(t)dt ,

and we consider the unique solution u1 corresponding to s1 .

By applying the lemma on the interval [T1, T2] , with initial conditions
u1(T1) and u̇1(T1) , we find s2 2 Ss1(T1)([T1, T2]) such that
Z T2

T1

s2(t)dt = max
s2Ss1(T1)

([T1,T2])

Z T2

T1

s(t)dt ,

and we consider the unique solution u2 corresponding to s2 .
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Proof of the theorem (part 2)

By applying the lemma on the interval [Tj, Tj+1] , with initial conditions
uj(Tj) and u̇j(Tj) , we find sj+1 2 Ssj(Tj)([Tj, Tj+1]) such that
Z Tj+1

Tj

sj+1(t)dt = max
s2Ssj(Tj)

([Tj,Tj+1])

Z Tj+1

Tj

s(t)dt ,

and we consider the unique solution uj+1 corresponding to sj+1 .

We now set s(t) := sj(t) and u(t) := uj(t) for t 2 [Tj-1, Tj] ,
j = 1, . . . , k .

It follows from the construction that s 2 Cpiec
�,M ([0, T ]) , that s(0) = 0 , and

that u is the unique solution of the wave equation corresponding to s .

Since the energy-dissipation balance is satisfied on every subinterval of
the intervals [Tj-1, Tj] , it is satisfied on every subinterval of [0, T ] , hence
s 2 Spiec

0 ([0, T ]) .
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Proof of the theorem (part 3)

It remains to prove that the maximal dissipation condition is satisfied.
Suppose the contrary. Then there exist ⌧ 2 [0, T ] and � 2 Spiec

0 ([0, T ]) ,
with �(t) � s(t) for all t 2 [0, ⌧] and �(⌧) > s(⌧) + ⌘ , such that �̇ and
�̈ are continuous where ṡ and s̈ are continuous.
Let ⌧0 := inf{t 2 [0, ⌧] : �(t) > s(t)} and let j be the index such that
⌧0 2 [Tj, Tj+1) . We claim that Tj+1  ⌧ .
If not, the inequality �̇(t)  1-� implies �(⌧)-�(⌧0)  Tj+1-Tj < ⌘ ,
hence �(⌧) < �(⌧0) + ⌘ = s(⌧0) + ⌘  s(⌧) + ⌘ , which contradicts
�(⌧) > s(⌧) + ⌘ . This proves that Tj+1  ⌧ .
As �̇ , �̈ are continuous where ṡ , s̈ are continuous, � 2 C�,M([Tj, Tj+1]) .
Since � = s on [0, ⌧0] , by the uniqueness of the solution to the wave
equation we obtain u�(Tj)=u(Tj)=uj(Tj) and u̇�(Tj)=u̇(Tj)=u̇j(Tj) ,
where u� and u correspond to � and s , respectively.
Therefore �|[Tj,Tj+1] is a competitor in the maximum problem which
defines sj+1 .
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�̈ are continuous where ṡ and s̈ are continuous.
Let ⌧0 := inf{t 2 [0, ⌧] : �(t) > s(t)} and let j be the index such that
⌧0 2 [Tj, Tj+1) . We claim that Tj+1  ⌧ .
If not, the inequality �̇(t)  1-� implies �(⌧)-�(⌧0)  Tj+1-Tj < ⌘ ,
hence �(⌧) < �(⌧0) + ⌘ = s(⌧0) + ⌘  s(⌧) + ⌘ , which contradicts
�(⌧) > s(⌧) + ⌘ . This proves that Tj+1  ⌧ .
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Proof of the theorem (conclusion)

Since �|[Tj,Tj+1] is a competitor in that maximum problem, we have
Z Tj+1

Tj

s(t)dt =

Z Tj+1

Tj

sj+1(t)dt �
Z Tj+1

Tj

�(t)dt .

Since �(t) � s(t) for t 2 [0, ⌧] and Tj+1  ⌧ , we have �(t) � s(t) for
every t 2 [Tj, Tj+1] .

Therefore the inequality between the integrals and the continuity of s
and � imply that �(t) = s(t) for every t 2 [Tj, Tj+1] .

Since ⌧0 2 [Tj, Tj+1) , we have �(t) = s(t) for every t 2 [⌧0, Tj+1] , and
this contradict the fact that ⌧0 := inf{t 2 [0, ⌧] : �(t) > s(t)} .

This contradiction proves that the maximal dissipation condition is
satisfied.
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Example of growing dynamic crack

Let us consider the special case in which ⌦ is a circle, the Dirichhlet
part of the boundary @D⌦ coincides with the whole boundary @⌦ , the
crack path � is a straight line segment, and the body force is f = 0 .

Given c > 0 we can find an explicit example of Dirichlet boundary
conditions w and of initial conditions u0 and u1 such that a crack
growing with constant velocity c (which corresponds to s(t) = ct),
satisfies the dynamic energy-dissipation balance.

This shows that in this case the ⌘-maximal dissipation solution is not
stationary, although the stationary crack s(t) = 0 always satisfies the
dynamic energy-dissipation balance.
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THANK YOU FOR YOUR ATTENTION!
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